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Institute of Automation and Robotics, Warsaw University of Technology

Industrial Research Institute for Automation and Measurements
Poland

1. Introduction

RISE − Risky Intervention and Surveillance Environment is very demanding task for mobile

robot where time is crucial. It can be assumed that on-line task execution is very important,

therefore the research in parallel computing applied in mobile robotics is needed. Nowadays

many researchers are focused on such approaches that uses GPGPU (General Purpose

Graphics Processing Unit) for improvement State of The Art (SoA) algorithms. In this chapter

three areas of research are shown such as 3D data registration, robot navigation and 3D

cloud of points processing for normal vector computation, all are improved by GPGPU

computation. The on − line data registration problem is discussed. The approach based

on robust KNN k-nearest neighborhood search applied for improvement of ICP algorithm is

shown. The path planning parallel approach based on modified diffusion method is shown.

On − line 3D cloud of points’ segmentation based on normal vector computation is presented.

The set of proposed algorithms where tested on GPGPU NVIDIA CUDA GF 580, the results

are satisfying. The improvement of SoA algorithms based on CUDA implementation shows

on-line advantages during real task execution.

Robust ICP algorithm is needed in mobile robotics applications where data registration has to

be performed on−line. New generation of Time of Flight and RGB-D cameras will offer better

accuracy and resolution, therefore GPU accelerated data registration algorithms will improve

robot navigation, obstacle avoidance and map building. It can be stated that commercial 3D

scanners based on rotated lasers offer data acquisition time < 3 seconds, therefore ICP that

works in this time will be enough for on-line map building in stop-scan fashion. For this

reason robust data registration algorithm based on 3D space decomposition is proposed and

the ICP (Iterative Closest Point) approach is chosen as registration method. Algorithm in

current version performs matching of two cloud of points up to 512 × 512 = 262144 in 300ms

for 30 ICP iterations (NVIDIA GF 580). The proposed solution is efficient since it performs

nearest neighbor search using a bucket data structure (sorted using CUDA primitive) and

computes the correlation matrix using parallel CUDA all-prefix-sum instruction. The amount

of processed points can be increased by implementation on NVIDIA GPU with Compute

Capability 2.1.
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Robot navigation is very important task that can be improved using parallel computation

since robot environment is represented by grid of cells. This report focuses on graphics

processing units (GPUs) in particular applied for modified diffusion method. The experiments

performed with 512 × 512 pixels grid maps show an advantage of GPU that results on−line

path planning in static environment that can be expanded by dynamic obstacles.

Fast data segmentation technique based on local neighborhood search is implemented. The

result of segmentation is colored map where different colors correspond to different objects

such as {wall, floor...}. The research is related to the problem of collecting 3D data with

DGB-D camera mounted on rotated head and 3D laser scanner, to be used in mobile robot

applications. Assumed performance of data registration algorithm is achieved, therefore it

can used as on−line. Robust nearest neighbor search procedure is obtaining normal vectors

for each range point. Normal vectors are represented as r,g,b values, therefore similar colors

correspond to one plane.

The experiments where performed using different type of 3D sensors including PMD Photonic

Mixer Devices camera, X-BOX 360 Kinect sensor and rotated LMS SICK 200 (3DLSN Unit).

Results are satisfying and it is planned to continue research and expand into another areas

from mobile robotics such as 6D SLAM and semantic mapping.

The paper is organized as follows: in Related work the State of The Art concerning parallel

computing applied in mobile robotics is described. In section 3D data registration the ICP

Iterative Closest Point algorithm improved by parallel KNN (k-nearest neighborhood search)

approach is shown. Section Path planning is demonstrating parallel approach for robot

navigation purpose. In Cloud o f points processing section the implementation of parallel

normal vector computation for 3D cloud of points segmentation is described. In Experiments

the results are shown. Conclusion and f uture work finalize the paper.

2. Related work

Several researches of 3D mapping are based on the simulation of 3D laser range finder to

obtain 3D cloud of points Magnusson et al. (2007). In most cases 3D laser simulator is built on

the basis of a rotated 2D range finder. The rotation axis can be horizontal Nüchter et al. (2003),

vertical Montemerlo & Thrun (2004) or the rotational axis in the middle of the scanner’s field

of view Kohlhepp et al. (2004). Another approach of obtaining 3D cloud of points using 2

orthogonal lasers is shown in the work of Thrun Thrun et al. (2000). The applications are

related with urban mapping Ortega et al. (2009).

Alignment and merging of two 3D scans, which are obtained from different sensor

coordinates, with respect to a reference coordinate system is called 3D registration Huber

& Hebert (2003) Fitzgibbon (2001) Magnusson & Duckett (2005). Park Park et al.

(2010) proposed a real-time approach for 3D registration using GPU, where the registration

technique is based on the Iterative Projection Point (IPP) algorithm. IPP technique is a

combination of point-to-plane and point-to-projection registration schemes Park & Subbarao

(2003). Processing time for this approach is about 60ms for aligning 2 3D data sets of 76800

points during 30 iterations of the IPP algorithm. Fast searching algorithms such as the k-d tree

algorithm are usually used to improve the performance of the closest point search Nuchter,

Lingemann & Hertzberg (2007) Rusinkiewicz & Levoy (2001). GPU accelerated nearest

neighbor search for 3D registration is proposed in work of Qiu Qiu et al. (2009), where

the advantage of Arya’s priority search algorithm described in Arya & Mount (1993) to fit
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NNS in the SIMD (Single Instruction Multiple Data) model was used for GPU acceleration

purpose. Purcell suggested that k-d tree and priority queue methods are efficient but difficult

to be implemented on GPU Purcell et al. (2003). Garcia proves, that a brute force NNS

approach using NVidia Compute Unified Device Architecture (CUDA) is 400 times faster

over the CPU k-d tree implementation Garcia et al. (2008). GPU-based NNS with advanced

search structures is also used in the context of ray tracing Foley & Sugerman (2005), where

NNS procedure builds trees with a different manner from a triangle soup, and takes these

triangles as the objects of interest. To convert k-d tree into serialized flat array that can be

easily loaded into CUDA device, left-balanced k-d tree was proposed Jensen (2001) Qiu et al.

(2009). Another technique for 3D registration using Fast Point Feature Histograms (FPFH) is

shown in the work of Rusu Rusu et al. (2009). Rusu also proposed a way of characterizing

the local geometry of 3D points, using persistent feature histograms, where the relationships

between the neighbors of a point are analyzed and the resulted values are stored in a 16-bin

histogram Rusu et al. (2008). The histograms are pose and point cloud density invariant

and cope well with noisy datasets. An alternative concept to ICP algorithm which relies on

instantaneous kinematics and on the geometry of the squared distance function of a surface

is shown in the work of Pottmann Pottmann et al. (2002). The proposed algorithm exhibits

faster convergence than ICP, which is supported both by results of a local convergence analysis

and by experiments. The ICP algorithm is used in SLAM 6D (Simultaneous Localization and

Mapping), where 6 DOF (Degree of freedom) of robot position is computed based on aliment

of 3D clouds of points and loop-closing technique Sprickerhof et al. (2009).

3. 3D data registration

Classic Iterative Closest Points algorithm ICP was improved using GPGPU computation to

obtain on-line execution. The implementation performs nearest neighbor search using a

bucket data structure (sorted using CUDA primitive) and computes the correlation matrix

using parallel CUDA all-prefix-sum instruction.

3.1 GPU architecture

NVIDIA GPGPUs are programmable multi core chips built around an array of processors

working in parallel. The GPU is composed of an array of streaming multiprocessors (SM),

where each of them can launch up to 1024 co-resident concurrent threads. Currently available

graphics units are in the range from 1 SM up to 30 SMs for the high end products. Each

single SM contains 8 scalar processors (SP) each with 1024 32-bit registers. The total of

64KB of register space is available for each SM. Each SM is also equipped with a 16KB

on-chip memory that is characterized by low access latency and high bandwidth. Thread

management (creation, scheduling, synchronization) is performed in hardware and the

overhead is extremely low. SM works in SIMT scheme (Single Instruction, Multiple Thread),

where threads are executed in groups of 32 called warps. CUDA programming model defines

the host and the device. Host executes CPU sequential procedures while the device executes

parallel GPU programs - kernels. A kernel works in a SPMD scheme (Single Program,

Multiple Data). CUDA gives an advantage of using massively parallel computation for several

applications. Detailed GPU architecture can be found in the original documentation NVIDIA

CUDA C Programming Guide 3.2 (2010). Useful additional programming issues are published

in best practices guide CUDA (2010b).
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3.2 Improved classic Iterative Closest Point

In this subsection classic Iterative Closest Point algorithm proposed by Besl & McKay

(1992) and implementation proposed by Nüchter, Lingemann, Hertzberg & Surmann (2007)

improved by GPGPU computing is described. Aligning two-view range images with respect

to the reference coordinate system is performed by the ICP (Iterative Closest Points) algorithm.

Range images are defined as a model set M and data set D, Nm and Nd denotes the number

of the elements in the respective set. The alignment of these two data sets is solved by

minimization with respect to R,t of the following cost function:

E (R, t) =
Nm

∑
i=1

Nd

∑
j=1

wij

∥∥∥mi −
(

Rdj + t
)∥∥∥

2
(1)

wij is assigned 1 if the i-th point of M correspond to the j-th point in D in the

same bucket (or neighbor bucket). Otherwise wij=0. R is a rotation matrix, t is

a translation matrix. mi and di corresponds to the i-th point from model set M

and D respectively. The ICP algorithm using CUDA parallel programming is given:

Algorithm 1 ICP - parallel computing approach

allocate the memory
copy data from the host(Mhost, Dhost) to the device(Mdevice, Ddevice)
for iter = 0 to max_iterations do

select closest points between Mdevice and Ddevice

calculate (R, t) that minimizes equation 1
transform Ddevice by (R, t) and put the results into DdeviceRt

copy DdeviceRt to Ddevice

end for
copy Ddevice to Dhost

free memory

3.2.1 Calculation of (R,t)

Calculation of the rotation and translation (R,t) is performed using reduced equation

1:

E (R, t) ∝
1

N

N

∑
i=1

‖mi − (Rdi + t)‖2 (2)

where

N =
Nm

∑
i=1

Nd

∑
j=1

wij (3)

Rotation R is decoupled from computation of translation t using the centroids cm and cd of

points:

cm =
1

N

N

∑
i=1

mi (4)
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cd =
1

N

N

∑
i=1

di (5)

and modified data sets:

M′ =
{

mi
′ = mi − cm

}
1,...,N (6)

D′ =
{

di
′ = di − cd

}
1,...,N (7)

After applying equations 4, 5, 6 and 7 to the mean square error function E(R, t), the equation

2 takes the following form:

E (R, t) ∝
1

N

N

∑
i=1

∥∥mi
′ − Rdi

′ − (t − cm + Rcd)
∥∥2

(8)

Assuming that:

t − cm + Rcd = t̃ (9)

equation 8 takes following form:

E (R, t) ∝ 1
N ∑

N
i=1 ‖mi

′ − Rdi
′‖

2 −

2
N t̃ · ∑

N
i=1 (mi

′ − Rdi
′) + 1

N ∑
N
i=1

∥∥t̃
∥∥2

(10)

To minimize 10 the algorithm has to minimize the following term:

N

∑
i=1

∥∥mi
′ − Rdi

′
∥∥2

(11)

with the assumption:

t̃ = 0 (12)

The optimal rotation is calculated by R= VUT , where matrices V and U are derived from the

Singular Value Decomposition (SVD) described in section 3.2.8 of a correlation matrix C =

USVT given by:

C =
N

∑
i=1

mi
′Tdi

′ =

⎡
⎣

cxx cxy cxz

cyx cyy cyz

czx czy czz

⎤
⎦ (13)

where:

cxx =
N

∑
i=1

mix
′dix

′, cxy =
N

∑
i=1

mix
′diy

′, ..., czz =
N

∑
i=1

miz
′diz

′ (14)

Correlation matrix elements are computed using optimized parallel reduction described in

section 3.2.7. The optimal translation t is derived from equation 12 and 9, therefore

t = cm − Rcd (15)
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3.2.2 Memory allocation on device and copy from host

Figure 1 and algorithm 2 shows main data used in presented approach. The

table_o f _ f ound_buckets, table_o f _sorted_buckets, table_o f _sorted_points consist of 512 × 512

integer elements, table_o f _amount_o f _points_in_bucket and table_o f _bucket_indexes consist

of 256 × 256 × 256 integer elements. M (reference data) and D (data to be align) data sets

are stored in six 512 × 512 tables consisting float values stored in one dimensional array. For

sorting the table of buckets routine described in section 3.2.4 and used in algorithm 2 the

CUDA Radix Sort class available in CUDA (2010a) briefly described in Satish et al. (2008) and

Satish et al. (2009) is used. The method initialize() called by the constructor of Radix Sort Class

allocates temporary storage for the sort and the prefix sum that it uses. Temporary storage is

(2*NUMBER_OF_POINTS + 3*8*M/CTA_SIZE) unsigned ints, with a default CTA_SIZE of

256 threads and NUMBER_OF_POINTS = 512 × 512. Amount of data is large, therefore the

procedure of memory allocation is done initially.

Fig. 1. Initial steps: selection of closest points procedure - example related to figure 4.

3.2.3 Selection of closest points

The distance between two points in Euclidean distance metric for point p1 = {x1, y1, z1} and

p2 = {x2, y2, z2} is:

distance(p1, p2) =
[
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
] 1

2
(16)

To find pairs of closest points between model set M and data set D, the decomposition

of XYZ space, where x,y,z ∈ < −1, 1 >, into 28x28x28 buckets is proposed. The idea of

the decomposition will be discussed for 22x22x22 case. Figure 2 shows decision tree that

decomposes XYZ space into 64 buckets. Each node of the decision tree includes boundary

decision, therefore points are categorized into left or right branch. Nodes that do not have

branches assign buckets. Each bucket has unique index and is related to cubic subspace with

length,width,height = 2/22,2/22,2/22. Each bucket that does not belong to border has 26

neighbors. The 27 neighboring cubic subspaces are shown in figure 3 where also the way of
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indexing is given. Figure 4 demonstrates the idea of nearest neighbor (NN) search technique

on 2 dimensional example. Assuming that we are looking for nearest neighbor that satisfies

condition R < 2/28 and circleR=2/28 ⊂ bucket3R NN will be found in the same bucket or

in neighboring bucket (in this example NN of point d is m5). Algorithm 2 describes the

procedure of selection of closest points. For better explanation figure 1 shows initial steps of

this algorithm where set M of 10 points from figure 4 is used for NN search. The details of the

algorithm will be discussed in next subsections.

Fig. 2. Tree structure used for XYZ space decomposition into 64 buckets. From root to the
leaf/bucket chosen left or right brunch depends on the current separation line.

Fig. 3. Cubic subspaces - neighboring buckets, the way of indexing is explained in section
3.2.6.

3.2.4 Sort buckets

Radix sort class CUDA (2010a) is used to sort unsigned integer key-value pairs. Keys

correspond to the elements of table of buckets and value corresponds to elements from table

of points. Procedure outputs sorted table of buckets. Figure 1 shows an example of sorting

171Parallel Computing in Mobile Robotics for RISE
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Fig. 4. 2 dimensional example of NN search in neighboring buckets.

Algorithm 2 Selection of closest points

for all points mxyz in parallel do
find bucketm

update table_o f _ f ound_buckets
end for
in parallel sort table_o f _ f ound_buckets {radix sort}
in parallel count points in each bucket
for all points dxyz in parallel do

find bucketd

for all neighbors of bucketd do
find NN for dxyz {nearest neighbor is one from mxyz}

end for
end for

result. Radix sort is a well known sorting algorithm, very efficient on sequential machines for

sorting small keys. It assumes that the keys are d-digit numbers and sorts on one digit of the

keys at a time, starting from least and finishing on most significant. The complexity of sorting

n keys will be O(n). The details of GPU based radix sort implementation can be found in

Satish et al. (2008) Satish et al. (2009). The implementation of GPU based radix sort is robust,

therefore it can be used for on-line computation.

3.2.5 Count points in bucket and find index of bucket

In the procedure of counting points that belong to the same bucket the counting is based on

table_o f _sorted_buckets (see figure 1). It is important to notice, that also the index of the found

bucket is computed. This index, along with the information concerning an amount of points

in the bucket, will be used for searching nearest neighbor in algorithm 2.

3.2.6 Find bucket

Figure 2 shows tree structure used for indexing of 22x22x22 buckets. The concept of finding

bucket index for point mxyz is shown on the scheme 5, where x corresponds to border for

current level in the tree and 0, 1, 2, 3, ... 14, ... correspond to actual bucket index during

its computation. The bucket indexing procedure is executed in parallel, where each CUDA

kernel computes bucket index for different pointxyz.
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Fig. 5. The scheme of bucket indexing procedure.

3.2.7 Correlation matrix elements computation using optimized parallel reduction

For correlation matrix (equation 13) parallel prefix sum Harris et al. (2007) available in

CUDA (2010a) is used. The all-prefix-sums operations take a binary associate operator ⊕
with identity I, and an array of n elements

[a0, a1, ..., an−1] (17)

and returns the array

[I, a0, (a0 ⊕ a1) , ..., (a0 ⊕ a1 ⊕ ... ⊕ an−2)] (18)

All-prefix-sums operations on array of data is commonly known as scan. The parallel

implementation uses multiple thread blocks for processing an array of 512 × 512 data points

stored in one dimensional array. The strategy is to keep all multiprocessors on the GPU busy

to increase the performance. An assumption is that each thread block reduces a portion of

the array. To avoid problem of global synchronization the computation is decomposed into

multi kernel invocations. Optimized kernel available in CUDA (2010a) is used in parallel

computation.

3.2.8 Singular Value Decomposition (SVD)

The equation for singular value decomposition of A 3 × 3 matrix is the following:

A = UΣVT (19)

where U is an 3 × 3 matrix, Σ is an 3 × 3 diagonal matrix, and VT is also an 3 × 3 matrix. The

columns of U are called the left singular vectors, { uk }, and form an orthonormal basis. The

rows of VT contain the elements of the right singular vectors, { vk }. The elements of Σ are

only nonzero on the diagonal, and are called the singular values. Thus, Σ = diag(σ1, ..., σn).

Furthermore, σk > 0 for 1 ≤ k ≤ r, and σi = 0 for (r+1) ≤ k ≤ n. The ordering of the singular

vectors is determined by high-to-low sorting of singular values, with the highest singular

value in the upper left index of the Σ matrix. In this particular application we need to compute

the SVD of a 3x3 matrix. For such a small matrix, generalized SVD algorithms from libraries

like LAPACK (Linear Algebra PACKage) LAPACK (2011) are not beneficial especially when

we have to implement it on GPGPU. Our implementation computes the singular values by

solving for the roots of a cubic polynomial and then eigenvectors of AT A for V, then it uses A

and V to compute U. The algorithm is executed in 5 steps.

1. Compute AT and AT A.

2. Determine the eigenvalues of AT A (by solving for the roots of a cubic polynomial) and sort

these in descending order. Compute square roots to obtain singular values of A.
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3. Construct diagonal matrix Σ by placing singular values in descending order along its

diagonal. Compute Σ−1.

4. Use the ordered eigenvalues from step 2 and compute the eigenvectors of AT A. Place these

eigenvectors along the columns of V and compute VT .

5. Compute U = AVΣ−1

4. Path planning

Motion planning is very important task for mobile robot working in unknown environment.

Assuming that we have grid map describing robot environment, a trajectory of the robot can

be computed using the modification of diffusion method described in Siemiatkowska (2008)

improved by GPU computation. GPGPU implementation is using two 2 dimensional grids

of 512x512 cells. One grid is used for initiation, where each cell can be free, occupied by

the obstacle, occupied by a robot or occupied by a goal. Second grid is used for diffusion

computation. The idea of usage GPU is to perform computation for each cell in parallel till

diffusion reach robot position. To obtain robot trajectory we start from robot position and

iteratively by finding local maximum in neighboring cells we are approaching the goal.

5. Cloud of points processing

Main idea is to decompose 3 dimensional space into grid of buckets. For each bucket local

approximation plane is computed (if more than 3 points belong to bucket) and for each point

in bucket normal vector is assigned. The advantage of proposed method is satisfactory result

obtained with noisy data set. The procedure of normal vectors computation for registered

range images is given in algorithm 3, it uses CUDA for robust nearest neighbors search

briefly described in previous sections. The parameter maxnumbero f planes in algorithm 3

is assigned experimentally as 10. This value guarantee robust procedure execution with

satisfying heuristic of random planes generation.

Algorithm 3 Compute normal vectors (r,g,b)

for all range points (x,y,z) in parallel do
bucket = findbucket(x,y,z)
for allneighboringbuckets do

add points from bucket to listo f points
end for
for i = 0 to maxnumbero f planes do

compute plane based on 3 random points
sumi = 0
for all points in listo f points do

sumi += distance(point,plane)
end for

end for
normalvector = plane for min(sumi)

end for
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6. Experiments

All experiments were performed using NVIDIA GF 580 GPGPU. Following subsections

demonstrate results in area of accelerated ICP, path planning and normal vector computation.

6.1 GPU accelerated ICP

Experiments where performed using different type of sensors: Time of Flight camera (see

figure 6), Kinect sensor (see figure 8) and 3DLSN unit (see figure 10). Data registration

result with low cost Time of Flight camera IFM O3D201 is not satisfactory because of the

low resolution of sensor (figure 7). New RGB-D Kinect camera (figure 8) offers high

resolution with acceptable level of noise, therefore the registration result is acceptable (figure

9). Unfortunately Kinect sensor is not designed for robotics application especially working

in outdoor environments, therefore usage is limited. The most optimistic result is obtained

Fig. 6. Time of Flight camera type IFM O3D201.

Fig. 7. Data registration using Time of Flight camera type IFM O3D201. The result is not
satisfactory because of low resolution of sensor.

175Parallel Computing in Mobile Robotics for RISE
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Fig. 8. Robot PIONEER 3AT equipped with Kinect sensor. Photo taken during Land Robot
Trial CELROB 2011.

Fig. 9. Data registration using Kinect sensor. Result is satisfactory because of high resolution
of Kinect sensor with acceptable level of noise.

for commercially available 3DLSN unit (figure 10) composed of laser measurement system

LMS SICK 200 offering accurate data acquisition working in INDOOR and OUTDOOR

environments. The disadvantage is the limitation of data acquisition in stop-scan fashion.

Data where acquired in INDOOR and OUTOOR environments shown in figures 11 and

14. Results of ICP algorithm for 30 and 100 iterations are shown in figures 12 and 13.

Average time of 30 iterations of GPGPU based ICP is less than 300ms and 100 iterations is

less than 1 second. Empirical evaluation shows that 30 iteration enough for accurate data
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registration, therefore it is assumed that ICP takes 300ms in average for alignment of two data

sets containing 512 x 512 data points.

Fig. 10. Robot PIONEER 3AT equipped with 3DLSN sensor.

Fig. 11. Data acquisition using robot equipped with 3DLSN unit in INDOOR and OUTDOOR
environments (Faculty of Mechatronics, Warsaw University of Technology).

177Parallel Computing in Mobile Robotics for RISE

www.intechopen.com



14 Will-be-set-by-IN-TECH

Fig. 12. Result of data registration in INDOOR environment from figure 11. It is shown a
small difference of the result of ICP with 30 and 100 iterations.

Fig. 13. Result of data registration in INDOOR environment from figure 11. It is shown a
small difference of the result of ICP with 30 and 100 iterations.

Fig. 14. Data registration result (Royal Military Academy Campus, Brussels, Belgium).
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6.2 Path planing simulation results

Path planning was tested using simulated environments with different amount of random

obstacles (figure 15, 16, 17, 18). Robot environment is represented by two dimensional grid

of cells (512 x 512). Goal is located on the left and robot position is located on the right, path is

visualized as black and white line. Diffusion process is visualized in gray scale, where white

pixels correspond to max values and black pixels correspond to min values. The average time

of CUDA kernel execution of elementary diffusion process takes 0.06 ms, and total diffusion

Fig. 15. Path planning result (goal- circle on the left, robot position - circle on the right).
Environment with no obstacles.

Fig. 16. Path planning result (goal- circle on the left, robot position - circle on the right).
Environment with 100 random obstacles.
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process for 512 iterations takes in average 30ms. The result is satisfactory because it is showing

on-line capability of proposed implementation.

Fig. 17. Path planning result (goal- circle on the left, robot position - circle on the right).
Environment with 200 random obstacles.

Fig. 18. Path planning result (goal- circle on the left, robot position - circle on the right).
Environment with 300 random obstacles.
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6.3 Normal vector computation

GPGPU accelerated normal vector computation was tested for data acquired using Kinect

sensor (figure 19) and 3DLSN unit (figure 20). The average time of normal vector

computation is less than 100ms for data set of 512 x 512 data points. The implementation

is robust for noisy data delivered by Kinect sensor.

Fig. 19. Normal vector computation for data acquired by Kinect sensor (see also figure 9).
Vectors (x,y,z) are represented by colors (r,g,b).

Fig. 20. Normal vector computation for data acquired by 3DLSN unit. Vectors (x,y,z) are
represented by colors (r,g,b).
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7. Conclusion and future work

In this chapter three areas of research where shown such as 3D data registration, robot

navigation and 3D cloud of points processing. All approaches are improved using GPGPU

parallel computation. The on − line data registration problem was discussed. New

approach based on robust KNN nearest neighborhood search applied for improvement of

ICP algorithm where shown. The implementation is using Radix Sort for bucket sorting. Data

registration implementation was tested for data sets delivered by different sensors in different

environments. The average ICP time computation for 30 iteration is less than 300ms.

The path planning parallel approach based on modified diffusion method was shown. It was

tested using simulated environment compound from different amount of random obstacles.

The result is satisfactory because 30 ms of computation guarantee on-line execution in

practical application.

On − line 3D cloud of points’ segmentation based on normal vector computation was

presented. The result is satisfactory even for noisy data obtained by Kinect sensors. 100ms

average time is optimistic to use this implementation in practical application.

The set of proposed algorithms was tested on GPGPU NVIDIA CUDA GF 580. The

improvement of SoA algorithms based on CUDA implementation shows the possibility to

use in real RISE applications because of decreased time of execution. Future work will be

related to development of 6DSLAM using GPU-ICP as odometry correction and normal vector

computation for obtaining semantic images for Loop Closing procedure.
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