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1. Introduction 

Parkinson Disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy 
(MSA) are characterized by deposition of Lewy Bodies (LB), consisting of eosinophilic 
intracellular (intraneural in PD and DLB and intraglial in MSA) inclusions of ┙-synuclein 
and allowing the three disorders to be  categorized as synucleinopathies. The identification 
in the last two decades of specific clinical features of synucleinopathies has been a major 
breakthrough in Neurology, as it prompted a reconsideration of diagnostic and therapeutic 
approaches to dementia and parkinsonism. The recognition of synuclein and ubiquitin 
markers in dementia resulted in the reclassification of patients previously considered as 
affected by Alzheimer Disease (AD) and Vascular Dementia (VaD), and there is now 
agreement that DLB is the second most common cause of dementia in elderly population: its 
prevalence is reported to be in the 25-43% range in different studies.  
DLB is clinically characterized by the presence of prominently dysexecutive dementia 
(frontal lobe or subcortical dementia according to earlier classification [1]), cognitive 
fluctuations, consisting of remitting-relapsing episodes of blunted conscience reaching levels 
of stupor, by the occurrence of visual hallucinations and delusions, by parkinsonian motor 
signs and hypersensitivity to neuroleptic treatment, ranging from worsening of 
parkinsonism to the possible lethal neuroleptic-malignant syndromes [2]. Yet, variances of 
presentation and overlapping symptoms with AD and Fronto-Temporal lobe Degeneration 
(FTD), could be misleading in the process of addressing a clinical diagnosis with consequent 
therapeutic risks(e.g. introducing neuroleptic treatments in patient with DLB), or economic 
costs (e.g. addressing patients with DLB to treatment protocols dedicated to AD patients, 
based on vaccines or antibodies against ┚ amyloid proteins, a neuropathological feature  
of AD). 
It is evident the stringent need for improvement of reliable diagnostic tools (u.e. biomarkers)  
to differentiate the diseases associated with dementia. In 2010 the National Institute of 
Health, NIH, held a symposium focused on the development of possible biomarkers for 
DLB. Among the different suggested biomarkers, neurophysiological assessments were 
reconsidered, as a large amount of neurophysiological studies had been devoted to AD and 
PD, whose characteristics are shared by DLB. 
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We contributed to several studies on this argument along the years, and in the present 
chapter we discuss the role of clinical neurophysiological studies in  DLB in comparison 
with other disorders. The essential background of our original studies  laid  in the fact 
that most historical studies were performed when the DLB clinical entity was unknown 
and therefore some of the past results were marred by absent recognition of this clinical 
entity. 

2. Synucleinopathies: Dementia with lewy bodies  

Synucleinopathies comprise a diverse groups of neurodegenerative proteinopathies that 

share common pathological lesions composed of aggregates of conformational and 

posttranslational modifications of alpha-synuclein in selected populations of neurons and 

glia. Abnormal filamentous aggregates of misfolded alpha-synuclein protein are the major 

components of LB, dystrophic (Lewy) neurites and the Papp–Lantos filaments in 

oligodendroglia and neurons linked to degeneration of affected brain regions. The 

synucleinopathies (see table 1) include Lewy Body disease (Parkinson Disease (PD), DLB, 

Multiple System Atrophy (MSA)) and neurodegeneration with brain iron accumulation type 

I, (NBIIA), formerly Hallervorden–Spatz disease. The pathological diagnosis of Lewy body 

disease is established by validated consensus criteria based on semi-quantitative assessment 

of subcortical and cortical LB as their common hallmarks. They are accompanied by 

subcortical multisystem degeneration with neuronal loss and gliosis with or without AD 

pathologic features. LB deposition also occur in numerous other disorders, including pure 

autonomic failure, neuroaxonal dystrophies and their presence is also evident in various 

amyloidoses and tauopathies. MSA, a sporadic, adult-onset degenerative movement 

disorder of unknown cause, is characterized by alpha-synuclein–positive glial cytoplasmic 

and rare neuronal inclusions throughout the central nervous system associated with striato-

nigral degeneration, olivopontocerebellar atrophy and involvement of medullar and spinal 

autonomic nuclei. In NBIIA alpha-synuclein is present in axonal spheroids and glial and 

neuronal inclusions. While the identity of the major components of LB suggests that a 

pathway leading from normal soluble to abnormal misfolded filamentous proteins is central 

for their pathogenesis, regardless of the primary disorder, there are conformational 

differences in alpha-synuclein between neuronal and glial aggregates, showing no uniform 

mapping for its epitopes. Despite several cellular and transgenic models, it is not clear 

whether inclusion body formation is an adaptive/neuroprotective or a pathogenic reaction 

process generated in response to different, mostly undetermined, functional triggers linked 

to neurodegeneration. From a clinicopathological point of view, recognizable differences 

appear along the spectrum of the synucleinopathies. In fact PD is characterized by 

subcortical and rare cortical LB associated with degeneration of the dopaminergic 

nigrostriatal and other subcortical systems while more extensively distributed LB 

accompanied by striatonigral degeneration and variable extents of AD pathologic states 

typify DLB which, depending on the severity and extent of neuritic AD pathologic 

conditions, can be divided into two subgroups: “pure” DLB and DLB variant of AD. Finally, 

LB may also occur in AD, which is defined by the presence of neocortical neuritic pathologic 

findings ( amyloid plaques and neurofibrillary tangles). Among the synucleinophaties DLB 

represents the second most frequent cause of dementia in the elderly after AD [3]. 
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SYNUCLEINOPHATIES  LESION/COMPONENTS LOCATION 

PARKINSON’S DISEASE LB/DYSTROPHIC NEURITIS INTRACYTOPLASMIC 

LEWY BODY DEMENTIA LB/DYSTROPHIC NEURITIS INTRACYTOPLASMIC 

LEWY BODY VARIANT 
OF ALZHEIMER 
DISEASE 

LB/DYSTROPHIC NEURITIS 
A┚-PLAQUES  
TANGLES PHF/TAU 

INTRACYTOPLASMIC 
EXTRACELLULAR 
INTRACELLULAR 

PURE AUTONOMIC 
FAILURE 

LB INTRACYTOPLASMIC 

ALZHEIMER’S DISEASE 
PLAQUES (A┚ AMYLOID) 
TANGLES PHF/TAU 
LB/┙-SYNUCLEIN 

EXTRACELLULAR/ 
INTRACYTOPLASMIC 

MULTIPLE SYSTEM 
ATROPHY 

CYTOPLASMATIC GLIAL 
INCLUSION 

INTRACYTOPLASMIC 

HALLERVORDEN-
SPATZ DISEASE 

LB/CYTOPLASMATIC GLIAL 
INCLUSION 

INTRACYTOPLASMIC 

NEUROAXONAL 
DYSTROPHY 

AXONAL SPHEROIDS  

AMYOTROPHIC 
LATERAL SCLEROSIS 

UBIQUITIN, INCLUSION SOD 1, 
LB 

INTRANUCLEAR, 
INTRACYTOPLASMIC 

OTHER: 
DOWN SYNDROME 
MOTOR NEURON 
DISEASE 

 INTRACYTOPLASMIC 

Table 1. Sinucleinophaties and LB location. 

The central clinical feature of DLB is progressive dementia prominently characterized, in the 

early phases of the disease, by deficits in attention, executive function and visuospatial 

ability, at difference with AD where memory impairment is the main early feature of 

dementia. Fluctuations in attention and alertness, recurrent complex visual hallucinations 

and parkinsonism represent the core features for the diagnosis. Suggestive clinical features 

are REM sleep behavior disorder, severe sensitivity to neuroleptics and low dopamine 

transporter uptake in the basal ganglia demonstrated by single photon emission 

computerized tomography (SPECT) or Positron Emission Tomography (PET) imaging. 

Supportive features are often present and are represented by repeated falls and syncopes, 

transient and unexplained loss of consciousness, severe autonomic dysfunction (e.g., 

orthostatic hypotension, urinary incontinence), hallucinations in other modalities than 

visual, systematized delusions, depression, relative preservation of medial temporal lobe 

structures on CT or MRI scans, generalized low uptake on SPECT/PET perfusion scans with 

low occipital activity, abnormally low uptake on 123I-metaiodobenzilguanidine (123I-MIBG) 

myocardial scintigraphy [2].  

In this last revision of criteria for the diagnosis of DLB, electroencephalography (EEG) 

abnormalities with transient slow waves or sharp waves were also reported as supportive 

features for the diagnosis[2,4].  

We performed a prospective study evaluating the incidence and characteristics of EEG 

abnormalities in patients affected by AD, DLB and PD with Dementia at their first 
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presentation in a tertiary clinic, not later than 1 year from the onset of dementia [5].  

Supportive elements for the diagnosis came from Clinical Assessment of Fluctuations (CAF) 

scale, polysomnography (PSG) and Mayo Sleep Questionnaire for the assessment of REM 

sleep Behaviour Disorder (RBD). CAF is a neuropsychological test [6] able to evidence, on 

the basis of patient and caregivers interviews, the presence of fluctuating consciousness. The 

questionnaires are able to discriminate 85% of DLB patients, as confirmed by autopsy [7]. 

Cognitive fluctuations are considered a clinical feature typical of DLB, described in 70-80% 

of these patients, only in 14-20% of AD patients and in 15-30% of VaD subjects [8].  

3. Visual Evoked Potentials (VEPs) 

PD and parkinsonism are associated with a variety of visual signs and symptoms 
summarized in table 2. 
 

OCULAR ASPECT CHANGE IN PD REFERENCES 

PRIMARY 

FUNCTION 

VISUAL ACUITY 
VISUAL FIELD 
COLOR VISION 

 
POOR, ESPECIALLY AT LOW CONTRAST 
INCREASE IN GLAUCOMATOSE VISUAL 
FIELD DEFECTS 
VISION BLURRED FOR COLOURED 
STIMULI/PROGRESSIVE DETERIORATION 

 
Repka et al., 1996 
Bayer et al., 2002 
Price at al., 1992/ 
Diederich et al., 2002 

EYE MOVEMENTS 

SACCADIC GAZE 
SACCADIC EYE 
MOVEMENT 
SMOOTH PURSUIT  
OPTOKINETIC 
NYSTAGMUS 

 
SLOWER THAN NORMAL 
HYPOMETRIA 
AFFECTED EARLY IN DISEASE PROCESS      
ABNORMAL IN SOME PATIENTS                       

 
Shibasaki et al., 1999 
Crawford et al., 1989 
Bares et al., 2003 
Shibasaki et al., 1999 

BLINK REFLEX 

FREQUENCY 
HABITUATION 

 
REDUCED 
NOT OBSERVED 

 
Garland et al., 1952 
Garland et al., 1952 

PUPIL REACTIVITY 
CONTRACTION 
AMPLITUDE 
LIGHT REFLEX 

 
REDUCED 
LONGER LATENCY 

 
Biousse et al., 2004 
Miceli et al., 1991 

VEP 

FLASH ERG 
PATTERN ERG 
CORTICAL VEP 
CHROMATIC VEP 

 
REDUCED AMPLITUDE OF b WAVE with 
PHOTIC E SCOTOPIC STIMULI 
REDUCED AMPLITUDE, DELAYED P50 
DELAYED P100,  CHANGING TO NORMAL 
WITH L-DOPA 
INCREASED LATENCY AND REDUCED 
AMPLITUDE 

 
Gottlob et al., 1987 
Gottlob et al., 1987 
Bodis-Wallner et al., 
1982 
Sartucci et al., 2006 

COMPLEX VISUAL 

FUNCTION 

VISUO-SPATIAL 
ORIENTATION 
VISUAL 
HALLUCINATIONS 

 
SEVERE IMPAIRMENT 
IMPAIRED 
CHRONIC IN 30-60% TREATED CASES 

 
Davidsdottir et al., 2005 
Trick et al., 1994 
Diederich et al., 2005 

Table 2. Abnormal visual symptoms in PD  

www.intechopen.com



 
Is There a Place for Clinical Neurophysiology Assessments in Synucleinopathies? 

 

303 

Recent epidemiological studies have shown an association between visual impairments and 
visual hallucinations in patients with PD [9]. Neuropsychological studies have revealed 
visuoperceptual impairments in PDD and DLB patients with visual hallucinations [10]. 
Additionally, recent radiological studies have demonstrated decreased blood flow in the 
posterior temporal and occipital regions in hallucinatory PD and DLB patients [11]. Taking 
these findings together, it is possible to speculate that visual information processing 
functions are selectively impaired in DLB and PDD.  
Impairment of achromatic as well as chromatic vision in PD has been extensively proven 

using clinical, psychophysiological and electrophysiological methods (ERGs and VEPs) and 

attributed to dopaminergic deficiency at the retina level. 

Some studies demonstrated a significant difference between PD patients and well matched 

control subjects in the amplitude of VEP, of flash (ERG) and pattern electroretinogram 

(PERG: retinal response evoked by viewing an alternating checkerboard or grating) [12]. The 

VEP, PERG and flash ERG originate from different parts of the retina and central nervous 

system and reflect different physiological processes. The changes in these potentials in PD 

may reflect the widespread nature of the biochemical disorder affecting both retina and 

central nervous system. Indeed PD patients have also been shown to have abnormal 

auditory evoked potentials [13]. Abnormal VEPs were described in patients with PD: the 

percentage of VEP delays and the amount of latency increments detected in PD patients are 

dependent on the spatial frequency (that is a parameter of the stimulating pattern). The VEP 

latency increases as a function of increasing spatial frequency [14] in normal subjects, and 

our results [15] show that this latency increase is enhanced in PD and also when dopamine 

blockers are administered. Delayed responses, consisting of increased latencies of the P100 

component evoked by patterned stimuli of degree to 7.5’ elements (spatial frequency of 0.5 

to 4 cycles per degree) were observed in PD patients and the delays disappeared together 

with clinical symptoms when L-Dopa was administered [15,16,17]. The evidence of VEP 

delays in PD were concomitant with the identification of dopaminergic cells (amacrine and 

horizontal cells) in the retina, both evidences reciprocally supporting the idea that the cause 

of delays was dependent on retinal dopamine cell deficiencies. In these studies retinal and 

occipital visual evoked potentials and event-related potentials (P300) have been recorded in 

normal human subjects before and after the administration of the dopaminergic receptor 

antagonist, haloperidol, and/or the dopaminergic precursor L-DOPA. The data show that 

either retinal or occipital visual potentials and P300 are delayed by haloperidol. These 

findings are consistent with the hypothesis that haloperidol in healthy subjects mimics the 

electrophysiological abnormalities observed in PD. On the other hand, L-Dopa does not 

generally modify these latencies in controls, while it is known to decrease the same 

parameters in PD patients. This is in accord with the involvement of a specific mechanism in 

the recovery observed in PD patients during L-Dopa therapy. Data confirm that the 

alterations of visual and cognitive potentials observed in PD are closely related to the 

impairment of dopaminergic transmission. The results of our study [15] on haloperidol 

administration in non-PD patients showed that this dopamine receptor blocking drug 

increased the latency of VEPs obtained with 2 and 4 cpd stimuli, while the effect on 0.5 cpd 

and 1 cpd VEPs was less consistent. This finding supports the hypothesis that dopamine 

modifies the processing of VEPs by acting at the synaptic level. The specific sensitivity of 

VEP changes to the spatial frequency of stimulation in PD and haloperidol treated subjects, 

which is evident in our results, might suggest that the VEP abnormalities found in our study 
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are dependent on the impairment of dopaminergic neural structures which regulate spatial 

frequency sensitivity. VEP findings were robustly confirmed in studies performed in animal 

models of PD [18, 19]. Despite the interest for the finding, only few confirmative studies 

were provided [15-17], most studies come from few laboratories devoted to this 

experimental approach. Guidelines for the use of VEPs in clinical practice only rarely 

suggested a role of VEPs in PD studies and VEPs were finally confined to the assessment of 

Multiple Sclerosis. Although the increased latency of the VEP in multiple sclerosis has in 

general been attributed to demyelination in the visual pathways, other mechanisms such as 

humoral factors, synaptic malfunction or changes in dendritic potentials may play a part. 

Such mechanisms may also be relevant to central nervous system disorders other than 

multiple sclerosis which have abnormal VEPs. Although the major clinical manifestations of 

PD involve the motor systems and the responsible pathology is located in the basal ganglia, 

there is evidence of more widespread disease, both pathologically, electrophysiologically 

and clinically. Only two studies explored the possible use of VEPs for the assessment of DLB 

[20,21] yet no comparison were presented with other forms of dementia.  In MSA the visual 

system is believed to be spared and dopamine deficiency has been hypothesized to be less 

pronounced than in PD [22], even though the data in the literature are scarce and not 

unanimous and nothing on retinal dopamine content has been reported. Little information is 

available on VEPs and PERGs in MSA patients [22]. The main interest for studying 

responses elicited by patterns with pure chromatic contrast is that they allow recording of 

specific responses from colour-opponent pathways, anatomically and physiologically 

distinct from the achromatic ones at the retinal as well as the geniculate and cortical levels. 

A more recent study [23] showed that PERGs are virtually unaffected in MSA, whereas in 

early PD they are clearly impaired, suggesting different pathogenic retinal mechanisms and 

a useful simple tool for distinguishing MSA from PD. The strongest objection against the use 

of VEPs for the assessment of synucleinopathies derived from the technical constraints of 

VEP recordings: VEPs are altered by abnormalities of optic nerve and visual pathways, 

VEPs recordings require the adequate collaboration of patients who must focus attention on 

stimuli [24-26], VEP variable (amplitude, latency) are dependent on laboratories settings and 

must be adjusted according to each laboratory statistics of distribution.  
The characteristic of VEP cannot be simply shared by different laboratories and differences 
in equipments might sustain variability which are far wider than variability observed in 
patient and control populations. 
With the introduction of digital and led stimulating screen this condition worsened rather 
than improving [27]. 
In the age range of AD, DLB and PDD optic and visual abnormalities (cataracts, 
maculopathies, retinopathies, ischemic lesions) are frequent and might mislead possible 
diagnoses. In DLB, fluctuations of cognition (i.e. defective attention and collaboration to the 
task) are common and might impair the diagnostic yield of VEP recordings. It has been 
suggested that the discrepancies between different reports on VEP in Parkinson's disease 
may be due to the greater sensitivity of grating patterns compared to checkerboard patterns 
and, if so, this might in part account for our normal PD VEP latencies. The grating subtense 
used is about one third of that for the checkerboard, and the retinal field stimulated is 
predominantly foveal for the grating whereas for the checkerboard it extends beyond the 
perimacula. This could explain the observed differences rather than the pattern form, per se. 
We suggest that VEP recordings might still represent a “niche” research tool, but do not 
provide sufficient robustness in order to constitute a biomarker. 
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4. P 300 abnormalities  

In an event related potential (ERP) the P300 is a positive deflection peaking at 

approximately 300 ms after a stimulus. It is supposed to be an endogenous response, mainly 

depending on the processing of stimulus context, involving registration, evaluation and 

memory of stimuli, and categorization (decision/closure) and impinging on attention and 

arousal [28]. P300 can reliably be elicited with relatively simple paradigms, such as the 

“oddball paradigm”, which requires the detection of a rare (“target”) stimulus within a train 

of frequent irrelevant “non target” stimuli. Other complex paradigms include the 

administration of multiple stimuli, dichotic stimuli, multisensory modalities, in order to 

evaluate responses evoked from anterior brain regions. We recently performed a P300 study 

on patients with DLB in comparisons with patients with AD matched for dementia severity 

and age and with age matched control subjects [29] to look for differences of P300 responses 

in the two dementia subtypes and for possible correlations between P300 recordings and 

EEG, as abnormal EEG variability was described in DLB [5].  

P300 responses were recorded with Ag/AgCl electrodes from 19 derivations corresponding 

to Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Cz, Fz, Pz positions of the 

10-20 International System with supplementary A1 and A2 derivations. Care was taken to 

avoid recordings if variations of body temperature, recent food ingestion, or previous-night 

sleep disturbances were present [30]. A classical auditory “oddball” paradigm was used. 

The stimuli were 500 Hz and 1000 Hz tones, designated as the “non-target” and “target” 

stimuli, respectively, and delivered by STIM System Headphones. Patients were instructed 

to count only “target” stimuli, aloud in a preliminary trial and mentally in subsequent trials. 

The presentation ratio of “non target/target” tones for training was 4/1-8/1 and during 

recording purposes 5/1. The intensity of the tone was 75 dBnHL, the duration of the 

stimulus was 150 ms (rise-fall and the plateau times 5 and 140 ms, respectively). The 

presentation rate was random with a minimum inter-stimulus interval of 1.1 seconds and a 

maximum interval of 4 seconds. Digital filters was set at 0.15 Hz and 100 Hz, and averaged 

with a dwell time of 0.5 ms, 2000 Hz sampling rate, 100 ms of pre-stimulus baseline 

recording. An artifact rejection system was calibrated on four supplementary derivations 

placed on eyebrows and inferior orbital ridges; the rejection system blocked the acquisition 

when eye movement exceeded 100 uV. As the mean reference is known to distort P300 

distribution one earlobe was used as online reference, with offline averaging with the other 

earlobe [31]. 

In each recording session, the correspondence between the counted and delivered stimuli 

was checked as  described in previous studies [32] and stored on the hard disk. Sets where 

two or more targets had not been recognized or sets impaired by attention defects or false 

recognitions were discarded from analysis. 

In each patient and control 120 responses to non-target and target stimuli were averaged in 
a single Final Average (FA). Four Sub-Averages (SA) of only 30 responses to target stimuli 
were preliminarily obtained in order to assess reliability of P300 among the recording 
sessions. Finally, inter-subject Grand Averages (GA) were obtained in DLB, AD and control 
groups. N100, N200, and P200 were detected at the Fz, Cz and Pz electrode for each subject 
separately. Peak latencies of each component were measured from stimulus onset to the 
point of maximum voltage in the range of 50-150 ms and 150-250 ms respectively. P300 was 
identified, in a time window of 300-500 ms, according to the operating definition based on 
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its scalp distribution (central-parietal amplitude gradient), probability and sequence of 
preceding components. For every electrode location the following P300 variables were 
analyzed: amplitude (voltage difference between pre-stimulus baseline and the largest 
positive-going peak of the ERP waveform within a latency range of 300-500 ms), latency 
(time from the stimulus onset to the point of maximum positive amplitude within 300-500 
ms time window: latencies were considered delayed if the peak latency was at least 2SD 
longer than the controls mean value. 2SD was chosen because previous studies showed that 
more restrictive criteria, 3SD from the mean, are insensitive to detect differences between 
controls and patients populations [33]), inter-electrode (Fz-Cz; Fz-Pz; Cz-Pz) latency and 
amplitude distribution gradients (difference in latency or amplitude of P300 responses 
between each pair of leads). The use of 3SD in defining normative limits for P300 was 
discharged as being at risk of excluding an excessive number of patients from investigative 
categorization. Studies on P300 scalp distribution and topography showed that peak latency 
changes across the scalp i.e., it is shorter over anterior cortical regions and longer over 
parietal areas [34], which allows to identify an earlier anterior, and a late posterior P3 
component. Whether anterior and posterior P3 components recorded with a simple oddball 
paradigm originate from the same generators as those proposed for the P3a and P3b 
components obtained with the three-stimuli “novel” paradigm is yet unclear, however 
studies evaluating P3 scalp distribution suggested that early P3 component and late P3 
component have separate origins: anterior superior temporal gyrus [35], prefrontal cortex 
[36], and anterior cingulate or supplementary motor area [37] for the early component vs 
temporo-parietal junction for the late one [38]. P300 studies in dementia were originally 
based on recordings from midline scalp derivations (the three leads Fz, Cz, Pz). Recordings 
in patients with dementia were compared with normative data obtained through P300 
measurements in age-matched control populations. In demented patients, comparisons 
between ranges of different widths evidenced that, for P300 latency, the 2SD criterion had 
the greatest sensitivity in the detection of dementia [39]. Thus, if recordings in patients 
exceeded the 95% odds ratio, corresponding to normal mean±2SD, these recordings were 
considered abnormal and related to the cognitive disorder. By inference, delayed P300 
latencies (by 2SD) or reduced P300 amplitudes were considered features of dementia, and 
thus useful diagnostic tools [40]. Based on this method, several studies found delays or 
amplitude decreases of P300 recorded from posterior (Pz) derivations in patients with 
putative AD [41], subcortical dementia [42], metabolic disorders [43] e PDD [44]. Yet, 
dementia categorization in the last ten years has been revolutionized by the identification of 
DLB, representing from 25 to 43% of all dementia cases. Therefore, one can assume that a 
discrete percentage of patients classified as AD patients in earlier studies, were instead 
affected by DLB. Because of cognitive ERPs were less investigated in DLB than other types 
of dementia, we examined the rates and qualitative features of P300 abnormalities in DLB vs 
AD patients. As EEG abnormalities are prevalent and linked to variability in DLB, the 
possible identification of correlations with EEG frequencies might support or challenge 
recent hypotheses suggesting that P300 is, or is not, the result of EEG phase resetting, due to 
orientation of attention to stimuli [45]. As our P300 recordings were obtained from a 
multielectrode montage covering the scalp, we could extend our analysis to further 
measurements, including topographic distribution of P300. Earlier topographical studies on 
P300 distribution were focused on AD patients, yet the same possible diagnostic flaws 
underlined above could be reported for topographic studies, and results were in some cases 
inconclusive with abnormal distributions described in anterior or in posterior derivations 

www.intechopen.com



 
Is There a Place for Clinical Neurophysiology Assessments in Synucleinopathies? 

 

307 

[34], in the, supposedly, same kind of patients. The ‘‘classic’’ evaluation method was 
however encouraged by methodological guidelines [30] even after that topographic studies 
had been developed. The numerous clinical P300 studies suggest that this ERP component, 
elicited by auditory, visual, olfactory or somatosensory stimuli may be clinically useful as an 
index of such cognitive functions as attention and working memory. This assumption 
suggests that specific alterations should be found in DLB, where the cognitive disturbance is 
mainly characterized by fluctuating alterations of arousal and vigilance. Due to frontal 
dysexecutive dysfunction, DLB patients would be expected to express prevalent alterations 
of the anterior P3 component with a fronto-central scalp topography, whereas AD patients, 
with their early hypometabolism in the temporo-parietal junction, would be expected to 
show prevalent alterations in the parietal P3b response. If we restrict P300 measurements to 
classic assessment of P300 latencies in posterior (parietal) derivations, our study [32] shows 
that delayed latency and reduced amplitude, present in both dementia groups, can 
distinguish DLB from AD group, even though it is not possible to infer the applicability of 
these measures to an individual patient-to-patient analysis. The use of an active task did not 
allow us to investigate possible differences between groups in the mismatch  negativity 
response, but we made sure that patients kept constant their attention during recordings, as 
P300 amplitude is sensitive to the amount of attention resources engaged during the task. In 
every group, N200 latencies were correlated with P300 latencies, confirming previous 
studies that showed prolonged N200 and P300 latencies in patients with dementia [46]. 
Topographical analysis of P300 recordings including all scalp leads did not add information 
about possible differences between patient groups, confirming that study of P300 
topography could be limited to midline electrodes. Topographical differences, as latency 
distribution gradient, emerged and showed that P300 is different in DLB as compared to AD 
(figure 1): DLB patients had a more delayed P300 in anterior than in posterior derivations, 
while in all but two AD patients the latency was increased in posterior leads as compared to 
anterior leads, same as in controls. The normal latency distribution gradient consisting of 
increased latency in posterior leads as compared to anterior leads was reversed in DLB. Also 
the amplitude distribution gradients were reversed and thus different in DLB patients 
compared to AD or controls. The amplitude of P300 was prominent in frontal leads in DLB 
and in parietal leads in AD and controls. The finding of reversed amplitude gradient, with 
higher amplitude in frontal leads and smaller amplitude in posterior leads in DLB patients 
is apparently counterintuitive, as reduced amplitudes would be expected in a disease 
characterized by early frontal lobe involvement. Yet, delayed P300 latencies are also 
prominent in anterior leads of DLB patients and the two findings together seem compatible 
with the early frontal involvement of DLB. These findings suggest abnormal activity in 
anterior cortical areas of DLB patients, as compared with AD and controls. The correlation 
between P300 frontal delay and neuropsychological test scores exploring frontal lobe 
functions (FAB, NPI) supports this hypothesis. A possible interpretation might suggest that, 
in the early course of their disease, DLB patients need to increase efforts in frontal areas 
involved in recognition-attention tasks. P300 amplitude increment with delayed latency is 
correlated to increments of encoding loads in experimental paradigms [47]. 
An alternative hypothesis could be that altered topographical P300 distribution in DLB 

represents a constant interference of the frontal P3a component, which is normally evoked 

by “novel” stimuli. According to this hypothesis DLB patients might produce frontal P300 

component as the target stimuli will be interpreted as novel because DLB patients could not 

act and decide on these stimuli (i.e. match and encode in the target category). Further  
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Fig. 1. Grand averages and amplitude maps of P300 response in the three groups of subjects. 
A. Left. Grand averages of P300 responses in the DLB group. Vertical lines mark peak 
latency. U-shaped bars mark the difference in latency between Fz and Pz leads, same or 
shorter latency in Pz. Right. Amplitude map of P300 distribution throughout the scalp (at 
the maximum amplitude recorded) in DLB group. Notice anterior-to-posterior (reversed) 
amplitude distribution gradient. B. Left. Grand Averages of P300 responses in AD group. 
Vertical lines mark peak latency. U-shaped bars mark the difference in latency between Fz 
and Pz leads, longer in Pz. Right. Amplitude map of P300 distribution throughout the scalp 
(at the maximum amplitude recorded) in the AD group. Notice a posterior to anterior 
amplitude distribution gradient. C. Traces and distribution in controls. EOG: 
electrooculogram; DLB: Dementia with Lewy Bodies; AD: Alzheimer’s Disease. 
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studies, in which infrequent distractor stimuli, will be inserted into the sequence of target 

and non target stimuli, should be carried out in order to evaluate the P3a and P3b 

components in AD and DLB patients. Indeed novel stimuli produce P3a component that is 

generally largest over the anterior and central recording sites and reflects frontal lobe 

function. On the other hand temporo-parietal pathway contributes to P300 from the target 

stimuli (P3b). Anyhow, the clinical utility of P300 recordings in differentiating DLB from AD 

was evidenced, in the patient populations with reliable P300 response, by sensitivity 

reaching 70% and specificity of 97%. Due to high specificity, when a reliable P300 is 

recorded in a patient with early dementia, and its gradients of latency and of amplitude 

across the scalp are reversed, i.e. anterior-to-posterior instead of the normal posterior to 

anterior distribution, P300 might have value to address diagnosis of DLB. Conversely, 

finding that P300 responses, although delayed and with reduced amplitude compared to 

controls, reach maximum amplitude and longer latencies in posterior leads suggests that the 

diagnosis of DLB is unlikely. The study of correlations between P300 recordings and 

neuropsychological test scores showed that increased latency and reduced amplitude were 

correlated with test scores assessing the presence of frontal lobe dysfunction (FAB), behavior 

abnormalities (NPI), fluctuating cognition (CAF). Topographical redistribution of P300 

latency and amplitude, evidenced as distributions gradients were correlated with the 

presence of fluctuating cognition (positive CAF scores), typical symptom of DLB patients 

(figure 2). These correlations evidenced that the differences between groups are related to 

dementia and not to neuropsychiatric differences. A correlation between the performance of 

frontal lobe function in standardized neuropsychological tests and maximal P300 scalp 

distributions were also found in a previous study on a group of old adults [48]. Specifically, 

subjects who showed frontal-maximal P3 had lower performance than those elderly subjects 

who showed posterior-maximal scalp topographies. P300 measurements were also 

correlated with EEG descriptors (figure 2): latency and amplitude anterior to posterior 

distribution gradients were correlated with the DFP pre-alpha and with abnormal CSA 

patterns (CSA Patterns 2 to 4, see next on the test), typical of DLB, confirming the specificity 

of topographical redistribution of P300 in DLB patients. 

5. Blink reflex abnormalities 

Patients with PD exhibit a reduced frequency of blinking leading to a staring appearance 

[49]. Reduced blink rate can cause an abnormal tear film, dry eyes and reduced vision. A 

characteristic ocular sign may be the blink reflex, elicited by a light tap on the glabella above 

the bridge of the nose: successive taps in normal individuals produce less and less response 

as the reflex habituates but in PD subjects the blink reflex does not disappear on repeated 

tapping. Habituation may improve after treatment with L-dopa or amantadine. Blink 

duration and excitability appear to be increased in PD and as in VEP latency may reflect loss 

of dopamine neurons [50]. The electric Blink Reflex (BR) is a neurophysiological technique 

exploring pontine structures through a reflex arc connecting nuclei of the 5th to the nuclei of 

the 7th cranial nerve. The Blink reflex consists of three separate responses: R1, R2, R3. The 

first one is generated in the trigemino-facial reflex arc, the second and third one are 

generated in polysynaptic pathways involving the brainstem reticular formation [51]. 

Clinically, the BR is used to evaluate brainstem lesions and it has been applied in clinical 

and neurophysiological studies of brainstem lesions and neurodegenerative disorders [52-54].  
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Fig. 2. Examples of P300 and CSA traces in one DLB and one AD patient. Top. Example of 

recordings in a DLB patient. Left. P300 recording. P300 response appears delayed (420 ms) 

with no latency inter-electrode distribution gradient and has a higher amplitude in frontal 

derivations (26.7 uV) compared to posterior derivations (21.0 uV) (inset, U-shaped bars 

mark the anterior-to-posterior (reversed) latency distribution gradient in the responses to 

target stimuli). Fz: frontal derivation, Cz: central derivation, Pz: posterior derivation, EOG: 

ocular derivation. Nt: non-target stimuli, t: target stimuli. Right. Quantitative EEG of the 

same patient represented as Compressed Spectral Array (CSA), i.e. arrays of traces are the 

representation of EEG power distribution in consecutive 2-second epochs. Peaks of power 

(amplitude) are found in variable frequencies shifting from alpha (9.6 Hz) to pre-alpha (6.4 
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Hz), corresponding to EEG CSA pattern 2 observed only in DLB patients [5]. Bottom. 

Example of neurophysiological recordings in an AD patient. Left. P300 recording. P300 

response is delayed (410 ms) with posterior to anterior latency distribution gradient. 

Amplitude is higher in posterior derivations (14.9 uV) compared to anterior derivations 

(14.5 uV) (inset, I-shaped lines mark peak latencies in the responses to target stimuli). Fz-RF: 

frontal derivation, Cz-RF: central derivation, Pz-RF: posterior derivation, EOG: ocular 

derivation. Right. CSA of the same patient, with stable alpha dominant frequency at 9.5 Hz. 

EOG: electrooculogram; nt: non target stimuli, t: target stimuli; DLB: dementia with Lewy 

bodies; AD: Alzheimer’s disease. 

We performed a study of the blink reflex in patients with PD, DLB, MSA, AD and 

Progressive Supranuclear Palsy (PSP).  

The subjects were comfortably sitting on an armchair in a quiet room, with eyes gently 

closed. The recordings took place in a temperature-controlled room (at about 25°C) in half-

light. The cathode was placed over the supraorbital foramen and the anode 2cm rostrally. 

Surface electrodes were placed on the inferior part of the orbicularis oculi muscles on each 

side, recording ipsilateral R1, and ipsilateral and contralateral R2 and R3. Ground electrode 

was placed under the chin. Stimuli of 0,1ms of duration with intensity of  5-10 mA elicited 

stable R1 in repeated trials. Because surface electrodes lay only few centimetres away from 

the cathode, R1 tended to overlap the stimulus artifact, which could last more than 10ms. A 

special amplifier with a short blocking time (0.1ms) and low internal noise (0.5 uV at a 

bandwidth of 2kHz) minimized the problem of stimulus artifact. Signals were amplified and 

filtered (bandwidth 20-2000Hz), to avoid habituation the interstimuli intervals must be of at 

least 7 sec, 5-10 responses per site were elicited and stored. BR recording were previously 

described in MSA, PSP and PD patients: all reports showed R2 latencies inside the 2 SD of 

the mean and only evidenced enhancement or inhibition of R1-R2 in excitability-duration 

curve paradigms [52,53,55] in untreated PD. Recently we studied the BR in parkinsonism 

[56]: in all PD, MSA, PSP and AD patients we found normal R1 and R2 latencies inside the 

2SD of the control mean independently of the presence of RBD. Only in DLB patients we 

found R2 latencies clustering in the upper limits of normality or definitely above the limits 

(figure 3). All findings were statistically significant. Thus, BR recordings might reveal 

brainstem dysfunction in DLB, but not in other parkinsonisms where different yet definite 

brainstem abnormalities are also described. According to the pathophysiological hypothesis 

[6] our data suggested that in DLB  the brainstem is the site of initial lesions, consisting of ┙-

synuclein deposits. Synucleinopathy is ascending from the brainstem, progressively 

involving the lower brainstem and inducing the appearance of REM Sleep Behaviour 

Disorder (RBD), then the mesencephalus, inducing the occurrence of parkinsonism and 

finally involving limbic structures, inducing hallucinations and psychosis, and cortical 

areas, inducing cognitive disorders. R2 latency delay might be attributed to the ascending 

synucleinopathy inducing the appearance of RBD, but our findings suggest that this 

possible correlation is controversial, as normal R2 latencies were observed in PD and MSA 

patients presenting with RBD, while delayed R2 latencies were recorded in 5 DLB patients 

who did not present with RBD. Our findings suggest instead that R2 latency delay in DLB is 

independent of the presence of RBD. The correlation with scores assessing cognitive 

fluctuations suggests that R2 abnormalities might evidence dysfunction of reticular brain 

stem pathways involved in vigilance regulation. 
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Fig. 3. Example of a blink response in a control subject (top: about 30msec) and in a patient 
with DLB (bottom: about 45msec). Note the delayed R2 response in the DLB patient in both 
the ipsilateral and contralateral recordings. 

Current interpretations of BR neurophysiology [51,57] suggest that R2 abnormality should 

be ascribed to disruption of the afferent pathway when it is evident in ipsilateral and 

contralateral responses to stimuli of one side and efferent when the abnormality is observed 

in ipsilateral or contralateral responses of only one side, independently of the site of 

stimulation.  Only in 3 of the DLB patients presenting with R2 delays, discrepant latencies 

on the two sides of stimulation were found [8], yet ipsilateral and contralateral responses 

were always overlapping, thus it is likely that the afferent pathway is prominently involved 

in DLB. In a successive  study we tested the supposition that BR alterations present in DLB 

patients are sensitive to cholinergic modulation. It is known indeed, that choline 

acetyltransferase enzyme levels are lower in DLB compared with AD [58] whereas high 

muscarinic receptor density has been found in DLB [59]. Alterations of this cortical network 

are the pathophysiological correlate of cognitive impairment and attention deficit in DLB 

and are accompanied by abnormal electrocortical arousal [8,60] with alteration of 

electroencephalogram, event-related potential and choice reaction time. Administration of 

donepezil has been shown to significantly improve cognitive scores as well as 

electroencephalogram and event-related potential alterations in patients with fluctuating 

cognition [12] as a result of improvement of attentional participation in tested activities [60-

63]. So we assessed whether BR alterations present in DLB patients are sensitive to 

cholinergic modulation [64]. We evaluated 26 patients affected by DLB and 20 patients 

affected by AD: for each patient, we performed BR recordings before and after 1 and 2 

weeks of treatment with donepezil. The correlation between R2 abnormalities and score 

assessing cognitive fluctuations suggest that R2 latency delay might evidence dysfunctions 
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of brain stem reticular pathways involved in vigilance regulation. The administration of 

donepezil significantly improved BR response in DLB patients, with a mean reduction of 

8.2%. R2 mean latency reduction was highly correlated with R2 mean latency delay at 

baseline, with a 46% of patients showing no difference between R2 mean latency at baseline 

and after treatment. Thus, the reduction of R2 latency was evident only in patients who had 

delayed R2 at baseline. A possible explanation is a “bottom effect” of R2 mean latency 

reduction, meaning that the correction of brain stem dysfunction by ChEI treatment is 

mostly evident when the alteration of subcortical cholinergic networks is so conspicuous to 

be evidenced by a BR response alteration. Another possible explanation is that 2 

subpopulation of DLB patients can be recognized: responders and not responders to ChEI 

treatment. No correlation between R2 latency reduction and MMSE scores was found, as 

expected because of the short test-retest interval and learning effect [65]. However, at 

baseline, a high correlation between R2 abnormalities and CAF and ODFA scores was 

found, suggesting that responders are those patients with the worst grade of cognitive 

fluctuations. In our study, CAF scores were not significantly modified by the 2-week 

treatment, again as expected, because CAF scores track behaviors, reported by caregivers, of 

the last month. However, ODFA scores were significantly different after treatment 

compared with baseline. Our study suggests therefore that ChEI effect is mediated by 

correction of dysfunction of the brain stem reticular pathways involved in vigilance 

regulation. A previous study [66] had shown the correlation between improvement of 

attentional activities and improvement of neuropsychological scores after ChEI therapy and 

the finding was confirmed by following reports [60,62,67]. The lack of BR response 

alterations and subsequent absence of R2 latency modification by ChEI in AD patients 

suggest that due to the lower cholinergic functioning in DLB, a greater potential 

improvement from these drugs than that seen in AD might be expected, at least in the early 

phases of DLB pathophysiology, when a prevalent brain stem involvement is called into 

cause [6]. Furthermore, the presence of fewer neurofibrillary tangles and neuritic plaques 

and of less neuronal loss in DLB than AD [68,69] suggests that neurons in DLB are more 

viable than those in AD and could be more responsive to cholinergic stimulation [70-72]. 

These data suggest that the presence of alterations of neurophysiological responses tracking 

brain stem reticular formation might also predict the response to ChEI in DLB, as concluded 

in previous studies [67,73] about the efficacy of ChEI on cognitive impairments and 

psychiatric symptoms, and foster further studies on the long-term effect of ChEI and 

identification of responders. 

6. Quantitative eeg:qeeg 

Quantitative Electroencephalography (QEEG) is the measurement, using digital technology, 

of electrical patterns at the surface of the scalp which primarily reflect cortical activity or 

"brainwaves". A multi-electrode recording of brain wave activity is recorded and converted 

into numbers by a computer. These numbers are then statistically analysed and are 

converted into a colour map of brain functioning. Digital EEG techniques have grown 

rapidly in both technology and popularity since the early 1980's for recording, reviewing 

and storing EEG data. Compared to other systems, QEEG is a non-invasive procedure and 

offers a superior temporal (time) resolution compared with fMRI, SPECT and PET imaging 
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techniques. MEG systems, though providing a high temporal and spatial resolution, are a 

relatively expensive means of monitoring the brain as compared with QEEG.  Recently we 

had designed a QEEG study in a cohort of patients affected by early AD and DLB, whose 

diagnoses were confirmed by laboratory methods and by a 2-year follow-up, which allowed 

confirming or discarding earlier diagnoses, and thus reaching the best possible level of 

certainty on the classification of these two disorders [5]. As specific EEG abnormalities 

reflecting the presence of cognitive fluctuations (superimposition of pre-alpha/theta activity 

on alpha dominant frequency, or of theta/delta activity on dominant pre-alpha frequency) 

were evidenced in early DLB [5,74-76] while alpha dominant activity was more stable in 

early AD [1], we evaluated possible correlations between P300 and EEG characteristics in 

AD and DLB. Several electroencephalographic studies on dementia  were performed in the 

years preceding the identification of DLB as a widespread cognitive disorder. Slowing of the 

rhythms and reduced coherence among brain regions, increased theta and delta activity, in 

parallel with reduction of alpha and beta rhythms were observed in patients affected by 

putative AD [76]: computerized EEG spectral analysis showed an increase in delta and theta 

power  in AD patients compared to controls mainly in the left temporal area. EEGs were 

recorded with Ag/AgCl disk scalp electrodes placed on 19 derivations corresponding to 

Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Cz, Fz, Pz positions of the 10-

20 International System with supplementary A1, A2 derivations. Derivations were grouped 

in order to define 5 scalp regions: anterior (Fz, Fp2, F7, Fp1, F3, F4, F8), central (T3, C3, Cz, 

C4, T4), posterior (T5, P3, Pz, P4, T6, O1, O2) and peripheral (Fp1, Fp2, F8, T4, T6, O1, O2, 

T5, T3, Fz) or internal (F3, F4, Fz, C3, Cz, C4, P3, Pz, P4). Reference was the mean (mean 

reference) of recordings from all scalp leads, A1, A2 signals were also stored for digitalized 

derivation reconstruction. Ground was placed at FpZ. Impedance was below 5 KOhm. The 

patients were seated in a quiet room on a comfortable armchair, awake with closed eyes 

under continuous control (Video EEG); wakefulness of the patients was verified every 2 min 

by asking to open eyes and checking block reactions; 2 supplementary derivations 

monitored electro-oculography (vertical and horizontal), two derivations monitored 

possible interference of tremor and two pairs of additional bipolar recording channels for 

the respiration and electrocardiogram were applied. EEG was acquired as a continuous 

signal for 30 min and visually inspected for current clinical interpretation or detection of 

artifacts and stored in order to be epoched in off-analysis setting as series of 2 seconds-long 

epochs. EEGs interpreted with classical visual inspection, corresponding to categories 

reported in previous literature [77,78] were defined as Classic Interpretation Methods  (CIM) 

in results. The computer collected 10 minutes of EEG recorded with closed eyes, digitized at 

1024 Hz with a low filter at 0.5 Hz and high filter at 70 Hz (decay constant 12 dB) with a 50 

Hz notch filter in each channel. Blocks of artifact-free 2 seconds-long epochs appearing 

consecutively for 20-40 sec were selected off-line by visual inspection after pre-programmed 

automatic blink reduction and muscle and tremor artifact rejection system and were 

compared with the remaining artifact-free epochs in order to avoid possible discrepancies 

among acquired sets. A total of 90 epochs per patient were processed by an automatic 

transforming program present in the NEUROSCAN SynAmps System performing a fast 

Fourier Transform on each second of EEG acquisition, allowing a frequency sensitivity=0.05 

Hz. The obtained spectra values were then processed in order to compute a mean Power 

Spectrum (mPS) for each epoch and for each channel and expressed in square uV (uV2). The 
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mPS was divided automatically into 4 frequency bands (1-3.9 Hz [delta], 4-5.5 Hz [theta], 

5.6-7.9 Hz [fast theta or pre-alpha], 8-12 Hz [alpha]). These bands were defined after the post 

hoc analysis with the purpose to facilitate identification of differences, in the description of 

results, as statistical differences were evidenced when theta band was halved in two parts 

(4-5.5 Hz, theta and 5.6-7.9 Hz pre-alpha). Fast Fourier transform-QEEG program expressed 

power values automatically after a log transform (log[x/(1-x)]) and indicated the Dominant 

Frequency (DF) of the entire power spectrum of each epoch, i.e. the specific frequency where 

the maximum power for a single epoch or a sum of multiple epochs was contained. Mean 

Relative Power Spectra (mRPS: percentage of the global mPS of each frequency band) were 

computed and log transformed [79] to normalize the data, automatically calculated and 

expressed in numeric percentages for each one of the single epochs obtained from each scalp 

derivation. EEG power spectra were represented as scalp maps of band amplitudes 

measured on the 180 sec total analysis (Total Power) and analyzed as Mean Frequency (MF), 

indicating the average frequency for the 90 epochs, and as mean frequency variability 

(MFV), representing changes of mean frequency during the 90 epochs. Single channel power 

spectra were also represented as Compressed Spectral Arrays (CSA) showing the sequences 

of absolute or relative power spectra in each one of the 90 analysed epochs. mRPS from all 

the scalp derivations were averaged in order to obtain a single Global Mean RPS 

representative of the frequency band powers in each patient expressing the average 

distribution of powers recorded from all the derivations. Eventually, in each epoch, mean 

band power in each of the three groups of patients (AD, DLB, PDD) as well as in the control 

group was then computed by averaging the values of subjects in each group.  

Our EEG study [5] completed and detailed results of a preliminary study performed with 

Magneto-Encephalography (MEG) recordings [80] suggesting that activities in parietal and 

occipital areas differentiate early DLB from early AD. MEG technique excluded a reference 

effect, showed differences in reactivity of alpha rhythms between groups of patients, and 

explored coherence: therefore the present study was focused on waking-closed eyes 

condition and on methods evidencing differences. The different EEG variables analysed in 

our study showed some distinct and specific patterns in patients affected by DLB or PDD 

with cognitive fluctuations (PDDF). When EEGs were interpreted with the classic visual 

inspection methods, absent alpha in posterior derivations was observed in 63.9% of DLB 

and in none of AD patients. In PDD absent alpha was observed in 25.7% of patients (all from 

PDDF group). Intermittent delta and sharp transients, described in previous studies [2,4,9], 

occurred more frequently in DLB patients compared to AD (13.9% vs 2.5% and 5.6% vs 

2.5%) yet these findings were rare, and therefore scarcely useful for diagnostic purposes. 

Visual inspection was not sufficient to evidence other differences which were observed with 

QEEG methods: the first relevant finding was the identification of slow activities in 

posterior derivations, with a frequency of 5.6-7.9 Hz, which were observed in all DLB 

patients and significantly separated DLB patients from AD. This activity was defined pre-

alpha because it was suppressed by eye opening. Two studies [81,82] quantified EEG 

characteristics during polisomnography (PSG) in patients with RBD and DLB/PDD and 

indicated differences with controls in the same EEG frequency band. QEEG was analyzed 

with different methods. Total power and mRPS showed that pre-alpha activity on posterior 

derivations expressed the highest statistical difference between AD or PDD without 

cognitive fluctuations (PDDNF) and DLB or PDDF patients (p<0.01). The study of MFV 
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showed that variability of EEG activity was the second most relevant finding leading to the 

identification of specific EEG patterns in DLB or PDDF (p<0.001) as reported in a previous 

study [83]. The variability of the EEG frequencies in relaxed waking conditions was best 

evidenced by using the CSA method of representation, showing that dominant frequencies 

(DF) in DLB were either in the pre-alpha band or varied across time with pseudocyclic 

patterns of delta-theta/pre-alpha or theta-pre-alpha/alpha, differentiating DLB or PDDF 

patients from AD or PDDNF patients. CSA representation had only been previously used to 

assess coma or anaesthesia levels [83], and in the present study it allowed to evidence 

changes of EEG activities in single derivations. It allowed therefore to evaluate local 

variability, at contrary with total QEEG analyses and MF evaluations, and to evidence that 

significant differences among groups of patients were prevalent in posterior leads. CSA 

showed that changes of dominant activity could be separated in five patterns, salient at 

visual inspection of the sequence of traces: one, with dominant stable alpha, was only 

observed in early AD and in 54.3% of PDD (PDDNF), while the other patterns, differently 

grading the dominant frequency variability and pre-alpha presence, were only observed in 

posterior derivations of early DLB and PDDF. The abnormal patterns consisted either of a 

stable dominant activity at 5.6-7.9 Hz, encountered in 25% of DLB and 11.4% of PDD, but 

never in AD, or of unstable activities, all encompassing the presence of the 5.6-7.9 Hz 

activity and significant variations of the dominant frequency across time. When these EEG 

abnormalities are observed in a patient with initial signs of cognitive decline, i.e. MMSE<24, 

they support a diagnosis of DLB. Therefore our study clarifies and quantifies the suggestion 

that EEG might support the diagnosis [2]. When EEGs were recorded two years later [5], 

further alterations were observed which differentiated groups of patients, even though the 

administration of current therapies could have partly marred the results. In DLB patients 

and in 74.3% of PDD patients EEGs were similar, with a stable pre-alpha activity or unstable 

DF across time, with variability above 3 Hz, consisting of the presence of unstable alpha, 

pre-alpha, theta and delta activities. In 72.5% of AD patients and in 25.7% of PDD patients 

DFV was below 3 Hz and alpha activity was present. At follow-up patterns 2-4 were 

observed prominently in posterior derivations of DLB and PDDF patients, while only 27.5% 

of AD patients presented with similar EEG abnormalities.  Pattern 5 was observed at follow-

up in patients with severe cognitive deteriorations (5 DLB, 2 AD, 3 PDD), suggesting 

therefore that this degraded pattern is aspecific. In our experience we recorded pattern 5 

activity also in cases of severe Progressive Supranuclear Palsy and Fronto-temporal 

dementia. In conclusion we would add two further considerations. First, PDD in its early 

course can be apparently separated in two different groups: one with fluctuating cognition 

elements and EEG pattern abnormalities akin to the ones observed in early DLB and a group 

with normal EEG akin to the AD patients and without fluctuating cognition. With follow-

up, however, the majority of PDD patients (74.3%) presents with the same EEG 

abnormalities characterizing DLB. The presence of two different clusters in early PDD 

suggests that the distribution of neuropathological abnormalities might have different 

patterns in different patients, cumulating however across time to show, at follow-up, clinical 

and EEG patterns similar to the ones observed in DLB. Second, in AD we found less EEG 

abnormalities than previously reported [76]. We suggest that this finding depends on 

patients selection methods used in our study. In this study the selection was focused on 

elements of fluctuating cognition (CAF-ODFA scales) and presence of RBD, prominently 
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characterizing DLB [2]: the occurrence of positive CAF scores and of RBD during follow-up 

supported the categorization of patients. Patients diagnosed as affected by AD, who did not 

show evidence of fluctuating cognition or RBD, had rare EEG abnormalities. Yet, recent 

reports [84] showed that power spectra abnormalities in AD patients are characterized only 

by an increase in theta and a decrease in alpha and beta rhythms at rest and mostly limited 

to the temporal, and centro-parietal regions, or showed that entropy of EEG, expressing the 

irregularity and variability of EEG patterns, is reduced, rather than increased, in AD. 

In conclusion, the definite presence of EEG abnormalities early in the course of DLB, with a 
core feature evidencing marked variability of dominant frequencies in posterior derivations, 
occurring every few seconds, or with the substitution of alpha with frequencies at 5.6-7.9 
Hz, suggests that centers regulating EEG rhythms in parieto-occipital areas are affected in 
the early course of this disease. 

7. Other investigations and future prospectives 

Syncope associated to orthostatic hypotension, urinary incontinence and constipation is 
common symptoms in demented patients, mainly in DLB and in PDD. AD and FTD show 
less frequently autonomic dysfunction. There are non invasive tests including standard 
cardiovascular tests, 123I-MIBG cardiac scintigraphy, urodynamic tests, gastrointestinal 
motility studies, sweating reflexes and pupillary responses that assess autonomic 
dysfunction in these patients. 
123I-MIBG is an analogue of the sympathomimetic amine guanethidine, which is used to 
determine the location, integrity, and function of postganglionic noradrenergic neurons [85]. 
Patients with PD can exhibit reduced cardiac 123I-MIBG-derived radioactivity without other 
evidence of autonomic failure, whereas those with DLB can have reduced cardiac 123I-MIBG-
derived radioactivity without evidence of parkinsonism [86]. 123I-MIBG may have the 
potential to differentiate PD from other causes of parkinsonism. For example, MSA and PSP 
pose a difficult diagnostic challenge.  
In PD and DLB, LB are encountered in extracranial tissues, notably in autonomic ganglia 

[87]. Cardiac sympathetic degeneration can be demonstrated early in the disease process 

before motor symptoms. In 2005, the DLB Consortium concluded that diminished uptake of 
123I-MIBG on cardiac scintigraphy was a ‘‘supportive’’ clinical feature that required more 

study [2].  

Positron emission tomography (PET) utilizes biologically active molecules in micromolar or 

nanomolar concentrations that have been labelled with short-lived positron-emitting 

isotopes. The physical characteristics of the isotopes and the molecular specificity of labeled 

molecules, combined with the high detection efficacy of modern PET scanners, provide a 

sensitivity for human in vivo measurement of indicator concentrations that is several orders 

of magnitude higher than with the other imaging techniques. Whereas the very short half-

lives of O15 (2 min) and C11 (20 min) limit their use to fully equipped PET centres with a 

cyclotron and radiopharmaceutical laboratory, F18 labelled tracers (half-life 110 min) can be 

produced in specialized centres and distributed regionally to hospitals running a PET 

scanner only. Clinical use of PET is now well established in clinical oncology and it is 

therefore becoming widely available in major hospitals. In addition to its use in research, 

brain PET also provides diagnostically relevant information mainly in neurodegenerative 

disorders, focal epilepsy and brain tumors. In dementia, the measurement of cerebral  
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glucose metabolism by 18F-2-fluoro-2-deoxy-Dglucose (FDG) and specific molecular 

imaging techniques involving tracers for amyloid and major neurotransmitters are of 

diagnostic interest. Brain PET using FDG is a firmly established technique for demonstration 

of regional functional impairment in neurodegenerative disease. AD is associated with 

typical regional impairment of posterior cortical association areas that allow very early 

diagnosis before clinical manifestation of dementia and monitoring of progression and 

treatment effects. DLB additionally involves metabolic impairment of the primary visual 

cortex. Predominant impairment of the frontal and anterior temporal regions is seen in FTD, 

primary progressive aphasia and semantic dementia. New perspectives are opened by 

tracers for imaging amyloids, which appear to be very sensitive for detecting even 

preclinical AD cases, although confirmation of the specificity remains to be demonstrated. 

Tracers for measuring local AChE activity and the binding capacity of nicotinic and 

serotoninergic receptors address neurotransmitter deficits in dementia. Impairment of 

dopamine synthesis that is characteristic for DLB can be demonstrated by 18F-fluorodopa 

PET. Pittsburgh compound-B (PIB)-PET imaging is a sensitive and specific marker for 

underlying ┚ amyloid deposition and represents an important investigative tool for 

examining the relationship between amyloid burden, clinical symptoms and structural and 

functional changes in dementia. Amyloid imaging may also be useful for selecting patients 

for anti-amyloid therapies. However, studies have identified PIB-positive cases in otherwise 

healthy older individuals (10–30%), limiting diagnostic specificity. Development of 

biomarkers for investigating other aspects of dementia pathology, i.e. soluble ┚ amyloid, tau 

protein, synuclein deposition and brain inflammation would further inform our 

understanding and assist in studying disease-modifying and preventive treatments in 

dementia. Both DLB and PDD are characterized at autopsy by the presence of subcortical 

and/or cortical Lewy bodies. It has been well established that often there is also a 

substantial burden of amyloid pathology, though, compared to AD, plaques are more often 

diffuse than dystrophic neurites [88]. A limited number of PET studies have examined the 

amyloid burden in DLB and PDD in vivo [89] and showed that in DLB mean brain PIB 

uptake was significantly higher than in controls, while uptake in PDD was comparable to 

controls and PD without dementia. In particular, 85% of DLB patients had significantly 

increased amyloid load in one or more cortical regions, whereas 83% of PDD patients had 

‘normal’ PIB uptake. None of the PD patients showed any evidence of increased cortical 

amyloid deposition. A report by Gomperts and colleagues [90] revealed that cortical 

amyloid burden as measured by PIB was higher in DLB than in PDD, but similar to AD.  

The findings suggest that global cortical amyloid burden is high in DLB but low and 

infrequent in PDD. An increased amyloid burden could contribute to the rapid progression 

of dementia in DLB [89] while it may also play a role in the timing of dementia relative to 

the motor symptoms of Parkinsonism in DLB and PDD [88,90]. Either PET or SPECT can be 

employed to provide functional imaging of the nigrostriatal dopaminergic system in vivo. 

SPECT has the advantage of being more readily available and somewhat easier to organize 

and undertake, and the majority of the reported studies of imaging of the dopaminergic 

system in DLB have been SPECT studies, even though PET has produced equivalent results 

[91]. The first ligand used in SPECT was [123I]-2b-carbomethoxy-3b-(4-iodophenyl) tropane 

(b-CIT). Subsequently, [123I] N-x-flouropropyl-2b-carbomethoxy- 3b-(4-iodophenyl) 

nortropane (FP-CIT) became available. FP-CIT was preferable because the time interval 
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between injection and scanning was just 3 hours, making the procedure possible on a single 

outpatient visit. Both ligands are cocaine analogues, which bind the dopamine reuptake and 

transporter molecule found in the presynaptic cell membrane of dopamine producing 

nigrostriatal nerve terminals in the striatum (caudate and putamen). Reduced binding 

reflects dysfunction or loss of nerve terminals, usually associated with loss of the neuronal 

cell bodies in the substantia nigra. Clearly, the test is not specific with regard to the nature of 

the pathology in the substantia nigra, but Lewy body pathology is the commonest cause of 

major bilateral loss of substantia nigra neurones, with loss of about 50% of neurones being 

necessary before parkinsonism becomes clinically detectable [92]. These studies show 

consistently and convincingly that in subjects with a clinical diagnosis of probable DLB, 

there is reduced binding of ligand in the putamen and caudate, and that in AD, the ligand 

binding is not significantly different from controls, suggesting strongly that FP-CIT SPECT 

would be effective in distinguishing DLB cases from AD cases when the distinction cannot 

be confidently made on clinical grounds. FP-CIT scans were abnormal in DLB cases without 

parkinsonism, as well as in cases with parkinsonism [93].  

The weakness of all the studies is that the diagnoses of DLB and AD were clinical, and 
therefore subject to error. An autopsy diagnosis has to be the gold standard, 
notwithstanding the uncertainties involved in the neuropathological diagnosis of both AD 
and DLB and the difficult issue of the coexistence of neuropathological features in both 
disorders. In applying the consensus clinical diagnostic criteria for probable DLB proposed 
by the consortium on DLB at their first international workshop, the greatest accuracy when 
compared with subsequent autopsy diagnosis was achieved by the Newcastle upon Tyne 
group  (83% sensitivity, 95% specificity). The estimated sensitivity and specificity of FP-CIT 
SPECT scan abnormality for a diagnosis of DLB versus AD will obviously be affected by the 
extent to which patients are wrongly categorized clinically. Ideally every patient with 
dementia deserves a diagnosis as accurate as possible. Accordingly, in any patient whose 
dementia diagnosis is uncertain and who could possibly have DLB a dopamine transporter 
SPECT scan should be considered. Most such patients will fulfill clinical diagnostic criteria 
for ‘‘possible DLB’’ (dementia plus one core feature; or dementia plus one or more 
‘‘suggestive’’ features, obviously excluding abnormal dopamine transporter scan which is 
currently one of the suggestive features). The effectiveness of FP-CIT in contributing to the 
diagnosis of DLB has recently been convincingly shown [94]. Most patients with clinically 
typical DLB do not need a FP-CIT scan. However, there are patients who fulfill diagnostic 
criteria for probable DLB, but are also affected by complicating medical issues such as 
cerebrovascular disease or are on medication with extrapyramidal adverse effects, and in 
such situations, a dopamine transporter scan can clarify the diagnosis. Finally, there are 
patients who have mild cognitive impairment (not dementia) and in addition have features 
raising the possibility of DLB (such as visual hallucinations, fluctuating cognition, and 
neuroleptic sensitivity). In these cases, recurrent delirium may be a concern, leading to 
repeated investigations. An abnormal FP-CIT scan can be diagnostically helpful and 
possibly cost worthy. 
Although there is a large and increasing body of knowledge on the genetic, molecular and 
cellular mechanisms of neurodegenerative disorders, the exact cause is unknown, except for 
a few rare genetic variants. Neurophysiological understanding could guide early differential 
diagnosis, and may suggest new ways to monitor treatment response. Since a few years the 
availability of whole-head MEG systems has expanded the scope of such studies. MEG can 
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record brain activity directly, and has several advantages compared to conventional EEG 
recordings. In contrast to EEG, MEG is hardly affected by the skull, and does not require a 
reference electrode. Therefore, MEG may provide a more accurate image of ongoing brain 
activity. In addition, significant advances have been made in neuroscience concerning the 
understanding of oscillatory and synchronized brain activities. In particular it is now 
assumed that synchronization of neural activity between different brain regions may reflect 
functional interactions between these regions [95]. Such synchronization processes can be 
measured at the level of the scalp with EEG and even better with MEG. Interesting patterns 
of abnormal oscillatory activity and interregional synchronization have now been described 
in various brain disorders, including PD and AD [96]. 
One of the first MEG studies in PD was aimed at auditory evoked magnetic fields [97]; they 

suggest that this might reflect the combined effect of basal ganglia disease and auditory 

cortex degeneration. MEG  studies were stimulated by the observation that PD may be 

associated with an increase in EEG coherence in the beta band, possibly due to the failure of 

a normal basal ganglia/thalamic drive to the cortex [98]. These changes were reversible after 

either dopaminergic treatment or deep brain stimulation. Functional connectivity was 

studied in the same large cohort of non-demented PD patients mentioned above using the 

synchronization likelihood [99]. In untreated, early phase PD patients a diffuse increase in 

functional connectivity in the lower alpha band was found. This abnormally high 

connectivity extended to other frequency bands, in particular the theta, upper alpha and 

beta bands, with progression of the disease. Disease severity was associated with abnormal 

connectivity in theta and beta bands. Cognitive perseveration was correlated with inter-

hemispheric alpha band synchronization. In contrast to spectral changes, functional 

connectivity in PD does respond to treatment with L-dopa. Again, changes in demented PD 

patients are qualitatively different from those in non-demented PD patients. Demented PD 

patients showed a loss of functional connectivity, especially between the frontal and 

temporal areas within each hemisphere, and between the temporal areas of both 

hemispheres, in the alpha band [100]. Connectivity changes in dementia thus are on the 

decrease rather than on the increase trend, and a distribution that is more fronto-temporal 

compared to the central dominance of connectivity changes in non-demented PD. The 

overall pattern of connectivity changes in demented PD shows a similarity patterns found in 

studies on AD [101]. Although the number of MEG studies in PD is still very small, a 

consistent pattern of changes in local band power and interregional synchronization is 

becoming clear. Slowing of background activity (increased theta; decreased beta) and 

increased alpha band connectivity occur early in non-demented, drug naïve PD patients; 

with disease progression the spectral changes keep constant, whereas increased connectivity 

extends to other bands. Dopamine affects connectivity, but does not influence power. With 

the advent of dementia, slowing occurs in different frequency bands (increased delta power; 

loss of alpha power), and lower rather than higher connectivity is seen mainly in the alpha 

band. Changes in demented PD may be reversible after cholinergic rather than 

dopaminergic treatment. This characteristic pattern of progressive neurophysiological 

changes in non-demented and demented PD patients could reflect the progressive 

involvement of different neurotransmitter systems, as well as subcortical and cortical Lewy 

body pathology, during the course of the disease [102]. 

The advent of whole-head MEG systems, and the improvements in the understanding of 

oscillatory and synchronized brain activity, have opened up the way to study disturbances 
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in large-scale brain networks in neurodegenerative disorders such as PD and AD. Many 

MEG studies, most of which were conducted in the last five years, have confirmed and 

extended findings from previous EEG work. It is becoming clear that PD and AD show 

characteristic patterns of abnormal brain function, both locally as manifested by changes in 

spectral power, as well as at the scale of functional networks, manifested by changes in 

interregional synchronization. These changes may reflect abnormalities in specific networks 

and neurotransmitter systems, and could become useful in differential diagnosis and 

treatment monitoring. While MEG may be superior to EEG especially for functional 

connectivity studies, its high cost and the impossibility to combine it directly with structural 

MRI remain important obstacles. In this respect the development of ultra low field MRI 

(ULF MRI) could be a very interesting new approach [103]. If this technology can be further 

developed high quality integrated structural and functional studies of brain networks may 

become feasible. However, improvements on the acquisition side alone may not be sufficient 

for a better understanding of normal and disturbed brain networks. There is a urgent need 

for a proper theoretical framework for the analysis and interpretation of the data obtained 

with advanced functional imaging techniques. One attempt to deal with this problem is the 

application of graph theory to functional neuroimaging data [104]. This approach provides a 

theoretical framework for describing the structure and function of complex networks.  

Further studies along these lines, could help to advance our knowledge of disrupted brain 
networks in neurodegenerative disease. 
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