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1. Introduction 

Soils vary in space and time due to the combined effects of physical, chemical, and 
biological processes that operate at different scales and with different intensities. This 
variability is caused by soil forming factors, i.e., climate, parent material, time, topography, 
and vegetation (Jenny, 1980), farming practices (fertilization, irrigation, tillage, etc.), erosion, 
etc. Each cause may operate independently or in combination with other factors and over a 
wide range of spatial and/or temporal scales. Spatial scales can manifest at microscale to 
watershed and more, while temporal scale can span from seconds to decades and longer. 
These processes and causes create a pattern of nested variability or soil heterogeneity. This 
scale-dependency means that soil properties may display spatial and/or temporal patterns 
only over certain distances and not over others. 
Characterizing spatial variability of soil properties and crop parameters by inventorying 
them is needed to evaluate the effectiveness of their management. Also, characterizing their 
temporal variability by monitoring them is important in order to compare different 
management systems for sustainability and environmental quality. In addition, an 
understanding of the spatial and/or temporal variability can provide a framework for 
developing effective sampling schemes for future site management and efficient 
experimental designs for research approaches. 
Due to the spatial and/or temporal variability of soil properties, numerous samples need to 
be taken and the measurements need to be repeated as conditions change or to determine if 
they are changing. Soil properties are traditionally determined in laboratory from samples 
taken from field. However, this approach, although more precise, is more time consuming 
and expensive. Alternatively, soil properties can be easily, quickly, cheaply, and more 

www.intechopen.com



 
Principles, Application and Assessment in Soil Science 

 

280 

intensively measured, even indirectly, using terrain attributes derived from a DEM and 
using emerging soil-landscape mapping technologies like GPS, geophysical techniques 
(EMI, GPR, TDR, etc.), soil spectroscopy and remote sensors, etc. Even with these auxiliary 
or proxy data sources, a full inventory of soil resources and properties is non-realistic and 
impossible. Therefore, soil can be measured at only limited space locations and time 
instants. Soil properties at non-sampled locations and/or times should be predicted. These 
predictions and related uncertainties can be obtained by using statistical models for soil 
spatial and/or temporal variability. In this way, soil variability can be considered as the 
combination of a systematic (deterministic) and a random (stochastic) components. The 
former represents the gradual or distinct changes (trends) while the latter involves 
differences not related to a known cause and those not discerned by the nature or the scale 
of investigation. The choice of the adequate model depends on the behaviour of the 
phenomenon of interest (a priori knowledge), the objective of the analysis, the nature of the 
available data, and, from a practical point of view, the existence of good statistical methods 
and adequate software packages. 
Excellent review papers on modelling spatial and temporal variability were published a 
decade ago (Heuvelink & Webster, 2001; Kyriakidis & Journel, 1999). The latter review 
focused only on geostatistical methods for modelling particularly the joint space-time 
variability while the former discussed methods for modelling purely spatial, purely 
temporal, and joint space-time variability. 
Our chapter is basically a review of statistical methods that have been used in order to 
describe and model the spatial and temporal variability of soil resources and properties. 
Once this variability is characterized and modelled, it can be advantageously used for 
different practical applications like optimal sampling of soil resources, efficient designing of 
experiments, interpolation and mapping of soil properties, etc. Therefore, in this chapter, we 
will present the main statistical methods with a short description of each of them, discuss 
eventually the possible links between some of them, identify their assumptions, merits and 
limitations, stress some of their practical applications, and list some relevant bibliographic 
references. The chapter fills the gap from the Heuvelink & Webster (2001) paper by 
considering more statistical methods like temporal stability (Douaik et al, 2006; Vachaud et 
al, 1985) and dynamic spatial variation (Douaik et al, 2007; Lesch et al, 1998), updates the 
presentation of the methods from the Kyriakidis & Journel (1999) paper by taking into 
account the research work done, and especially the last developments in pedometrics, 
during the past decade and adds some examples of practical applications like mapping 
using the Bayesian maximum entropy (Christakos, 2000; Douaik et al, 2005; 2009). 
After presenting some classical statistical methods (Section 2), we provide an overview of 
the geostatistical methods including structural analysis (Section 3) and prediction (Section 
4). Then, we present the Bayesian maximum entropy, another method of prediction (Section 
5). Finally, we discuss the different methods and conclude with some suggestions for 
choosing among them (Section 6). 

2. Classical statistical methods 

Classical statistical methods are basically aspatial and atemporal methods where the spatial 
and temporal coordinates are ignored. The different approaches are: coefficient of variation 
(2.1), variance component analysis (2.2), temporal stability (2.3), and dynamic spatial 
variation (2.4). 
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2.1 Coefficient of variation 

It is assumed that the observed value for a soil attribute (z) at any location (s) at a given time 
instant (t) is: 

 [ ]( , ) ( , )E z s t s tµ ε= +  (1) 

with ┤ the population mean and ┝(s,t) random, spatially and temporally uncorrelated error 
assumed normally distributed with zero mean and variance ┫2. 
The population mean is estimated from a sample: 
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with n: the sample size and the variance, ┫2, is estimated by: 
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Its root square, σ̂ , is the standard deviation. The coefficient of variation is defined as: 

 
ˆ

100 *CV
z
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=   (4) 

The coefficient of variation can be calculated for the temporal probability distribution 
function (PDF) at each space location as well as for the spatial PDF at each time instant. As 
an example, Van Wesenbeeck & Kachanoski (1988) studied the spatial distribution (from 100 
locations) of the surface soil water content throughout the growing season (65 measurement 
dates). They concluded that there exists a temporal dependence of the spatial variability and 
a spatial dependence of the temporal variability. They also suggested that random sampling 
of the locations should be avoided. James et al. (2003) defined the temporal variability of soil 
moisture content as the coefficient of variation at each site across the whole year (52 time 
instants) and used an analysis of variance (ANOVA) to test for differences between habitats 
(three sites) in the temporal variability of soil moisture content. They found that soil moisture 
varied significantly with time but not between habitats while the interaction between time and 
habitat was significant which reflects differences between habitats in temporal pattern of soil 
moisture. The coefficients of variation were significantly different between habitats. Other 
examples of the use of the coefficient of variation for the assessment of the spatial and 
temporal variabilities can be found in Ehrenfeld et al. (1997) and Guo et al. (2002). 
The standard deviation and, hence, the coefficient of variation does not incorporate spatial 
and/or temporal information and therefore doesn’t provide a representation of the nature of 
the spatial and/or temporal behaviour of a given soil property. It is considered as an 
indicator of global variability as opposed to local variability (Carter & Pearen, 1985), the 
latter is identified using correlogram, covariance function, or variogram which will be 
presented later in this chapter (sections 3.3 to 3.6). 

2.2 Variance component analysis 

In the variance component analysis approach, the spatial and temporal contributions are 
considered as factors with random effects in the ANOVA model. In this way the different 
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components of the total variance can be determined. Campbell et al. (1989) adopted the 
following model, for the log concentrations of a given solute (log c) in subsample l (3) from 
sampling area k (2) at site j (2) and at time i (6 dates over 20 days): 

 ( )log .ijkl i j k ijklkl
c T S A AUµ ε= + + + + +  (5) 

with µ: the grand mean; T: the time effect; S: the site effect; A: the sampling area effect; 
(A.U): the subsampling within sampling area effect, and ┝: an error term. The temporal and 
spatial variances were compared to the sampling area variance while the latter was 
compared to the subsampling within sampling area variance. They found that the temporal 
variation was far less significant than the variation between the two sites. Also they found 
that the variation between areas a few meters apart was greater than that between the two 
sites even though the texture and the management of the sites were quiet different. Other 
examples of the evaluation of the temporal and spatial variabilities based on the concept of 
variance component analysis can be found in Van Es (1993) and Van Es et al. (1999). 
The variance component analysis is directly related to the coefficient of variation presented 
in the precedent section. The variance component estimates for each variability source are 
computed, and then the square root of these estimates is divided by the mean value. The 
output is exactly the definition of the coefficient of variation. Thus, the variance component 
analysis is suffering from the same drawbacks as the coefficient of variation approach. 

2.3 Temporal stability 

The concept of temporal stability was first introduced by Vachaud et al. (1985). It is defined 
as the time invariant association between spatial location and statistical parameters of soil 
properties. They distinguished mainly two approaches: relative differences and Spearman 
rank correlation. 

2.3.1 Relative differences 

Let zij be the observed value of a soil property at location i (i=1, …, n) and time j (j=1, …, m). 
The relative differences ├ij are defined as: 

 
jij

ij
j

z z

z
δ

−
=   (6) 

with jz  : the spatial average for the time instant j. The temporal average of ├ij is: 
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δ δ
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and its corresponding temporal standard deviation is defined as: 
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−
   (8) 

 A zero value for iδ  indicates that the temporal average jz represents the average value 

over the whole study area at any time. The field average value is overestimated if iδ > 0 

while it is underestimated when iδ < 0. A more time stable location will be indicated by a 
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small value of ( )iσ δ  whereas a high value of the latter is an indication of a less time stable 

location. The iδ values can be plotted graphically against their rank with the corresponding 

temporal standard deviations. 

 Based on the relative differences, Kachanoski & De Jong (1988) showed that a useful test for 

temporal stability is the Pearson correlation coefficient between soil property values measured 

at two consecutive time instants. They also showed that temporal stability exists if the relative 

differences remain constant between two time instants: 2 1i iδ δ= . This equation implies that:  

 
2

2 1
1

i i

z
z z

z
=  (9) 

1z  and 2z  being spatial averages for the time instants j = 1 and 2, respectively. This 
equation establishes a linear relationship between the soil property at two different times 
with an intercept equal to zero and a slope equal to the ratio of the mean value observed at 
the second time frame to the mean value observed at the first time frame. Consequently, a 
good test for the temporal stability is the correlation between soil property values measured 
at consecutive time frames (Kachanoski & De Jong, 1988). 
Furthermore, the former equation implies that the regression between relative differences 
from two consecutive time frames should have a zero intercept and a unity slope. This is 
another way to check the existence of temporal stability of the spatial pattern of a variable. 
However, the regression between zi2 and zi1 is, in general, of the following form: 

 2 1*i iz a z b= +   (10) 

Using equations (9) and (10) we expect that, if temporal stability exists, the following 
conditions are verified: 

 
2

1

z
a

z
=    and  b = 0  (11) 

So, another way to check the temporal stability is to test for a zero intercept and a unity 
slope of the regression between two consecutive time instants. 
If there is a constant increase or decrease in the soil property, w, in all the locations between 
two time frames, we expect from Eq. (10) that (Kachanoski & De Jong, 1988): 

 a = 1 and b = w  (12) 

Equation (12) indicates that if the slope of the regression between values at two consecutive 
time instants is not significantly different from one, then the regression intercept represents 
the constant change that has occurred between the two time instants. 
Based on whether the intercept (b) is significantly different from 0, the slope (a) is 
significantly different from 1, or both, four possible scenarios can be distinguished (Douaik 
et al, 2007; Grant et al., 2004): 
- Scenario 1 (a = 1 and b = 0): there is no net change between the two sampling dates 
- Scenario 2 (a ≠ 1 and b = 0): the mean soil property level has changed and there is a static 

(uniform) change in the soil property spatial pattern 
- Scenario 3 (a = 1 and b ≠ 0): the mean soil property level has not changed and the change 

in the soil property spatial pattern is dynamic (non-uniform) but, when averaged, this 
change is not significant  
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- Scenario 4 (a ≠ 1 and b ≠ 0): the mean soil property level has changed and the change in 
the soil property spatial pattern is dynamic (non-uniform). 

These refinements of the concept of temporal stability were used by, among others, Da Silva 
et al. (2001), Douaik (2005), Douaik et al (2006; 2007), Ehrenfeldt et al. (1997), Goovaerts & 
Chiang (1993), Petrone et al. (2004), Van Wesenbeeck et al. (1988). 
 The concept of relative differences is based on the same statistical parameters (mean and 
standard deviation) as the two precedent approaches. However, it uses the standardized 
data (relative differences) for each time instant instead of the original data and the mean and 
standard deviation are computed for each space location. This concept is based, like the two 
precedent approaches, on the Gaussian distribution of data and the absence of 
autocorrelation. Both assumptions must be checked before the use of relative differences in 
the study of temporal stability. The normality can be checked using the standard statistical 
tests and the independence can be verified using either a test for autocorrelation like the 
Moran test or by computing the variogram and determining its range. Normality can be 
gained via data transformation and independence by the selection of sample locations 
separated by distances larger than the autocorrelation range. For non normally distributed 
data, but still non autocorrelated, the Spearman rank correlation can be used. The latter is 
presented in the next section. 

2.3.2 Spearman rank correlation 

It refers to the tendency of a soil property, measured at different locations in space, to 
maintain their relative ranking over time. It is defined as: 
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  (13) 

with Rij and Rik the ranks of zij observed at location i on time instants j and k, respectively. A 
value of this coefficient equal to one indicates a perfect temporal stability between time 
instants j and k, and thus identity of ranks for any location whereas a lack of temporal 
stability implies that rs = 0. Many researchers used this concept to evaluate the temporal 
stability of different soil properties, among them, Campbell et al. (2001), Douaik (2005), 
Farley & Fitter (1999), Guo et al. (2002), Heathman et al. (2009), Hu et al (2011), Reichardt et 
al. (1993), Si (2002), and Wendroth et al. (1999). 
The Spearman rank correlation coefficient is a non parametric statistics therefore it can be 
used even for non normally distributed data. However, in the case of autocorrelation, its use 
is not recommended and it will be cautious to use statistical methods which consider the 
spatial and temporal nature of the given soil property. In addition, even for independent 
data, the Spearman rank correlation inform us only about the relative ranking of space 
locations between two time instants and do not provide a quantification of the temporal 
change. This quantification can be obtained using either the paired-t test for comparing 
mean values or the dynamic spatial variation approach. The former is presented in what 
follows while the latter is discussed in section 2.5. 

2.4 The Paired-t test 

Equation (9) just indicates if there is a constant change or not between two time instants, but 
we still need to check if the mean values of a soil property between these two times are 
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significantly different or not. To answer this question, the paired-t test (McClave & Sincich, 
2006) is used. The test statistic t is computed as: 

 
d

d
t

s
n

=   (14) 

with d the mean of the differences, di, between the observations for the second and the first 

time frames: 
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1 1
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i i i
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d d z z
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= = −   (15) 

sd is the standard deviation of the differences: 
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and n the number of the differences, i.e. the number of locations. 
The test statistic t (equation 14) has (n-1) degrees of freedom. The calculated statistic is 
compared to a tabulated t value with the same degrees of freedom and a probability of error 
of type I (taken generally equal to 5%). Equivalently, the corresponding probability to the 
test statistic t is compared to 5% to check if the difference of mean values is significant or 
not. As an example of application of the paired-t test, Kenny et al. (2002) checked the 
temporal trend of the mean thickness of the Ap horizon. 

2.5 Dynamic Spatial variation 

The concept of temporal stability handles each soil property separately and, as described 
before (section 2.3), it can quantify the temporal change even without testing if this change is 
significant or not. Lesch et al. (1998) discussed another approach that can test for change in 
the mean value as well as for a dynamic spatial variation between two time instants. 
Dynamic spatial variation refers to the spatially variable change of a soil property between 
two time instants, i.e., the change is not the same between two time instants for each 
location. 
To test for the existence of dynamic spatial variation, Lesch et al. (1998) identified different 
steps. First of all, the pairs of soil data obtained at a first time instant (y and z), from n space 
locations, are used to establish a calibration equation based on the regression model: 

 1 0*z b y b= +    (17) 

The parameters of this regression equation (b0 and b1) are estimated using the ordinary least 
squares method. In a second step, the residuals of the model are tested for spatial 
independence, normality, homoscedasticity and the linearity of the relationship. The three 
last assumptions can be verified using classical regression tools. The assumption of spatial 
independence can be checked using the Moran test (Lesch et al., 1995). In the next step, a 
mixed ANOVA model is set: 

 ij i j ijz t bµ ε= + + +   (18) 
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i=1, 2 are the two time instants and j=1, … , n are the locations. This model is equivalent 
to: 

 ( )2 1 0 2 1j j j j j jz z d d η ε ε− = = + + −   (19) 

with 0 2 1d t t= − is the difference between mean values for the second and first time instants 

and jη independently and identically normally distributed with zero mean and variance 

equal to ( )2 2: 0,j Nθσ η θ≈  . If z1j represents the observed values of the first soil property at 

the first time instant and at locations j (j=1, …, n) and z2k represents the same property 

observed at the second time instant at the locations k (k=1, …, m), the difference between the 

two values is given by Eq. (19) with d0 representing the shift in the average value between 

the two time instants and ┟ representing the dynamic spatial variation. These two 

quantities can be statistically tested: the first if it is different from zero and the variance 

of the second if it is higher than zero.  
Based on whether the first parameter (the mean difference, d0) is significantly different from 

zero, the second parameter (spatial shift, ┠2) is significantly higher than zero, or both, four 

possible scenarios can be distinguished (Douaik et al., 2007): 

- Scenario 1 (d0 = 0 and ┠2 = 0): there is no net change with time in the soil property 

- Scenario 2 (d0 ≠ 0 and ┠2 = 0): the mean soil property level has changed and there is a 

static (uniform) change in the soil property spatial pattern 

- Scenario 3 (d0 = 0 and ┠2 > 0): the mean soil property level has not changed and the 

change in the soil property spatial pattern is dynamic (non-uniform); again, when 

averaged, this change is not significant 

- Scenario 4 (d0 ≠ 0 and ┠2 > 0): the mean soil property level has changed and the change in 

the spatial pattern of the soil salinity is dynamic (non-uniform). 

An application of the approach of Lesch et al (1998) can be found in Douaik (2005), Douaik 

et al (2007) and Tóth et al (2002). 

The approach of Lesch et al (1998) is based on the determination of a linear regression 

between two soil properties; hence it assumes that the residuals from the regression model 

are normally distributed with equality of variances and spatially not autocorrelated. All 

these assumptions must be checked. If spatial autocorrelation is present in the residuals, the 

estimates of the regression parameters and their variances are biased and the statistical tests 

are no longer valid. In this special case, spatial regression and/or geostatistical approaches 

(sections 3 and 4) are recommended. 

3. Geostatistics: Structural analysis 

Structural analysis is concerned with the description and the modelling of the spatial 

and/or temporal variability using geostatistical tools like the covariance function, the 

correlogram, or the variogram. The analysis of space-time data requires the definition of a 

space-time continuum with a coordinate system and a measure of space-time distance and 

models and techniques which make possible the link between spatio-temporally distributed 

data (Christakos et al., 2002). The spatial coordinates are defined, in general, in two 

dimensions s = (s1, s2) and the temporal coordinate t along the temporal axis such that the 

space-time coordinates are p = (s, t). 
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3.1 Space-Time Random Field model 

Christakos et al. (2002) defined space-time random field (STRF) model as ‘a mathematical 

construction that rigorously represents the distribution of natural phenomena across 

space and time. The STRF model provides scientifically meaningful representation, 

explanation, and prediction of these phenomena in uncertain environments. These 

uncertainties may be due to measurement errors, heterogeneous databases, erratic 

fluctuations in the space-time variation of the underlying process, and insufficient 

knowledge’. An STRF, X(p), is a collection of realizations χ of the space-time distribution 

of a natural variable. It can be viewed as a collection of correlated random variables x=[x1, 

…, xn]' at the space-time points p=[p1, …, pn]' and a realization of the STRF at these points 

is χ=[ χ1, …, χn]'. It assigns a probability that a realization χ in n dimensions will occur 

following the multivariate probability distribution function (PDF) of X(p) or, equivalently, 

its cumulative distribution function (CDF). The PDF and CDF represent a complete 

characterization of the STRF. A partial, but sufficient, characterization of the STRF is 

provided by its space-time statistical moments. The first order moment, which is the mean 

function, expresses trends or systematic structures in space-time. The moment of second 

order, the covariance function, expresses correlations and dependencies between two 

different points p and p'. In addition to these two moments, an STRF can be also 

characterized by its variogram. 

3.2 Conceptual approaches 

Christakos and Raghu (1996) reported that some forms of averaging over time or space are 
done before the analysis of the spatial or temporal random fields. In doing so, the joint 
space-time variability is not accounted for and there is some loss of information. Initially to 
consider both space and time variability, some authors resorted to some simplifications. For 
example, Bilonick (1985) and Egbert & Lettenmaeir (1986) decomposed their STRF in a 
purely spatial and a purely temporal components whereas Rodriguéz-Iturbe & Eagelson 
(1987) considered separable models where spatial variations were assumed to be 
independent of temporal variations. 
Three main approaches can be distinguished for the analysis of the geostatistical space-time 
data (Kyriakidis & Journel, 1999; Stein & Sterk, 1999; Stein et al., 1998): 
- Methods based on vectors of spatial random fields (SRF) for the case of many space 

locations and few time instants (Bogaert & Christakos, 1997; Papritz & Fluhler, 1994). It 

does not include the temporal dependence existing between observations and can 

predict only at the observed time instants. The spatial variability is modelled either 

through a separable spatial variogram for each time instant, or by a single spatial 

variogram considering time instants as replicates; 

- Methods based on vectors of time series (temporal random fields, TRF) for the case of 

long time series with few space locations (Rouhani & Wackernagel, 1990; Solow & 

Gorelick, 1986). This approach doesn’t take into account the spatial dependence and it 

predicts only at the observed locations. In a similar way as above, independent TRF or 

TRF as replicates in space can be considered. 

- Methods using an STRF, thus considering the joint space-time variability; 

For the first approach, the focus of the analysis is on smooth interpolated soil attribute maps 

over specific time instants. The intention is to capture single instantaneous snapshots (a 

static picture) of the natural process. The objective can be also the comparison of the various 
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maps or the detection of the temporal persistence or change in the spatial patterns 

(Goovaerts & Chiang, 1993; Van Meirvenne et al., 1996). The intention of the second 

approach is to capture a sequence of successive snapshots at single space locations, which 

give temporal profiles. Only the third approach includes both the spatial and temporal 

dependencies so the interpolation is more precise and can be done for unsampled time 

instants at unsampled space locations. The focus is here on video sequence of successive 

spatial pictures like a movie. 

As a fully satisfactory stochastic model should involve explicitly both spatial and temporal 

aspects, we present in the following sections the STRF concept and, subsequently, some 

special cases. The spatial and/or temporal variability can be described and modelled using 

either the covariance function or the variogram; although the latter is far more used in the 

geostatistical literature than the former and, therefore, only the variogram forms will be 

presented here. Also, in the case of two different soil properties or for the same soil property 

but observed at two different spatial locations or time instants, the joint variability can be 

characterized using the cross covariance function or the cross variogram. We present in 

section 3.3 the joint STRF while the spatial random field (SRF) is presented in section 3.4 and 

the temporal random field (TRF) in section 3.5. Finally, the space-time, the spatial, and the 

temporal cross variograms are discussed in section 3.6.  

3.3 Joint Space-Time Random Field model 

The space time variogram is defined as: 

 [ ] [ ]{ }21 1
( , ) var ( , ) ( , ) ( , ) ( , )

2 2
h s s s sγ τ τ τ= + + − = + + −X X h t X t E X h t X t  (20) 

 

It is estimated, from the observed data, by (Stein et al., 1998): 
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1
ˆ ( , ) ( , ) ( , )

2 ( , )

τ

γ τ τ
τ =

 = − + + 
N h

X i j i j
i j

h x s t x s h t
N h

 (21) 

 

with ( , )i jx s t  and ( , )s τ+ +i jx h t are pairs of observations with a spatial distance equal h at 

the time instant tj, the total number of such pairs is Nj(h), and a temporal distance equal ┬, 
the number of such pairs is N(┬). Bilonick (1985) and Stein et al. (1998) are examples of 

application of the space-time variogram while examples of application of the space-time 

covariance function include Bennett (1975) for the analysis of population diffusion, Bell 

(1987) for the study of rainfall, Douaik (2005) and Douaik et al. (2004a) for the analysis of 

soil salinity. 

3.4 Separate Spatial Random Field model 

To each of the nt time instants corresponds a spatial random field (SRF) X(s, tj), j=1, … , nt. 

The spatial variogram, corresponding to each of the above SRF, is defined as: 

 { }21 1
( ) var ( , ) ( , ) ( , ) ( , )

2 2
γ    = − + = − +   j j j j jh X s t X s h t E X s t X s h t  (22) 
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It is estimated by: 

 
( )

2

1

1
ˆ ( ) ( , ) ( , )

2 ( )
γ

=

 = − + 
jN h

j i j i j
ij

h x s t x s h t
N h

  (23) 

with ( )jN h is the number of pairs [ ( , )i jx s t , ( ),i jx  h  t+s ] of data separated by a spatial 

distance h, at the time instant tj. 
The spatial variogram (equation 22) is a special case of the space-time variogram (equation 

20), i.e. when the temporal lag is zero meaning the same time instant: 

 ( ) ( ,0)γ γ=j Xh h   (24) 

The spatial variograms include the spatial dependence but the dependence in time is not 

accounted for. It is useful in the case of rich data in space and scarce data in time. The spatial 

variograms can be one, two or three dimensional. 
The above procedure was used, for example, by Ettema et al. (1998) and Sterk & Stein (1997), 
among others. Many applications of separate spatial variograms, one for each time instant, 
can be found in the soil science literature. Among others, soil carbon (Chevallier et al., 2000; 
Van Meirvenne et al., 1996), soil salinity and sodicity (Cetin & Kirda, 2003; Mostafa & 
Yomota, 1998), soil water (Schume et al., 2003; Wendroth et al., 1999), nitrates (Bruckler et al, 
1997), soil biological activity (Gorres, 1997), soil strength (Castrignanò et al., 2002), and soil 
fertility (Delcourt et al, 1996; Shi et al., 2002) were analyzed for their spatial and temporal 
change. 

3.5 Separate Temporal Random Field model 

In a similar way to SRF, for a fixed space location si, i=1, …, ns, corresponds the independent 

temporal random fields X(si, t).  

The temporal variogram at the location si, i=1, …, ns, is: 

 [ ] [ ]{ }21 1
( ) var ( , ) ( , ) ( , ) ( , )

2 2
i i i i iX s t X s t E X s t X s tγ τ τ τ= − + = − +  (25) 

It is estimated as: 

 
( )

2

1

1
ˆ ( ) ( , ) ( , )

2 ( )

iN

i i j i j
ji

x s t x s t
N

τ

γ τ τ
τ =

 = − +   (26) 

with ( )iN τ is the number of pairs [ ( , )i jx s t , ( , )i jx s t τ+ ] of data separated by a temporal 

distance (time period) ┬, at the space location si. 
Similarly to the spatial variogram, the temporal variogram (equation 25) is a special case of 
the space-time variogram (equation 20) when the spatial lag is zero meaning the same 

spatial location: 

 ( ) ( , )i Xγ τ γ τ= 0   (27) 

The temporal dependence is included whereas the spatial dependence is not considered. 

Thus, it is useful if many data are collected in time and few in space. The temporal 
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variograms are one dimensional. Application of temporal variograms in the soil literature is 

scarce and Cichota et al (2006) and Franzluebbers et al (2002) are examples of such 

application. 

3.6 Space-time, spatial, and temporal cross variograms 

The space-time cross variogram is defined, for two soil properties X and Y, as: 

 [ ][ ]{ }1
( , ) ( , ) ( , ) ( , ) ( , )

2
XY h E Y s h t Y s X s h t X sγ τ τ τ τ τ= + + − + + −  (28) 

It is estimated by: 

 
( , )

2

, 1

1
ˆ ( , ) ( , ) ( , )

2 ( , )

N h

XY i j i j
i j

h x s t y s h t
N h

τ

γ τ τ
τ =

 = − + +   (29) 

In the case of two SRF observed at two time instants tj and tj’, the spatial cross variogram is 

defined by: 

 { }- -' ' '

1
( ) ( , ) ( , ) ( , ) ( , )

2
jj j j j jh E X s t X s h t X s t X s h tγ    = + +     (30) 

It is estimated by: 

 - -
( )

' ' '
1

1
ˆ ( ) ( , ) ( , ) ( , ) ( , )

2 ( )

N h

jj i j i j i j i j
i

h x s t x s h t x s t x s h t
N h

τ

τ

γ
=

   = + +     (31) 

with ( )τN h is defined as ( , )τN h  for a particular fixed temporal lag ┬. 
By analogy with the spatial cross variogram, the temporal cross variogram for two TRF 

observed at two spatial locations si and si’ is defined as:  

 [ ][ ]{ }- -' ' '

1
( ) ( , ) ( , ) ( , ) ( , )

2
ii i i i iE X s t X s t X s t X s tγ τ τ τ= + +  (32) 

It is estimated by: 

 
( )

' ' '
1

1
ˆ ( ) ( , ) ( , ) ( , ) ( , )

2 ( )

τ

γ τ τ τ
τ =

   = − + − +   
hN

ii i j i j i j i j
jh

x s t x s t x s t x s t
N

 (33) 

with ( )τhN is defined as ( , )τN h  for a particular fixed spatial lag h. 
Bishop & Lark (2006), Maas et al. (2010), and Motaghian & Mohammadi (2011) are 

examples of application of cross-variogram in the soil science. The definition of the space-

time, the spatial, and the temporal cross-variograms requires that data are observed at the 

same space locations and time instants, at the same space locations for two different time 

instants or at the same time instants for two different space locations, respectively. If it  

is not the case, the space-time, the spatial or the temporal pseudo cross-variogram 

(Papritz et al., 1993) needs to be used. Vanderlinden et al. (2006) and Zhang et al. (1999) 

are examples of application of pseudo cross-variogram and cokriging in soil science 

literature. 
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4. Geostatistics: Prediction 

When a theoretical model is fitted to the experimental (observed) space-time covariance 

function or variogram, it becomes possible to tackle the problem of predicting attributes at 

unsampled space locations and/or time instants. Consider the problem of predicting the 

value of a continuous attribute x at any unsampled space location s0 and time instant t0, x(s0, 

t0), using only the x-data available over the space region S and time domain T, say, n data 

{ }( , ), 1,..., ; 1,...,ij j t jx s t j n i n= = . 

Kriging is a family of generalized least squares regression algorithms that allows to predict 

x(s0, t0). The latter is considered, in geostatistics, as a realization of the STRF X(s0, t0). The 

problem of predicting x(s0, t0) is defined as (Rouhani & Myers, 1990): 

 0 0
ˆ ( , ) ( , )ij ij j

j i

X s t X s tλ=    (34) 

with ijλ , the kriging weights for the time instant tj and the space location sij. 
This is the general form and there are some simplifications which are related to the kind of 

STRF considered. We present first the simple cases where we consider only SRF or TRF, and 

then we present the more general case for the single STRF. 

4.1 Spatial or temporal kriging 

In case of spatial or temporal random field (sections 3.4 and 3.5) we saw that the 
dependence in data is modelled via a spatial or temporal covariance function or variogram. 
For example, in the case of an SRF, we are dealing in the space domain and the different 
kriging algorithms defined for SRF can be applied. Let X(s, t0) denotes the SRF at the time 
instant t0. The predictor X(s0, t0), at the space location s0, is a linear combination of the ns 
observations x1, …, xns available at the time instant t0: 

 0 0 0
1

ˆ ( , ) ( , )
sn

i i
i

X s t X s tλ
=

=   (35) 

The ns weights are calculated such that X(s0, t0) is unbiased and that the variance of the 

prediction error is minimal. A detailed description of the computation procedure can be 

found in geostatistical handbooks (Cressie, 1993; Goovaerts, 1997). 

Three kriging algorithms can be distinguished (Goovaerts, 1997): 

- Simple kriging: the mean is known and constant thorough the space region; 

- Ordinary kriging: the mean is unknown but constant in the sub-domains of the space 

region; 

- Kriging with trend model or universal kriging: the mean is unknown, is local and varies 

smoothly in the sub-domains of the space region. 

In a similar way, the predictor X(s0, t0), at the time instant t0, is a linear combination of the nt 

observations x1, …, xnt available at the space location s0. 

The prediction is done for each time instant (space location) separately and independently 

from the other time instants (space locations). Many applications can be found in the soil 

science literature: ordinary kriging using variograms converted from a basic pooled spatial 

variogram on the sampling time instants (Sterk & Stein, 1997; Stein & Sterk, 1999); ordinary 
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kriging and universal kriging (Ettema et al., 1998; Figueira et al., 2001; Liu et al, 2009); and 

ordinary log-normal kriging (Ettema et al., 2000). 

4.2 Spatial or temporal cokriging 

For the same cases as before (spatial or temporal random fields) more accurate estimates, 

based on cokriging, can be obtained by using the information available at a precedent time 

instant as well as the contemporaneous data for spatial prediction (D’Agostino et al., 1998) 

or information from two different TRFs observed at two different space locations. Cokriging 

can also be used to estimate the temporal change for a spatially correlated soil property 

between two time instants using the pseudo cross-variogram (Lark, 2002; Papritz & Fluhler, 

1994). 

Bogaert (1996) showed that the simple cokriging system between nt coregionalized space 

variables (one for each time instant) is equivalent to the simple space-time kriging. This 

equivalence was shown for a more general form of the covariance functions (Kyriakidis & 

Journel, 1999). Bogaert (1996) demonstrated also that space ordinary cokriging system with 

one unbiasedness condition is equivalent to the space-time ordinary kriging system when it 

is expressed in terms of covariance functions. Pseudo cross-variograms should replace the 

cross-variograms if the cokriging system has to be written in terms of variograms. However, 

the use of the unique unbiasedness constraint is restricted to the second order stationary 

situations. The author noted also that space-time ordinary kriging is preferable to space 

ordinary cokriging whenever it is possible because, although the differences in the 

prediction variances are negligible when data are abundant, it is not the case when some 

time instants involve limited data. 

We recall that for SRF, the prediction can be done at unsampled locations only for one or 

more of the observed time instants. As examples of application, we cite Bogaert & 

Christakos (1997) and D’Agostino et al. (1998). In the case of TRF, cokriging allows 

forecasting and hindcasting, the latter is useful in the estimation of missing values. 

Examples of application can be found in Rouhani et al. (1992a, b). Cokriging was used also 

to estimate a missing observation at a given time instant by considering the observations at 

this time instant as the variable of interest and the observations at other time instants as 

covariables (Stein, 1998). 

Let a given soil property be sampled at n1 space locations during the first time instant, 

1( )iX s , i = 1, …, n1, and at n2 (less than n1) space locations later during the second time 

instant, 2( )jX s , j = 1, …, n2. The kriging estimator of X2 at an unsampled location s0 is 

(Goovaerts, 1997): 

 
1 2

2 0 1 2
1 1

ˆ ( ) 1 ( ) 2 ( )
n n

i i j j
i j

X s X s X sλ λ
= =

= +   (36) 

with ┣1i and ┣2j are the kriging weights relative to the variables X1 and X2, respectively. The 

weights must satisfy the following conditions: 

 
1

1

1 0
n

i
i

λ
=

=    and   
2

1

2 1
n

j
j

λ
=

=  (37) 
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4.3 Space-time kriging 

For the more general single STRF, two kriging algorithms can be distinguished, i.e. two step 

space-time kriging and anisotropic space-time kriging. They are presented in the next 

sections followed by other forms of space-time kriging. 

4.3.1 Two-step space-time kriging 

The prediction of the value of X0 = X(s0, t0) is a linear combination of nt predictors in space. 

In the first step, at each of the nt time instants tj, j = 1, …, nt, the predictor of the value of 

X(s0, tj) is determined as (Stein et al., 1994): 

 0
1

ˆ ( , ) ( , )
jn

j ij ij j
i

X s t X s tλ
=

=   (38) 

The kriging weights are determined in the standard manner for kriging in the space domain 

(Goovaerts, 1997). In the second step X(s0, t0) is predicted, using a linear combination of the 

predictors determined at the first step. This predictor is (Stein et al., 1994): 

 0 0 0
1 1 1

ˆ ˆ( , ) ( , ) ( , )
jt t

nn n

j j j ij ij j
j j i

X s t X s t X s tθ θ λ
= = =

= =   (39) 

with  ┠j are the kriging weights from the second step. The predictor 0 0
ˆ ( , )X s t  explicitly uses 

spatial variograms that change over time. This algorithm was applied in different situations 

(Douaik, 2005; Stein et al., 1994, 1998). 

4.3.2 Anisotropic space-time kriging 

For this algorithm, the prediction is done in one and unique step capitalizing on a 

space-time variogram model which incorporates the spatial and temporal dependencies 
with a space-time anisotropy ratio (Bechini et al., 2000; Rouhani & Myers, 1990; Stein et 
al., 1994, 1998). The advantage of the anisotropic over the two step space-time kriging is 

that the former allows predictions to be made at every point in space and time. Also it 
avoids the uncertainties related to the predictors determined at the first step for the 
latter. 

4.4 Space-time cokriging 

De Iaco et al. (2004) extended the Linear Model of Coregionalization (LMC) to the space-

time domain using generalized product sum models for the variograms. In addition, they 
proposed an extension of ordinary cokriging to the space-time domain. Although De Iaco et 
al. (2004) discussed the more general case of several secondary variables; we present here 
only the case of one variable of interest and one covariable. A linear space-time predictor of 

X(s, t) at an unsampled point (s0, t0) in the space-time domain is: 

 0 0 0 0
1

ˆ ( , ) ( , ) ( , )
n

i i i
i

X s t s t X s t
=

= Λ  (40) 

where Λi(s0, t0) are the (2x2) matrices of kriging weights whose elements ( , )i s tαβλ  are the 

weights assigned to the value of the βth variable, β = 1, 2, at the ith sampled point to predict 
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the  th variable,  = 1, 2 , at the unsampled point (s0, t0). The predicted value includes two 

components: 

 0 0 1 0 0 2 0 0
ˆ ˆ ˆ( , ) ( , ), ( , )X s t X s t X s t =      (41) 

such that 

 
2

0 0 0 0
1 1

ˆ ( , ) ( , ) ( , )
n

i i i
i

X s t s t X s tαβ
α β

β

λ
= =

=  ,  = 1, 2 (42) 

 This corresponds to an extension of ordinary cokriging to the space-time domain. More 

detail on how to determine the kriging weights ( , )i s tαβλ  can be found in De Iaco et al. 

(2004). In their work, they compared space-time ordinary kriging to space-time ordinary 

cokriging. They found that the correlation coefficients between observed and predicted 

values were higher when the latter algorithm was used. Also, the cokriging error variances 

were lower than those from kriging. 

4.5 Other forms of space-time kriging 

Additional forms of space-time kriging exist in the literature. Among these variants, 
indicator kriging (Bilonick, 1988), kriging with external drift (Snepvangers et al., 2003), and 
factorial kriging (De Iaco et al., 2003; Rouhani et al., 1992a, b; Van Meirvenne & Goovaerts, 

2002) were used. 
Now after that the classical geostatistical techniques of space-time interpolation have been 
laid out, we present a versatile and more general method of interpolation, i.e., the Bayesian 
Maximum Entropy (BME). 

5. Bayesian maximum entropy 

For most of the classical geostatistical methods of interpolation, i.e. kriging, the prediction is 

based solely on the hard data, accurate observed or measured data. However, other data 
sources can be useful, mostly, for space locations and/or time instants where hard data are 
missing and they can improve the accuracy of the predictions. Such data can be different 
types of soft data (interval, probabilistic, etc.), physical laws, moments of higher order, etc. 

Bayesian Maximum Entropy (BME) (Christakos, 2000; Christakos & Li, 1998) is a recent 
approach developed for the spatio-temporal mapping of natural processes using uncertain 
information. It offers the flexibility to incorporate various sources of physical knowledge. 
This incorporation of physical knowledge bases enables global prediction features and the 

adoption of probability distributions without a need for any assumptions like for example to 
be Gaussian. 

5.1 BME knowledge bases 

Christakos (2000) defined a knowledge base as ‘a collection of knowledge sources relevant 
to the problem at hand to be involved by a reasoning process aiming at the solution of the 

problem’. In the BME framework, the total knowledge (K) available regarding a natural 
process is considered to be formed from two main bases: the general knowledge (G) and the 
specificatory knowledge (S). The general knowledge represents the knowledge that one has 
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about the distribution of the natural variable to be mapped before any specific data. It 
encompasses physical laws, statistical moments of any order (including the mean and 
variogram or covariance function), multipoint statistics, etc. It is said to be general because it 

does not depend on the specific random field realization at hand. The specificatory 
knowledge includes the data specific to a given experiment or situation. It refers to a 
particular occurrence of the natural variable at a particular space location and a particular 
time instant. It is divided into two main categories depending on the accuracy of the data. 

The first category is called hard data which are exact measurements of the natural process 
and considered to be error-free. It encompasses accurate measurements obtained from real-
time observation devices, computational algorithms, simulation processes, etc. The second 
category is called soft data. It involves uncertain observations, empirical charts, assessments 

by experts, etc. They are incomplete or qualitative data linked to opinions, intuition, etc. 
Different kinds of soft data are available, often in the form of interval domain data or of a 
probabilistic nature. 
To illustrate these notions of hard and soft data, we give here an example. Soil salinity can 
be assessed by measuring the electrical conductivity of the soil. It is measured either in the 
laboratory (ECe) or in the field (ECa). The measurement in the laboratory is done with high 
precision in standard conditions and is directly related to soil salinity. Thus, it is considered 
as an accurate measurement of the soil salinity and represents the hard data. The apparent 
electrical conductivity measured in the field (ECa) is only an indirect measurement of soil 
salinity and still needs to be calibrated with ECe values. Thus, based on a calibration model 
(frequently a regression model), ECa values are converted into ‘predicted’ ECe values. As 
these values are only predictions from a stochastic model, they are entailed with some 
uncertainty, and are consequently considered as soft data. The predicted ECe values and 
their corresponding standard deviations allow us to define the two kinds of soft data: the 
confidence intervals are built which give the interval soft data while the two statistic 
parameters are used to describe Gaussian PDFs which represent our probabilistic soft 
data. 

5.2 The three steps of BME analysis 

The BME has a double goal: informativeness (prior information maximization given the 
general knowledge) and cogency (posterior probability maximization given specificatory 
knowledge). The BME analysis is done in three main steps of knowledge acquisition, 
integration and processing: the structural or prior step, the meta-prior step, and the 
integration or posterior step. 
The goal of the prior step is the maximization of the information content considering only 
the general knowledge before any use of the data, which corresponds to the first goal of the 
BME. This step assumes an inverse relation between information and probability: the more 
informative an evaluation of a mapping situation is, the less probable it is to occur. This 

means that if a theory is general and vague, it includes more alternatives so it is more 
probable however it is less informative. A random field is completely defined by its 
multivariate probability distribution function (PDF), which forms the prior PDF. The latter 

should be derived by means of an estimation process that takes into consideration physical 
constraints under the form of prior information or knowledge. This information is 
measured, in the context of BME, using the Shannon’s entropy function (Shannon, 1948), 
thus the E in BME. The expected information is given by the entropy function which needs 
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to be maximized subject to the physical constraints provided by prior information or 
knowledge G, which justifies the M in the BME acronym: 

 1

1

( ) exp
cN

G map mapf Z g ( )α α
α

µ−

=

 
=  

 
χ χ  (43) 

where mapχ  represents the available data and the one to be predicted, G mapf ( )χ  is the 

unknown multivariate PDF associated with the general knowledge G, 0expZ ( )µ= − is a 

normalization constant, and αµ are Lagrange multipliers. 
During the meta-prior step, the specificatory knowledge is collected and organized in 

appropriate quantitative forms that can be easily incorporated in the BME framework. The 

available data can be divided into two main types: the hard data and the soft data. The hard 

data are considered exact and accurate measurements of the natural process while the soft 

data are indirect and inaccurate measures of the variable of interest. The soft data may be in 

the form of intervals, probability distribution functions, etc. 

In the posterior step, the two knowledge bases (G and S) are integrated. The goal is the 

maximization of the posterior PDF given the total knowledge K, which is the second goal of 

BME. The prior PDF is updated, by considering the available site-specific knowledge (the 

data). This updating is performed using a Bayesian conditionalization, thus the B in BME. 

For interval soft data, the posterior PDF K kf ( )χ is: 

 ( ) ( ) ( )1

1

exp
cN

K k map soft

I

f AZ gα α
α

χ µ−

=

 
=  

 
 dχ χ  (44) 

and for probabilistic soft data, the posterior PDF K kf ( )χ  is: 

 ( ) ( ) ( )1

1

exp ( )
cN

K k map S soft soft

I

f AZ g fα α
α

χ µ−

=

 
=  

 
 dχ χ χ   (45) 

with softχ  the soft data and A is a normalization constant.  

5.3 Some BME estimates 

The posterior PDF (equations 44 and 45), which is not limited to the Gaussian type, 

describes fully the random field at the estimation point. It provides a complete picture of the 

mapping situation as well as different estimators and their associated estimation 

uncertainty. The prediction points lie, in general, on a regular grid and the predictions are 

used to create space-time maps. The different estimates presented in the following 

sections are specific to a general knowledge involving the first two statistical moments 

and a specificatory knowledge encompassing hard data as well as interval and 

probabilistic soft data. From the posterior PDF, different statistical parameters can be 

derived like the mode, the conditional mean, and the variance of the prediction error. The 

conditional mean is: 

 ,
ˆ ( )k K k k kfχ χ χ χ=  d

mean
  (46) 
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while the variance of the prediction error is: 

 ( )2
,

ˆˆ ( )k k k K k kfσ χ χ χ χ= 
2

- d
mean

  (47) 

5.4 Kriging as a special case of BME  

When the general knowledge is limited to the mean and covariance/variogram functions 

and the specificatory knowledge is restricted to the only hard data, the BME posterior PDF 
is Gaussian (the mean and the mode are equal) and the BME mean estimate is equivalent to 
the kriging (best minimum mean squared error, MMSE) estimate, which is the conditional 
mean. When the space-time random field is Gaussian, the kriging estimate becomes linear 

and optimal among all MMSE estimators. Consequently, BME is a more general 
interpolation approach and kriging is a special case in limiting situations.  

5.5 Examples of BME application 

The BME approach has been applied in different research fields. Examples of such 
applications can be found in agricultural sciences (Bogaert & D’Or, 2002; D’Or & Bogaert, 

2003; D’Or et al., 2001; Douaik, 2005; Douaik et al., 2004b, 2005, 2009), environmental 
sciences (Christakos & Serre, 2000; Serre et al., 2001), etc. 

5.6 Other space-time interpolation methods 

The BME is one of the space-time interpolation methods that allow the incorporation of data 

with different information support and of different degrees of certainty and the knowledge 

in the form of physical laws. The data assimilation approach (Swinbank et al., 2003) is 

another method for such situations. It has two main variants: the Kalman filtering (Kalman, 

1960) and the Bayesian data fusion (Fasbender et al., 2009). However, their application in the 

soil science literature is limited (Bierkens, 2001; Heuvelink et al., 2006), mostly for the latter 

since it was very recently developed. 

6. Discussion and conclusions 

This chapter has the main objective of reviewing the mostly used statistical methods for 

appraising the spatial and temporal variability of soil properties. There is a large panoply of 

techniques and, as stated in the introduction, the choice of the adequate model will depend 

on the behaviour of the phenomenon of interest (a priori knowledge), the objective of the 

analysis, and the nature of the available data. 

As a first step, the classical statistical method of coefficient of variation, which ignores the 

spatial and temporal coordinates, can be used as an exploratory data analysis to get an idea 

about the variability of data either for a given location, a given time instant or both. The 

coefficient of variation is considered as an indicator of global variability as opposed to local 

variability; the latter is identified using, for example, the variogram, a geostatistical tool. 

Another classical statistical method, the variance component analysis, in which the spatial 

and temporal contributions are considered as factors with random effects and the joint 

space-time contribution as interaction in the ANOVA model, can be used to determine their 

relative contribution to the total variance. Since this approach is directly related to the 

coefficient of variation, it is suffering from the same drawbacks as the later. 

www.intechopen.com



 
Principles, Application and Assessment in Soil Science 

 

298 

Still using classical statistical methods, there are opportunities to consider the spatial and 
temporal dimensions of data using, for example, the concept of temporal stability. It is 
defined as the time invariant association between spatial location and statistical parameters 

of soil properties and can be assessed using either the relative differences or the Spearman 
rank correlation. A good test for the temporal stability is the correlation/regression between 
soil property values measured at consecutive time frames. A way to check the temporal 
stability of the spatial pattern is to test for a zero intercept and a unity slope of the 

regression between two consecutive time instants. If the slope of the regression between 
values at two consecutive time instants is not significantly different from one, then the 
regression intercept represents the constant change that has occurred between the two time 
instants. Based on the significance test of these two regression parameters, four possible 

scenarios can be distinguished: no net change between the two sampling dates; the mean 
soil property level has changed and there is a static (uniform) change in the soil property 
spatial pattern; the mean soil property level has not changed and the change in the soil 

property spatial pattern is dynamic (non-uniform) but, when averaged, this change is not 
significant; and the mean soil property level has changed and the change in the soil property 
spatial pattern is dynamic (non-uniform). The concept of relative differences is based on the 
same statistical parameters (mean and standard deviation) as the two precedent approaches 

(coefficient of variation and variance component analysis). This concept is based, like the 
two precedent approaches, on the assumptions of Gaussian distribution of data and the 
absence of autocorrelation. Both assumptions must be checked before the use of relative 

differences in the study of temporal stability. The normality can be checked using the 
standard statistical tests and the independence can be verified using either a test for 
autocorrelation like the Moran test or by computing the variogram and determining its 
range. Normality can be gained via data transformation and independence by the selection 

of sample locations separated by distances larger than the autocorrelation range. For non 
normally distributed data, but still non autocorrelated, the Spearman rank correlation can be 
used. It refers to the tendency of a soil property, measured at different locations in space, to 

maintain their relative ranking over time. In the existence of autocorrelation, its use is not 
recommended and it will be cautious to use statistical methods which consider the spatial 
and temporal nature of the given soil property. In addition, even for independent data, the 
Spearman rank correlation inform us only about the relative ranking of space locations 

between two time instants and do not provide a quantification of the temporal change. This 
quantification can be obtained using the paired-t test for comparing mean values. Thus, the 
paired-t test, still a classical statistical method, can be used following a temporal stability 

analysis based on the concept of relative differences. 
The concept of temporal stability handles each soil property separately and quantifies the 
temporal change even without testing if this change is significant or not. Dynamic spatial 
variation approach can test for change in the mean value (mean shift) as well as for 
uniform/non-uniform spatial variation between two time instants (spatial shift). Dynamic 
spatial variation refers to the spatially variable change of a soil property between two time 
instants, i.e., the change is not the same between two time instants for each location. Again, 
like with the relative differences concept, based on whether the mean difference is 
significantly different from zero, the spatial shift parameter is significantly higher than zero, 
or both, four possible scenarios can be distinguished: no net change with time in the soil 
property; the mean soil property level has changed and there is a static (uniform) change in 
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the soil property spatial pattern; the mean soil property level has not changed and the 
change in the soil property spatial pattern is dynamic (non-uniform), again, when averaged, 
this change is not significant; and finally, the mean soil property level has changed and the 
change in the spatial pattern of the soil property is dynamic (non-uniform). 
The dynamic spatial variation approach is based on the determination of linear regression 

between two soil properties; hence, it assumes that the residuals from the regression model 
are normally distributed with equality of variances and spatially non autocorrelated. All 
these assumptions must be checked. If spatial autocorrelation is present in the residuals, the 

estimates of the regression parameters and their variances are biased and the statistical tests 
are no longer valid. In this special case, spatial regression and/or geostatistical approaches 
are recommended. 
The concept of temporal stability requires a moderate number of measurements in space 

and time, but once it is checked, the number of future measurements can be reduced to 
locations with measurements representing important statistics such as the average value. 
Likewise, based on the dynamic spatial variation test, if it was found that there was a static 

(uniform) spatial variation between two dates, the sampling effort could be limited to the 
first soil property survey (an easy to measure and cheap variable) for the first date, while the 
second soil property (a hard and expensive variable) could be done for two dates but at a 
reduced number of locations. So the joint use of the concept of temporal stability and the 

temporal mean shift and spatial shift tests could result in a drastically reduced sampling 
effort. As illustration, Douaik et al. (2006) found that it was sufficient to measure soil salinity 
at just two locations and nine dates, from initially 20 locations and 19 time instants, to 

characterize reliably the average field soil salinity of 25 km² study area. The statistical 
method to use will depend on the data availability and the aim of the study. If data are 
available only for one of the two soil properties, there is only one possibility for checking the 
spatial pattern: the concept of temporal stability. For checking the temporal change in the 

average soil property, there is a choice between the paired-t test and the concept of temporal 
stability. If, on the other hand, data are available for both soil properties, there are more 
options: the paired-t test and the concept of temporal stability for checking the temporal 

change in the average level separately for both soil properties or the temporal mean shift 
test for checking the temporal change in the average level combining both soil properties. 
Regarding the check of the temporal stability of the spatial patterns, the same choices are 
available except the paired-t test. 

For an implicit and formal assessment of the spatial and temporal variability of soil 
properties, structural analysis is used with the goal of describing and modelling this 
variability using geostatistical tools like the covariance function, the correlogram, or the 

variogram. The models of spatial and temporal variability can be used, later, for 
interpolating between space locations and time instants for mapping soil properties. 
Basically two interpolating methods can be used for space-time data: the geostatistical 
method of kriging and the Bayesian maximum entropy. 

Three main approaches for the analysis of space-time data can be distinguished: 
- Methods based on vectors of spatial random fields (SRF) for the case of many space 

locations and few time instants. It does not include the temporal dependence existing 
between observations and can predict only at the observed time instants. The spatial 
variability is modelled either through a separable spatial variogram for each time 
instant, or by a single spatial variogram considering time instants as replicates; 
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- Methods based on vectors of time series (temporal random fields, TRF) for the case of 
long time series with few space locations. This approach doesn’t take into account the 
spatial dependence and it predicts only at the observed locations. In a similar way as 
above, independent TRF or TRF as replicates in space can be considered. 

- Methods using an STRF, thus considering the joint space-time variability. 
For the first approach, the focus of the analysis is on smooth interpolated soil attribute maps 
over specific time instants. The intention is to capture single instantaneous snapshots (a 
static picture) of the natural process. The objective can be also the comparison of the various 

maps or the detection of the temporal persistence or change in the spatial patterns. The 
intention of the second approach is to capture a sequence of successive snapshots at single 
space locations, which give temporal profiles. Only the third approach includes both the 
spatial and temporal dependencies so the interpolation is more precise and can be done for 

unsampled time instants at unsampled space locations. The focus is here on video sequence 
of successive spatial pictures like a movie. 
When a theoretical model is fitted to the experimental (observed) space-time variogram, it 

becomes possible to tackle the problem of predicting attributes at unsampled space locations 
and time instants. Kriging, a family of generalized least squares regression algorithms, is 
one of the methods allowing these predictions. In case of spatial (temporal) random field, 
the dependence in data is modelled via a spatial (temporal) variogram. The prediction is 

done for each time instant (space location) separately and independently from the other 
time instants (space locations). More accurate estimates, based on cokriging, can be obtained 
by using the information available at a precedent time instant as well as the 
contemporaneous data for spatial prediction or information from two different TRFs 

observed at two different space locations. Cokriging can also be used to estimate the 
temporal change for a spatially correlated soil property between two time instants using the 
pseudo cross variogram. Space-time kriging is preferable to spatial cokriging whenever it is 

possible because, although the differences in the prediction variances are negligible when 
data are abundant, it is not the case when some time instants involve limited data. For the 
more general single STRF, two kriging algorithms can be distinguished: two-step space-time 
kriging and anisotropic space-time kriging. For the latter algorithm, the prediction is done in 

one and unique step capitalizing on a space-time variogram model which incorporates the 
spatial and temporal dependencies with a space-time anisotropy ratio. The advantage of the 
anisotropic over the two-step space-time kriging is that the former allows predictions to be 

made at every point in space and time. Also it avoids the uncertainties related to the 
predictors determined at the first step for the latter. In the case of the availability of space-
time data for more than one soil property, space-time cokriging can be used for improving 
the interpolation of the soil property of interest by considering its spatial and temporal 

dependence with one or more auxiliary soil properties. Additional forms of space-time 
kriging exist in the literature. Among these variants, indicator kriging, kriging with external 
drift, and factorial kriging were used in soil science. 
The prediction for most of the geostatistical methods of interpolation, i.e. kriging, is based 
solely on the accurate observed or measured data called hard data. However, other data 
sources can be useful, mostly, for space locations and/or time instants where hard data are 
missing and they can improve the accuracy of the predictions. Such data can be different 
types of uncertain data (soft data), physical laws, statistical moments of higher order, etc. 
Bayesian Maximum Entropy (BME) is a recent approach developed for the spatio-temporal 
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mapping of natural processes using uncertain information in addition to accurate measured 
data. It offers the flexibility to incorporate various sources of physical knowledge enabling 
global prediction features and the adoption of probability distributions without a need for 
any assumptions like for example to be Gaussian. The BME has a double goal of 
informativeness (prior information maximization given the general knowledge) and 
cogency (posterior probability maximization given specificatory knowledge or the data at 
hand). The BME probability distribution function describes fully the random field at the 
prediction point. It provides a complete picture of the mapping situation and different 
statistical parameters can be derived like the mode, the conditional mean, and the variance 
of the prediction error. The prediction points lie, in general, on a regular grid and the 
predictions are used to create space-time maps. In limiting situations (when the general 
knowledge is limited to the mean and variogram and the specificatory knowledge is 
restricted to the only hard data), the BME probability distribution function is Gaussian and 
the BME mean estimate is equivalent to the kriging estimate. Consequently, BME is a 
versatile and more general method of interpolation and kriging is a special case in limiting 
situations. 
Besides BME, there are other space-time interpolation methods allowing the incorporation 
of data with different information support and of different degrees of certainty and the 
knowledge in the form of physical laws. The general data assimilation approach is one of 
these methods, with its two main variants: the Kalman filtering and the Bayesian data 
fusion. However, their application in the soil science literature is limited, mostly for the 
latter since it was very recently developed. 
In conclusion, different statistical methods are presently available for dealing with spatial 
and temporal variability of soil properties and others may be developed in the future. The 
behaviour of the phenomenon of interest (a priori knowledge), the objective of the research 
work, and the nature of the available data should help the practitioner in the choice of the 
adequate method(s). 
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