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1. Introduction

Swarm robots are special multi-robots and usually considered being controlled with swarm
intelligence-based method to complete some assigned complex tasks (Dorigo and Sahin, 2004).
Similar to the biological counterparts in nature, swarm intelligence among such artificial
system is emerged from local interactions between individual robots or individual robot
and its environment (Beni, 2005; Sahin, 2005). It is obvious that interactions play a crucial
role in emergence of swarm intelligence in swarm robotics (Schmickl and Crailsheim, 2008).
In other words, communication mode taken in control process of swarm robotic search
is important. How to control swarm robots with certain communication mode? We can
borrow ideas from swarm intelligence-based optimization algorithms in general, and the
particle swarm optimization (PSO) algorithm in particular, since the case of swarm robotic
search can be mapped to the case of functions optimization with PSO. Later, this method is
named as the extended particle swarm optimization (EPSO) method (Pugh and Martinoli,
2007). The particle swarm optimization algorithm is a global, stochastic search one, being
derivative-free and population-based style (Schutte et al., 2004). As one of tools of systemic
modeling and cooperative control, it can be used to model swam robotic systems and control
robots cooperatively. Bio-inspiringly, this algorithm works in parallel in nature. Learning
from this, we can control swarm robotic search with special communication modes in similar
way. As for the parallel algorithms, they can be classified by granularity (Xu and Zeng, 2005).
Wang et al. (2007) present a parallel version of PSO based on parallel model with controller.
Its communication cycle affects speedup of the algorithm. Huang and Fan (2006) propose
parallel version of PSO by island population modeling. It partitions the group into several
sub-groups and places them on different processors to evolve, communicating timely in the
evolution procedures. Zhao et al. (2005) introduce an idea of migration into PSO, present a
parallel version based on multi-groups evolving simultaneously. All sub-groups are collected
to get the optima by comparison after several iterations. Then the particle having best
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fitness is transferred into all sub-groups as a migration. These mentioned algorithms are all
attributed to coarse-grained parallelism. To the contrary, the fine-grained parallel algorithms
are characteristic with majority advantages, i.e., maintaining diversity of groups, restraining
pre-mature and holding the highest degree of parallelism. Therefore, Schutte et al. (2004)
develop an approach to implement parallel PSO on multi-processors environment. Especially,
to overcome the communication bottle-neck due to massively increasing in size of fine-grained
PSO (Li et al., 2006), Chang et al. (2005) design three types of communication strategies
according to the degree of correlation between parameters. The above parallel versions of
PSO are all synchronous paradigms. However, Koh et al. (2006) point out that asynchronous
algorithm can increase efficiency in heterogeneous environment. Typically, the asynchronous
PSO version proposed by Luo and Zhong (2005) makes each particle acted as an independent
individual and search performed asynchronously. Aiming at the differences of heterogeneous
computing environments and the cost of fitness evaluate, Venter and Sobieszczanki-Sobieksi
(2006) introduce asynchronous pattern into PSO for speedup enhancement.

As mentioned above, swarm robots controlling inevitably involves parallel operation too
(Henrich and Honiger, 1997). No doubt the extended PSO approach has to take parallelism
into account in control algorithms designing. The individual robots distributing in search
space makes cooperation control algorithms parallel in nature. Besides, differences in
sampling frequency of sensors carried by robots and communication delays make it more
realistic to control swarm robots in an asynchronous fashion. How to move nature-inspired
algorithms to parallel, asynchronous and decentralized environment (Ridge et al., 2005)?
There has so far been fairly little research in this area. For this end, within the field of swarm
robotic systems, one area that has received more attention is target search, where a group
of robots work together to localize one or more targets. As a first step, a single target is
considered here. Searching can be done massively in parallel, significantly decreasing the
time-consuming to locate the targets and improving robustness against failure of single agents
by redundancy as well as individual simplicity. Then, the problem of parallel asynchronous
control swarm robots, i.e., swarm robotic search with different specific communication modes
is proposed. As for this chapter, the remainder is organized as follows. Section 2 maps
swarm robotic search to the particle swarm optimization algorithm. Then it models the
swarm robots with EPSO method and describes the control following swarm intelligence
principles. For taking the control mechanism effect, several definitions and assumptions
are given for problem simplification without misunderstanding. In Section 3, the problem
of communication modes in swarm robotic search is introduced. In order to describe
the corresponding strategies developed and taken in swarm robotic search taken place in
obstacle-free environment steadily, we set about this section from analyzing the properties of
different versions of PSO because of the mapping relationship between swarm robotic search
and PSO. Then the synchronous and asynchronous communication modes are discussed.
Also, the corresponding control algorithm descriptions with specific communication modes
are given here. Based on this, the authors explain the simulation settings, propose evaluate
metrics such as searching efficiency and energy consuming, show the results from simulations,
and discuss the implications through statistical evidence presentation in Section 4. Finally, we
conclude this chapter in Section 5 by summarizing our current work and accompanying the
future work.

2. Modeling and controlling

By extending PSO to model swarm robotic systems, Pugh and Martinoli (2007) firstly and
Zeng and Xue (2010) subsequently investigate the problem of target search in an ideal
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environment. In PSO-type swarm robotic search, modeling and control mechanism are
involved inevitably.

2.1 Mapping from swarm robotic search to PSO

Swarm intelligence is inspired from phenomena of individuals following simple rules only
but emerging intelligence through local interactions in biological communities. Generally
speaking, PSO is viewed as optimization tool, in which particles are guided by the best
positions having optimal fitness to get the solution of given functions. Here, each particle
has perfect knowledge about environment and its neighbor particles. While swarm robotic
search works depending on individual robots” experience and social experience, for robots
move according to their own behavioral decision making. The former comes from signals
measurement by robot itself, and the latter from local communications within robot’s
communication neighborhood. Consider the similarities and differences between the two
cases, we can map swarm robotic search to PSO, see Figure 1.

Swarm Robotic Mapping

Search

Relative

Localization

Local
Communication

Continuous

Control
Signals
Detection

Path Planning

PSO

Absolute
Localization
Global
Communictaion
Discrete Iteration
Fitness Evaluate

Update

Fig. 1. Mapping swarm robotic search to the particle swarm optimization algorithm. Note
that several one-to-one relationships of robot-to-particle, signals detection-to-fitness evaluate
and local communication-to-global communication are the most important.

The PSO algorithm makes information about environment or potential solution shared among
particles anywhere, as long as the particles are in the search space. Similarly, robots always
have strict limitations on their maximum communication range due to the limited power
consuming. In this case, we define robot’s neighborhood structure as all others within some
fixed geometrical distance from it. Since robots are constantly in motion, this means such
structure is dynamic and time varying (Xue and Zeng, 2008a).

2.2 EPSO-based modeling

Based on the above mapping relationship between swarm robotic search and PSO, EPSO
method can be taken to model the swarm robotic system (Pugh and Martinoli, 2007; Xue and
Zeng, 2008b). In order to understand such method well, let us examine the particle swarm
optimization algorithm at first. Particle swarm optimization is based on the sociological
behaviors associated with bird flocking and other animals” moving (Zeng et al., 2004). Each
particle is capacitated to fly over the space with changeable velocity. And a series of positions
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in which particles are situated are viewed as potential solutions of problem. Then, the best
position of particle itself and swarm respectively having the best fitness can be decided.
Farther, the behavior of particle can be adjusted according to its inertia, individual experience
(cognition) and social experience (learning). The velocity and position update equations of
standard PSO at time kt + 1 are executed as follows:

Vi1 = wpvi +orri(pk — xk) + cora (p§ — x4 (1)
X;cﬂ =X} + Vfc+1 ()

where xf{ is the position vector of particle i at time kt, and vf{ the corresponding vector of
velocity, subscript k the abbreviation of time increment kt. Note that the two vectors have
the same dimensional variables. While p;{ and p}% are the best-found positions of particle i
itself and the swarm before time k respectively. The coefficient matrix wy is diagonal matrix
whose diagonal elements are inertia coefficients with value range [0, 1] to slow down over
time to prevent explosions of the swarm and ensure ultimate convergence. Similarly, r1, 7, are
diagonal matrices whose diagonal elements are sampling of uniformly-distributed random
variable in [0, 1]. And ¢y, ¢, are diagonal matrices whose diagonal elements are cognition and
social acceleration constants, respectively.

Then we can extend the standard version of PSO for swarm robots and farther model the
swarm robotic system with the EPSO method, as is shown below:

Vi = WV + 1 (P — Xk) + cora (pf — x}) (3)
Viak = Vit (Vi — Vi)Ak (4)
X2+Ak =X} + Ak";&Ak )

where x;( 41 s the expected velocity vector of robot i at time k + 1. Ak is a factor to decrease
the step taken when robots move about in the search space. By the way, we add the Ak factor
in order to make individual robots moved “smoothly” , and therefore a more refined search
may be carried out. In addition, the parameter Ak is somehow different from the others, as it
is not related to the physical nature of the problem. However, we can also understand it in
this fashion: robot in real world has inertia due to its mass (Xue and Zeng, 2008b).

2.3 PSO-type controlling

As is shown in the above subsection, swarm robots can be modeled mathematically taking the
form of PSO-type iteration equations. Therefore, the cooperative control over swarm robots
can be carried out following swarm intelligence principles. Farther comparison of the two
cases can be made. First, both work on the base of fitness evaluate, or signals detection. While
the relative independency of individual robots demands fitness evaluate being complemented
in their on-board processors rather than in processing center. And the limitations on hardware
and power supply make it impossible that robots interact successfully beyond the maximum
communication range of robots. Apparently, the swarm that each robot dwells in differs from
others, since every robot selects itself and all other robots within some distance in the search
space as its evolving swarm.
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2.3.1 Time-varying character swarm

Each individual robot of the swarm system selects the close near neighbors as its temporary
swarm members only because those neighbors within its maximum communication range are
capable of interacting with it through communication. Accordingly, a concept of time-varying
character swarm (TVCS) for computational evolution is presented naturally, see Figure 2. Take
the position of robot i at time t as the center, the maximum communication range R of robot
i as radius for a circle neighborhood constructing. The set of those robots covered by this
neighborhood is named as TVCS of robot i at time instance. The size of TVCS depends on the
maximum communication range of robot i and the relative position relationship of robots at
time t. This implies the property of time-varying in character swarm of swarm robotic system,
since a robot may be close to few or many other robots at different time instance.
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Fig. 2. Individual robot’s time-varying character swarm constructing for swarm robots
control following swarm intelligence principles according to the involved robot’s maximum
communication radius, which means this robot can interact with others within its TVCS only.

2.3.2 Signals detection

In PSO-type algorithms, motion control of individual robot depends on both its cognitive
position and the best-found social position. While the two best-found experiential positions
come from position evaluate. Each individual robot of the swarm is assumed to be equipped
with one sensor to detect the intensity of signal emitted from potential target. This is
of theoretical significance only. In fact, there are multiple types of signals in searching
environment. To accomplish the search task, there is need to appropriately fuse the
real-time heterogeneous signals with fusion algorithms to determine the decision sensor
under different sensory conditions (Xue and Zeng, 2008c), following the working principle of
swarm intelligence-based method. However, we still simplify the detection process as making
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measurement with a single sensor, for exploring the key effects caused by communication
modes here. We simply this evaluate mechanism here by assuming each robot has a sensor to
detect the intensity of the target signal within its maximum detection radius. This intensity
I(d;) is determined with model below:

0, d; >r
I(d;) = d_Pz +7(), otherwise )
1

where P is the target signal power, d; the distance from robot R; to target, r the radius of sensor
detection and 7() a sampling of additive Gaussian noise.

2.3.3 Position evaluate and cognitive decision
As to individual robot R;, its cognitive position at time t is determined following the rule:

* x;(t), ifIxitZI ;kt—l
pi(t) = { p;-"((i?— 1), oth<erv<vi)se it ) @

where p}(t) is the cognitive position of robot R; at time £, x;(f) the current position, and I()
the simplified evaluate function of measurement readings of target signals.

2.3.4 Best-found position in TVCS
Based on the definitions of TVCS and signals evaluate, the best-found position in swarm
robots can be decided with the criterion:

pz‘i) (t) = py(t),arg, max{I(p;(t)), k € R;’s TVCS(t)} ®)
where pZ‘i) (t) be the best-found position within the TVCS of robot R; at time .

3. Communication modes

Now swarm robots can be controlled with EPSO-based method. But a problem should be
considered. In PSO-type control, target signals have to be detected in parallel for position
evaluate and such swarm system should be controlled in an asynchronous manner. Therefore,
we present asynchronous communication mode in case of target search. Specifically, each
robot independently detects signals emitted from target in a fine-grained parallel way and
compares intensity of signals with the best in its TVCS. Then velocities and positions of
individual robots are updated immediately. But the shared information within TVCS is
updated asynchronously. As comparison, a synchronous mode is also given in this section.
We set about this problem at the beginning of analysis on the characteristics of PSO. The
standard PSO algorithm has a key idea about velocity and position of particle (Eberhart
and Shi, 2001; Kennedy and Eberhart, 1995; Zeng et al., 2004), which is used to optimize
nonlinear functions at the beginning of development and is extended to more applications
gradually. The algorithm tries to find potential solutions of problem by imitating behaviors
of social creature, e.g., birds flying over space. Taking fitness of given function as evaluate
metrics, this algorithm adjusts the velocities and positions of particles representing solutions
of problem to obtain optimum eventually. PSO is based on possessing many desirable
properties that we would like to transfer to our PSO-type swarm robotic systems. One of them
is that PSO operates in parallel and asynchronously (Ridge et al., 2005), which is consistent
with the biological significance of swarm algorithm. Thus we proceed with the analysis on
characteristics of different versions of PSO.
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3.1 Synchronous v.s. asynchronous

To explore characteristic of different versions of PSO, we can start in accordance with
two issues, i.e., fitness evaluate in a serial or parallel way, synchronous or asynchronous
communication mode of sensing and reacting to environment as well as velocity- and
position-evolution. Therefore, we divide the different versions of PSO into four patterns.

3.1.1 Serial evaluate and synchronous update

Particle swarm optimization is traditionally considered to be implemented in serial and
synchronous on single-processor computing environment. The execution procedure can be
described with the following pseudo code (Koh et al., 2006), see Algorithm 1. It can be seen
that fitness evaluate of all particles is carried out one by one in optimization process through
cost function computation. And the best positions both of particle itself (cognitive) and in its
TVCS are determined by fitness comparison in the same way. Then the update of all velocities
as well as positions occurs simultaneously at each iteration.

Algorithm 1 PSO with characteristics of serial evaluate and synchronous update.

1: initialize algorithm constants
2: initialize all particle velocities, positions
3: For k = 1, number of iterations

For i = 1, number of particles
evaluate cost function

check convergence .
update py, Py, Vi1 X1
9: End
10: output results

4
5:
6: End
7
8

3.1.2 Serial evaluate and asynchronous update

Immediately updates on velocity, position of certain particle as well as its history cognition
and the best of swarm are carried out as soon as completing evaluate on the cost function
of this particle. The procedure can be elaborated with the following pseudo code (Koh et al.,
2006), see Algorithm 2. It is clear that the evaluate and update process on different particles
are not completed at the same time.

Algorithm 2 PSO with characteristics of serial evaluate and asynchronous update.

1: initialize algorithm constants
2: initialize all particle velocities, positions
3: For k = 1, number of iterations;

4: For i = 1, number of particles
5: evaluate cost function

6: check convergence

7: update p;'(, pi, v;;Jrl,x;‘(Jrl
8: End

9: End

10: output results
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3.1.3 Parallel evaluate and synchronous update

The most obvious PSO parallel implementation is to simplify fitness evaluate for particles
at iteration in parallel, without changing the overall logic of the algorithm itself (Venter and
Sobieszczanki-Sobieksi, 2006). And the property of synchronous refers to all particles being
sent to parallel computing environment and moving from the current iteration to the next
only if the fitness of all particles has been gotten (Schutte et al., 2004). To demonstrate the
internal relationship of logic better, we illustrate with flow chart rather than pseudo code, as
showed in Figure 3 (Koh et al., 2006). In this case, the existence of load imbalance in computing
environment may significantly affect parallel performance. These factors are shown below:

initialization
Y
v A A4
No.1 particle No.2 particle No.n particle
fitness fitness fitness
evaluate evaluate evaluate

4
convergence
check

iteration

A\
velocity, position
update

Y

Fig. 3. Visual sketch for a version of PSO having characteristics of parallel evaluate on fitness
and synchronous update for velocity and position.

* a heterogeneous distributed computing environment where processors with varying
computational speed are combined into a parallel computing environment;

* time spent in fitness evaluate, i.e., using a numerical simulation to evaluate each particle,
where the required simulation time depends on the particle being analyzed;

¢ the number of particles cannot be equally distributed among the processors in the
computing environment, i.e., having a swarm size that is not an integer multiple of the
number of processors (Koh et al., 2006).

3.1.4 Parallel evaluate and asynchronous update

Parallel implementations being asynchronous in PSO can make the algorithmic computation
efficiency enhanced (Venter and Sobieszczanki-Sobieksi, 2006). The asynchronous approach
does not need a synchronous point to determine new velocities and positions, as showed in
Figure 4 (Koh et al., 2006). The optimization can proceed to the next iteration without waiting
for the completion of all functions evaluate from the current iteration.
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Fig. 4. Visual sketch for a version of PSO having characteristics of parallel evaluate on fitness
and asynchronous update for velocity and position.

As stated above, different versions of PSO have different algorithmic properties when
implementation. But the most desirable properties that we would like to transfer to our swarm
robotic system may be controlled in parallel and asynchronously (Ridge et al., 2005). Indeed, as
one of nature-inspired algorithms, parallel and asynchronous version of PSO makes algorithm
more efficient in execution.

3.2 Communication modes taken in swarm robotic search

Now, let us examine the case of swarm robotic search in a closed obstacle-free environment.
According to the analysis above, controlling over robots should be done in a fine-grained
way, as individual robots detect target signals independently at the same time to determine
the best-found position by signals intensity comparison with their respective TVCS neighbors
(Xue and Zeng, 2008b). Due to heterogeneous hardware caused by parameter distribution of
sensors, difference of detection and evaluate time required among different positions because
of signals diffusing, part of swarm robots completing signals detection early have to wait for
synchronous update. The reason is that the update depends on the slowest robot (Schutte
et al., 2004). By this means, velocities and positions of all robots are updated at the same time
after evaluate fully completing.

Here, asynchronous communication mode refers to that each robot compares at once with the
optimal value of the swarm after iterating in the iteration process, if their detective signals
are discovered stronger, updates immediately the optimal value of the swarm, thereby, other
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robots can share the experience timely, without having to wait until given some synchronous
moment, then realizes the non-synchronization of the robots in the search process.

3.2.1 Communication trigger

Clearly, the key to asynchronous implementation of control algorithm is to partition the
individual from the group update behavior to take the different property into account. These
update behaviors include updating the individual robot and the shared information within the
swarm histories. Similarly, as for the asynchronous particle swarm optimization, the update
action starts after fitness evaluate, while the update on swarm starts in the last at each iteration
(Venter and Sobieszczanki-Sobieksi, 2006). For the target search with swarm robots, detection
of target signals depends only on their respective on-board processors rather than processing
center. In other words, such center does not exist in swarm robotic system. The processors
work independently and in parallel between one another. The individual robot updates its
velocity, position and history as soon as it completes target signals measurement and makes
decision on the best-found by comparison with the best of its TVCS (Zhao et al., 2005). But the
update on the shared information should start in accordance with some special asynchronous
control strategy. In fact, this is the decision on communication triggers. Differing from the
ideal particles in PSO, robot possesses mass in real world that causes it to have inertia when
moves about in the search environment. Therefore, as for same an evolution position of certain
particle, it is unlimited to reach at any speed in PSO case, while robot may arrive at the same
position in several sampling times due to constraint of kinematics and dynamics because the
evolution position is only expected (Pugh and Martinoli, 2007). These factors should be taken
consideration when we design the asynchronous interaction strategies. Based on this, some
update strategies have been developed. One is communication cycle-based control principle.
Here, communication cycle is named as evolution iterations. Similar to the coarse-grained
parallel particle swarm optimization, we can make robot R; communicate every # iterations to
decide the best-found position within robot R;’s TVCS (Huang and Fan, 2006; Wang et al., 2007;
Zhao et al., 2005). To improve systematic efficiency, a communication cycle can be assigned
to several fixed times of sampling periods (Xue et al., 2009). Besides, different robots can be
allowed to have different sampling frequencies. On the other hand, the best-found fitness
value and position of TVCS should be remembered in memory before the next iteration starts.
Another update strategy is evolution position-based control principle (Xue and Zeng, 2009).
According to this control principle, update of the shared information does not been carried
out in the current iteration before the previous evolution position has not been reached. That
is to say, robots communicate when they arrive at the decisive expected or desired evolution
positions regardless of the iteration history and the next iteration required. No communication
between two consecutive ideal evolution positions makes robot moving continuously, saving
power and decreasing communication time-consuming.

3.2.2 Synchronous case in swarm robotic search

The difference between synchronous and asynchronous control lines in their update types and
opportunities (Zhao et al., 2005). As for the synchronous mode, update time points depend
on the last particle completing fitness evaluate at each step. Thus the communication triggers
do not need to consider in synchronous mode. As comparison, refers to the updates of all the
robots being synchronous at same iterative procedure, they are aiming at the optimal value in
the current iteration step, after all the updates are completed, all the robots proceed towards
the goal synchronously, and accomplish the search task with common integral cognitive level.
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3.3 Algorithm description

The corresponding algorithms with different communication modes can be listed in the
following. Of them, the synchronous communication version is taken according to the
characteristics of processing moments on signals detection, search completion judging as
well as velocity and position updating, see Algorithm 3. Different from the synchronous
communication mode, the moment that robot updates shared information of TVCS is more
flexible in asynchronous communication mode. The details of corresponding algorithm can
be found in Algorithm 4.

Algorithm 3 Controlling robot R; involved in swarm robotic search with synchronous
communication mode. For convenience, the default variables are for R; unless those are
marked explicitly for TVCS.

1: initialize

2 j<1

3 velocity V(t = 0), position X(t = 0)

4: target signals measurement I(t = 0)

5: Ipest <= I(t = 0), Xpess <= X(t =0)

6: Ipest < I(t = 0), Xpest < X(t = 0) for TVCS
7: while target is not found out

8 fori = 1;i <= popsize;i+ +

9 calculate expected and real velocities

10: calculate position

11: end

12: target signals measurement
13: update Ij.q; and X,

14: update Ij.q; and Xp,q; of TVCS
15: calculate velocity

16: move ahead one step

17: jj+1

18: end

4. Simulations

The two control algorithms are performed and repeated for 10 runs respectively, for both
are characteristic of random search in nature and the comparison can be made with statistics
gotten from enough simulations.

4.1 Parameter settings

The parameters about working environment, individual robot and swarm robots affect the
results directly. Thus the important parameters and their common configurations used in
simulations are given in Table 1. The farther information of the symbols can be found in the
third column of this table.

4.2 Performance metrics

In order to comparatively evaluate the running performance of control algorithms with
different communication modes, some quantitative metrics need to be designed in advance.
Here, two performance figures are considered and presented. Both are based on the definition
of search success. We can define such term as the best position of swarm closes to target
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Algorithm 4 Controlling robot R; involved in swarm robotic search with asynchronous
communication mode. Note that symbols share the same meanings as in Algorithm 3.

1: initialize
2: set counter j < 1

3: velocity V(¢ = 0), position X(t = 0)
4: target signals measurement I(t = 0)
5: Ipest <= I(t = 0), Xpest = X(t =0)
6: Ipest < I(t = 0), Xpest < X(t = 0) for TVCS
7: calculate number of neighbors neighbor_number in TVCS
8: while target is not found out
9: fori = 1,1 <= neighbor_number;i 4+ +
10: target signals measurement
11: if best-found is gotten
12: update Ijeq; and Xy,
13: end
14: calculate expected Vexpec and real velocity Vi,
15: calculate X
16: end
17: target signals measurement
18: update Iy and X,
19: update Ij.s; and Xj,q; for TVCS
20: calculate velocity
21: move ahead one step
22: j—j+1
23: end

Symbol |Value Meaning

Space 500 x 500|size of searching environment

Start Area|160 x 160|start area for robots at the beginning of simulations
popsize |3,5,8,10 |number of individual robots in swarm robotic system

Retec 250,125 |maximum detection radius of sensors

Reomm 250 maximum communication radius of robot
Vinax 5 maximum moving velocity of robot

p 1600 signals power emitted from target

T 70 constant of inertia element

At 0.8 contracted factor for a moving step of robots

Table 1. Parameter settings taken in simulations. Note that those parameters expressed in
certain dimensions are assigned a corresponding proper one respectively.

enough so as that at least one robot can identify the target with some sensory ability (Kowadlo
et al., 2006). It means that if one or more robots approach and reach the area where target
locates, the run is considered successful.

4.2.1 Search efficiency

Search efficiency is defined as reciprocal of mean steps required for one successful search. In
fact, it concerns search speed by counting time steps for completion of a successful search,
which indicates the elapsed time in a single simulation run indirectly. Because the sampling
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cycle in simulations has been determined in advance, a simple relation between time step and
spent time can be established. The value equals to the reciprocal of average steps taken by all
individual robots in a successful search. Clearly, the more the average time steps, the lower
the search efficiency, and vice versa.

4.2.2 Energy consuming

The metric is distance principle-based one. It is expressed in form of the sum of passed
distance of all the individual robots when the swarm robotic search task is completed. Since
the energy consumption of robot is fixed per distance unit, the average energy consumption
of individual robots can measure aspect of algorithm performance in economical efficiency.
Compared with energy consuming, search efficiency seems more important in swarm robotic
search control evaluate because we concern about higher algorithmic speed.

4.3 Results

Simulations with different setting configurations are conducted and repeated for 10 runs
respectively, for reducing the effect caused by the inherent randomness from the swarm
intelligence-based control algorithms. Then the results are shown in some figures and tables.
Of them, the running screenshots of swarm robotic system with different sizes when simulated
programs terminate at first, see Figure 5 for details. We can find that the robots start searching
from the lower left corner of the working space at the beginning of each simulation, being
limited to a area of 160 x 160. While the target position is initialized at the same time, being
limited to the upper right corner of the searching environment. As for the statistics from
simulations, they are shown in Table 2 - 5, and Figure 6 - 9.

comm. mode |3-rob swarm |5-rob swarm |8-rob swarm|10-rob swarm
synchronous 98.2 94.3 93.9 93.2
mode +6.11 +13.23 +3.81 +7.16
asynchronous 95.4 91.6 93.2 92.3
mode +5.48 +5.83 +7.35 +6.10

Table 2. Average control time steps spent in completion of target search under conditions of
Retec = 250, Reomm = 250.

comm. mode |3-rob swarm|5-rob swarm |8-rob swarm|10-rob swarm
synchronous 1165.3 1863.1 2965.3 3665.9
mode +74.52 +259.72 +119.51 +254.90
asynchronous 979.9 1681.2 2603.9 3315.4
mode +86.76 +144.11 4220.70 +186.62

Table 3. Average total distance spent by all robots for target search success under conditions
Of Rd@t@c == 250, Rcomm = 250.

4.4 Discussions
We can comparatively analyze and discuss the indications surrounding simulation results,
trying to reveal effects of different communication modes on swarm robotic search.

* As for the same task and same parameter setting configurations, time steps decrease as
swarm size increases regardless of which communication mode taken in control algorithm.
It indicates that search efficiency enhances as swarm size expands.
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Fig. 5. Screenshots of swarm robotic search in cases of different size swarms. Note that at

least one robot closes to the target enough when search succeeds.

comm. mode |3-rob swarm |5-rob swarm |8-rob swarm|10-rob swarm
synchronous 91.3 97.1 97.9 89.8
mode +3.36 +10.15 +4.91 +6.55
asynchronous 97.8 93.1 90.5 89.1
mode +7.40 +7.43 +3.96 +4.88

Table 4. Average control time steps spent in completion of target search under conditions of
Retec = 125, Reomm = 250.

comm. mode |3-rob swarm |5-rob swarm |8-rob swarm|10-rob swarm
synchronous 1081.0 1917.8 3117.9 3546.5
mode +40.95 +207.36 +154.86 +269.06
asynchronous| 1017.6 1786.8 2628.1 3139.2
mode +82.28 +146.27 +244.16 +274.70

Table 5. Average total distance spent by all robots for target search success under conditions
Of RdEtEC — 125, chmm - 250.
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Fig. 6. Average time steps required to complete target search for 10 runs under conditions of
Retec = 250, Reomm = 250. Note that search efficiency is inversely proportional to time steps.
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Fig. 7. Average total distance passed by all robots for 10 runs search success under conditions
Of RdEtEC - 250, Rcomm - 250.

* As for the same parameter setting configurations, average total distance required for a
success search varies in the same direction as swarm size increases regardless of which
communication mode taken in control algorithm. It indicates that energy consuming
largens as swarm size scales expansion. We can think that swarm robots carry out task
of target search at compromise of time consuming and energy consuming.

* Swarm robotic search with asynchronous communication mode runs more efficiently than
with synchronous communication mode, which seems to indicate that information and
experience of certain dominant individual can be shared timely among its society for others
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Fig. 8. Average time steps required to complete target search for 10 runs under conditions of
Retec = 125, Reomm = 250.
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Fig. 9. Average total distance passed by all robots for 10 runs search success under conditions
Of Rdetec = 125, Rcomm = 250.

behavior decision making. The result seems that robots can adjust its own motion velocity
and position and finally fasten the search process by learning from the optimal neighbors
at different time steps.

¢ Asto different parameter setting configurations, such as detection radius is set R jooc = 250
and Ry = 125 respectively but the communication radius remains the same, search
efficiencies and energy consuming do not vary obviously. The reason maybe that at the
beginning of simulations, robots are far from the potential target so as not to be capable of
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detecting target signals either for case of R j,.c = 250 or for R, = 125. Therefore, robots
only move randomly without help of the social experience sharing.

5. Conclusions

By extending the particle swarm optimization algorithm, we model swarm robotic system
and control it in PSO-type way for carrying out target search task. Because of the relationship
between swarm robotic search and PSO, some ideal characteristics of PSO can be transferred
to case of swarm robotic search. Inspired from asynchronous versions of PSO, we develop
control strategy with asynchronous communication mode for search efficiency enhancement.
To reveal the effect, we compare the algorithm with synchronous communication mode. From
the statistics of simulation, a conclusion can be drawn that asynchronous communication
mode is more efficient than synchronous mode under conditions of the same parameter
settings in search efficiency. In our future work, we will explore the effect how to vary as
controlled object and task change.
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