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1. Introduction 

For many centuries scientists have been intrigued by the function of the intestine in human 
health and have tried to explain the role of the intestinal tract in our body, with sometimes 
rather original interpretations of its function. Leonardo Da Vinci for instance, who described 
the anatomy of the human body in great detail, concluded that the digestive system is in fact 
a part of the respiratory system, supporting its functioning. Indeed, he stated the following, 
giving a quite original interpretation on the function of the intestines: "The compressed 
intestines with the condensed air which is generated in them, thrust the diaphragm 
upwards; the diaphragm compresses the lungs and expresses the air" (O'Malley & Saunders, 
1982). So gasses produced in the intestine would help to breath… In general, until quite 
recently it was believed that the main function of the intestine would be to dispose waste 
materials and reabsorb water from the intestine. Since the work of Antonie Van 
Leeuwenhoek it is known that the intestine contains an extensive microbial community 
(Smit & Heniger, 1975). 
Nowadays, it’s clear that the intestine is much more than an organ for waste material and 
absorption of water, salts and drugs, and indeed has a very important impact on human 
health, for a major part related to the specific composition of the complex microbial 
community in the colon. This microbial community composition is governed by age, diet, 
environment and phylogeny (Ley et al., 2008; Zoetendal et al., 1998; Zoetendal et al., 2001) 
and contains all three domains of life: Bacteria, Archaea and Eukarya (fungi, yeasts and 
protozoa). The human colon harbors a highly complex microbial ecosystem of about 200 g 
living cells, at concentrations of 1011 microorganisms per gram gut content, in total numbers 
which outnumber the amount of somatic and germ cells in the human body with a factor 10. 
Together, all 6.5 billion humans on earth represent a gut reservoir of 1023-1024 microbial cells, 
which is just five orders of magnitude less than the world’s oceans (1029 cells) (Ley et al., 
2006). Therefore, the human gut constitutes a substantial habitat in our biosphere and we 
can in fact consider the human body as a mix of human and bacterial cells. Despite such 
high numbers, the microbial diversity is however relatively limited. Although 55 and 13 
divisions of respectively Bacteria and Archaea have been described, only 8 bacterial 
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divisions have been identified so far in the gastrointestinal tract (GIT) and the gut 
microbiome is dominated by only 2 bacterial divisions, Firmicutes and Bacteroidetes, that 
make up over 90% of the intestinal microbiota. The remainder consists of Actinobacteria 
(Turnbaugh et al., 2009) and, to a lesser extent, Proteobacteria, Verrucomicrobia, and 
Cyanobacteria (Backhed et al., 2005; Eckburg et al., 2005; Ley et al., 2006). Further, only two 
archaeal species have been described with Methanobrevibacter smithii being more 
predominant than Methanosphaera stadtmanae (Eckburg et al., 2005). At this level, the 
intestinal communities of all humans therefore appear quite similar. However, within these 
divisions, a limited number of lineages terminate in broad, shallow radiations comprising 
hundreds of species and thousands of strains, making the microbiota of an individual as 
personalized as a fingerprint (Backhed et al., 2005; Ley et al., 2006). 
In addition to the very high numbers of microbes in our intestines, it is estimated that the 
collection of all microbial genomes comprises 2 to 4 million genes, which is 70 to 140 times 
more than that of their host. This ‘microbiome’ encompasses all genes that are responsible 
for numerous processes such as substrate breakdown, protein synthesis, biomass 
production, production of signaling molecules, antimicrobial compounds and encodes 
biochemical pathways that humans have not evolved (Egert et al., 2006). The microbiota in 
the large intestine can therefore be seen as a separate organ encompassing a broad range of 
specific additional activities, which provide great opportunities for its host and which is 
capable of even more conversions than the human liver. 
Summarized, the intestinal microbial ecosystem not only constitutes a major part of the 
body’s cell numbers, its extensive gene pool represents an almost unlimited functionality in 
our body. Whereas typical examples of such activity relate to the extraction of energy from 
otherwise indigestible plant polysaccharides, it has become clear that the mutualistic 
interaction between the host and its microbiota, has a major influence on the host’s health. 
This includes the stimulation of the gut immune system (Salminen et al., 1998), the 
regulation of cell proliferation (Dethlefsen et al., 2006), the synthesis of essential vitamins K 
and B (Conly & Stein, 1992), and providing resistance to colonization by pathogens 
(Hopkins & Macfarlane, 2003). However, recent insights in the composition of the intestinal 
microbiota and host-microbiota cross-talk have shown that the balance in this mutualistic 
interaction is very fragile and a dysregulation in specific community assemblages is now 
considered as a risk factor contributing to a disease state. This is shown by recent reports 
linking intestinal bacteria with diseases ranging from allergies (MacDonald & Monteleone, 
2005) to bowel inflammation (Elson et al., 2006), and obesity (Backhed et al., 2007). 
If we better understand the possibilities of the intestinal microbiome and the importance of 

optimal host-microbiota cross-talk, this will off course open up completely new perspectives 

to exploit this role of the microbiota to improve host health and for innovative drug 

development (Possemiers et al., 2009). Into a major extent, such strategies can relate to the 

potent, almost unlimited metabolic potential of the intestinal microbiome. Whereas 

metabolic processes in the body which affect the final bioactivity of drug compounds have 

typically been associated with the hepatic metabolism, microbial drug biotransformation 

may also dramatically affect drug bioavailability and a possible lack thereof (Possemiers et 

al., 2011a). As current evaluation of drug bioavailability and biological activity is typically 

based on the ADME principle (Absorption, Distribution, Metabolism and Excretion), 

inclusion of microbial metabolic processes in drug bioavailability screening should indeed 

become standard practice. There is therefore a clear need to better understand the 

microbiota and its metabolic capability, which will be discussed in this book chapter. 
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Drug development may reach far beyond only understanding intestinal metabolic 
processes. Indeed, innovative strategies which actively make use of bacterial cells and their 
metabolic functionalities to improve drug bioavailability have been developed over the last 
decade. Several specific examples will be provided in the book chapter, ranging from the 
use of intestinal microbial metabolism for targeted prodrug activation up to the use of 
microorganisms as production facilities inside the intestine for innovative drug 
development. 
An important challenge towards such new drug development strategies is the high 
complexity of intestinal (microbial) processes. Not only is the lack of direct accessibility to 
study intestinal processes in the gut itself a strong limitation for using animals or humans in 
the screening process, the intestinal microbiota is also characterized by a dramatic 
interindividual variability, ultimately leading to a strongly varying response between 
individuals. This interindividual variability together with the need for a suitable 
environment for mechanistic mode-of-action studies create the necessity for suitable in vitro 
and in silico models to predict metabolic fates of drugs. Complex multi-stage in vitro models 
together with in silico models can provide us with very valuable information and will 
therefore also be discussed in this chapter. 
Finally, several of these aspects will be handled with inflammatory bowel diseases (IBD) as 
case study, a set of inflammatory diseases in the intestine for which a bacterial role has been 
described. 

2. The microbial metabolic perspective 

A wide range of metabolic reactions can be catalyzed by the large diversity of microbial 
enzymes. Ilett et al. (1990) have already indicated that gut bacterial metabolism is reductive, 
hydrolytic and even of degradative nature with a strong potential for both bioactivation and 
detoxification of xenobiotics. The latter is in contrast to the oxidative and conjugative 
reactions from the phase I and II enzymes in the enterocytes and hepatocytes (Ilett et al., 
1990). Moreover, the intestinal microbiota interferes with the human biotransformation 
process through the enterohepatic circulation of xenobiotic compounds what may reverse 
the detoxification cycle of the liver. Additionally, the microbial metabolic potency can be 
addressed for the local release of the active compounds in the colon and as production 
facility for specific active compounds. 
Figure 1 gives a schematic overview of the microbial metabolic potential and its interference 

in the enterohepatic circulation and Table 2 gives an overview of the described drug 

development approaches making use of bacterial cells and their metabolic functionalities 

throughout the book chapter. 

2.1 Direct microbial metabolism influences final activity profiles 

Chemical components in food, either as food component or as contaminant, represent a 
significant source of both positive and negative influences on the health and function of the 
human body. For example, polyphenol mixtures represent one such class and within a much 
wider realm of application, there is now substantial evidence to support the hypothesis that 
these may be beneficial in the prevention of cardiovascular diseases, cancers, 
neurodegenerative diseases, diabetes, or osteoporosis risk (Scalbert et al., 2005). It is now 
well investigated that the majority of polyphenol compounds reach the colon unaltered. 
There, they undergo extensive metabolism by the resident gut microbiome prior to 
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absorption. This is a key step in understanding the fate of many xenobiotic compounds and 
their final clinical effects and yet this process has remained almost completely unexplored.  
An important field of research dealing with gut microbial conversion of food compounds is 
that of a specific group of polyphenols: the phytoestrogens. Phytoestrogens are plant 
components that structurally resemble 17ǃ-estradiol. Depending on the target organ and the 
endogenous estrogen levels, these phytoestrogens may elicit an estrogenic or anti-estrogenic 
effect, by which they may play a role in the prevention and treatment of hormone-
dependent diseases such as breast- and prostate cancer, or osteoporosis and menopausal 
complaints. The most important classes from nutrition are isoflavones (primarily from soy), 
coumestans (fruit, cereals, leguminosae), prenylflavonoids (hops), and lignans (fruit, cereals, 
leguminosae). Hop contains the most powerful phytoestrogen known thus far, namely 8-
prenylnaringenin (8-PN). Rowland et al. (2003) discussed the role of the gut microbial 
community in the bioavailability and metabolism of estrogens in general and 
phytoestrogens more in particular. Intestinal bacteria contribute to the bioavailability and 
biological activity of phytoestrogens in a number of ways. Firstly, intestinal bacteria 
produce ǃ-glucosidases thereby cleaving the naturally occurring glycosylated 
phytoestrogens into an aglycon. Secondly, the gut bacteria elicit glucuronidase and sulfatase 
activity, thereby deconjugating phase II metabolites from the liver and releasing the 
aglycons again. Thirdly and most importantly, intestinal bacteria are capable of 
transforming the original components to metabolites that have a higher biological activity. 
For example, equol and 8-PN are bacterial metabolites from daidzein (soy) and 
isoxanthohumol (hop), respectively and have a much higher biological activity than their 
precursor product. A remarkable aspect of the microbial conversion of daidzein into equol 
and of isoxanthohumol into 8-PN is the large interindividual variability in the conversion 
efficiency. This was illustrated for equol production (Bolca et al., 2007a) and 8-PN 
production (Bolca et al., 2007b).  
A second example of a natural product used for its medicinal properties are anthranoid-
containing laxatives. Anthranoids are obtained from the dried leaflets and pods of plants 
such as senna plants, Cascara sagrada, Frangulae cortex and rhubarb. In plants, anthranoids 
are mostly present as sugar derivatives and due to this ǃ-glycosidic linkage the molecule is 
carried unabsorbed into the large intestine where the microbial metabolism starts and the 
active aglycon anthrone is released (de Witte & Lemli, 1990). Changes in the colonic 
motility, absorption, and secretion result in an increased intestinal transit rate and fluid 
accumulation. Chronic use of these laxatives causes melanosis coli, a deep black 
pigmentation of the colon mucosa but whether there is an association with colorectal cancer, 
is still controversial (Van Gorkom et al., 1999; Nusko et al., 2000). 
Besides the interest in the microbial conversion of health-promoting components from 

ingested foodstuffs, much attention is also given to the role of intestinal bacteria in the 

conversion of ingested drugs, environmental or food contaminants or xenobiotics in general. 

The ability of the gut bacteria to metabolize drugs came under the attention of 

pharmaceutical companies since an accident in 1993 with the antiviral drug orivudine which 

revealed that its gut microbial metabolite (E)-5-(2-bromovinyl)uracil interfered with the 

clearance of a co-administered anti-cancer drug 5-fluoro-uracil. This resulted in the death of 

18 patients (Okuda et al., 1998). Recently, Sousa et al. (2008) reviewed the conversion of over 

30 drug compounds by gut microorganisms and the related consequences for their 

biological effect in the human body. Examples are the reduction of omeprazole and digoxin, 

hydrolysis of lactulose and sorivudine, acetylation of 5-aminosalicylic acid, proteolysis of 
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insulin and calcitonin and N-demethylation of methamphetamine. Additionally, 

demethylation, deamination, decarboxylation and dehalogenation reactions have also been 

described, next to other reactions such as aromatization, esterification and N-nitrosation 

(Ilett et al., 1990). Microbial metabolism is not only confined to drugs, but also targets 

contaminants. The heterocyclic aromatic amine, 2-amino-3-methylimidazo[4,5-f]quinoline 

(IQ) – a compound which is produced during the cooking and grilling of meat – is converted 

by intestinal bacteria into the direct acting mutagen 7-hydroxy-IQ (van Tassell et al., 1989). 

IQ incubation studies of intestinal microbiota suspensions from different individuals 

showed a large interindividual variability between the potency to form the 7-OH-IQ. 

Apparently, this reaction can be carried out by bacteria belonging to the predominant 

populations of the human gut, such as Bacteroides thetaiotaomicron, Clostridium clostridiiforme, 

and Escherichia coli (Humblot et al., 2005). As a third example of microbial metabolism, 

oxidative reactions were reported by Van de Wiele et al. (2005) who described the 

hydroxylation of polycyclic aromatic hydrocarbons (PAHs) by in vitro cultured intestinal 

microbiota. Hydroxylation of PAHs gives these compounds an affinity for the human 

estrogen receptor. In that way, hydroxylated PAHs may act as pseudo-estrogens and 

interfere with normal hormone-driven process in the body. A final example targets the 

conversion of metal(loid)s, both in an inorganic as an organic chemical form. Michalke et al. 

(2008) reported that human gut microbes actively volatilize bismuth and other metal(loid)s, 

including arsenic (As), through methylation and hydrogenation. Moreover, Meyer et al. 

(2008) postulated that gut methanogens play a crucial role in metal(loid) volatilization, 

thereby exerting toxic effects to the human body, not only by direct interaction with the host 

but also by disturbing the endogenous gut microbiota composition and metabolism. 

Further, a thorough in vitro exploration with the Simulator of the Human Intestinal 

Microbial Ecosystem (SHIME®), a dynamic human gastrointestinal simulator, revealed a 

high microbial metabolic potency toward metal(loid)s (Diaz-Bone & Van de Wiele, 2009). 

This was demonstrated by the finding of significant volatilization of arsenic (As), selenium 

(Se), bismuth (Bi), tellurium (Te), and antimony; the formation of highly toxic AsH3 (arsine) 

and (CH3)2Te (dimethyl telluride); and the discovery of two new As–sulfur metabolites. Van 

de Wiele et al. (2010) and Pinyayev et al. (2011) later showed the contribution of the gut 

microbiota, presumable sulfate reducers, in the formation of methylated thioarsenicals from 

which the toxicity is thought to be equivalent to that of trivalent inorganic arsenic.  

2.2 Microbial metabolism interferes with the enterohepatic circulation 

Compounds that have been absorbed in the intestine and subsequently detoxified are 
usually conjugated with polar groups (glucuronic acid, glycine, sulfate, glutathion, and 
taurine) in the liver prior to secretion with the bile (Ilett et al., 1990). After released in the 
intestinal lumen, these phase II biotransformation products may be hydrolyzed again by 
bacterial enzymes such as ǃ-glucuronidase, sulfatase, and other glycosidases. This would 
negate the detoxification cycle and delay the excretion of many exogenous compounds since 
the original compounds or phase I metabolites are more prone to intestinal absorption than 
their phase II conjugates. Several studies have already shown the biotransformation capacity 
of gut bacteria towards hydrocarbons. For example, bacterial ǃ-glucuronidase activity 
hydrolyzes the glucuronidated form of IQ, a food-borne carcinogen, thereby increasing the 
colonic genotoxicity of this compound in rats (Humblot et al., 2007). Additionally, guinea 
pig experiments showed that the hydrolysis of benzo(a)pyrene conjugates by the intestinal 
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microbiota resulted in de novo production of toxic benzo(a)pyrene intermediates what 
caused the formation of DNA adducts in the colon (Bowes & Renwick, 1986). Other research 
studies have described similar deconjugation reactions for many other compounds. 

2.3 Colon targeted drug release using the microbial metabolism 

The enormous metabolic potency from the gut microbiota can also be employed for colon-

targeted drug delivery. The targeted delivery of drugs in the colon provides certain benefits, 

or is even necessary in certain therapeutic scenarios. Depending on the nature of the 

administered molecule, drugs can be highly sensitive to the stringent conditions of the 

upper GIT (low gastric pH, high enzymatic activity), which makes it necessary to postpone 

their intestinal absorption to the lower GIT (distal ileum or colon). In addition, patients that 

suffer from diseases that are more confined to the colon region (f. ex. IBD, carcinoma or 

bacterial infection) may benefit from a local rather than a systemic therapy. Such local drug 

release would optimize the therapeutic efficiency or minimize possible side effects from a 

systemic (intravenous) drug administration. Two strategies can be used to involve gut 

microorganisms. 

A first strategy makes use of prodrugs, which are pharmacologically inactive derivatives of 

the parent drug compound (reviewed by Patel et al., 2007). These prodrugs are designed to 

be more resistant to breakdown processes in the upper digestive tract (f. ex. acid hydrolysis, 

protease activity) and require conversion to the bioactive molecule by enzymatic activity. 

This bioactivation process often relies on gut microbial enzymatic activity, which 

dramatically increases due to the high microbial load in the colon environment (1010-1011 

microorganisms per gram versus 106-107 microorganisms per gram in the ileum). Azo-bond 

prodrugs and glycoside prodrugs are considered the most important classes of prodrugs, 

while glucuronate, dextran, cyclodextrin and polypeptide prodrugs are also manufactured 

(Patel et al., 2007). 

A second strategy that requires gut microbial activity to deliver drugs in the colon is the 

coating of drugs with biodegradable polymers. In this case, the polymer is resistant to the 

digestive processes from the upper GIT and thereby protects the encapsulated drug 

molecule. The polymer is however subjected to microbial biodegradation in the colon and 

subsequently releases the drug molecules, which can then be taken up across the colon 

epithelium. To illustrate, azo-containing polyurethane molecules have been used as a 

coating material for drugs. The molecule is degraded by gut microbial azoreductase activity 

and subsequently releases the active drug compound (Chavan et al., 2001; Kimura et al., 

1992). 

Colon-specific drug delivery systems making use of these microbial properties have been 

successfully applied for both local as systemic drug therapy (Patel et al., 2007). 

2.4 Bacteria as production facilities 

Bacteria may furthermore be used as actual ‘production facilities’ that produce active 
compounds. The most well-known example is probably the production of antibiotics by 
microorganisms. Due to the selection of resistant pathogens, there is a contuining need for 
new antibiotics. This need has been largely met by the production of synthetic antibiotics 
but due to advances in technology there is an increasing interest in the production of 
natural antibiotics from bacteria. Soil actinomycetes have been a major source of 
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antibiotics and recently, searches of underexplored ecological niches (f. ex. deep-sea 
sediment samples, bacterial symbionts of insects or fungi, Mycobacteria) have revealed 
new molecules. These molecules produced by the bacteria are essential to combat resistant 
pathogens, which are increasingly prevalent in the community (Clardy et al., 2006; 
Fischbach & Walsh, 2009). 
As a second example, we will discuss here in detail the case of carotenoids in which Bacillus 

spores are used as ‘production facilities‘ producing active ingredients directly in the 

intestine. Mammals cannot synthesize carotenoids de novo and must acquire them from the 

diet. These are key components that have a role in nutrition (Vitamin A), vision and its 

development (retinoic acid). Moreover, the antioxidant properties of carotenoids protect the 

cells from environmental stresses and are also able to prevent the onset of chronic disease 

states in mammals (Duc et al., 2006; Giovannucci, 2002; Mares-Perlman et al., 2002). In order 

to exert these beneficial effects in the GIT, ingested carotenoids must reach a concentration 

that is sufficient to act as a scavenger of oxygen radicals (Agarwal & Rao, 1998; Fuhrman et 

al., 1997; Witztum, 1994). Finally, after intestinal absorption, carotenoids can also have anti-

inflammatory or anti-carcinogenic effects (Ben-Dor et al., 2005). The problem is that pure 

carotenoids are rapidly degraded in the stomach. It is possible to increase their resistance by 

incorporating high doses of carotenoids into a food matrix in order to guarantee a 

recommended daily intake of about 800 mg.day-1. However, this enrichment procedure is 

expensive and therefore limited (Duc et al., 2006). Recently, scientists at the Royal Holloway 

University of London have isolated carotenoid-producing spore-forming Bacillus spp.. These 

pigmented Bacillus species (yellow, pink, orange…) have been characterized and the 

pigments have been shown to be due to one or more carotenoids (Duc et al., 2006; Hong et 

al., 2009; Khaneja et al., 2010; Perez-Fons et al., 2011). More specifically, the presence of 1-

HO-demethylspheroidene, ubiquinone and phytoene was identified in some strains by 

means of a combination of HPLC analysis and UV/VIS spectral data. The carotenoids 

contained within the spores appeared to be gastric stable and could therefore provide a 

good source of carotenoids in the small intestine where - following the germination of the 

Bacillus strains - they are released. The released carotenoids or their metabolites may be 

absorbed from the gut and reach systemic circulation. Alternatively, a part of the 

carotenoids and their derivatives may reach the colon, where they can be subjected to 

further microbial metabolism and/or absorbed through the colonic epithelium. This is 

particularly appropriate for the carotenoids still contained in the spores, as the release 

before the beginning of the colon may not be complete. Moreover, if the bacteria are able to 

survive and grow in the colonic microbial community, they may produce and release 

additional carotenoids into the colonic environment. It has been shown that the Bacillus-

derived apocarotenoids antioxidant properties are 10 times higher than lycopene. Next to 

acting as an optimal carrier for the improved delivery of gastric-stable carotenoids, the 

Bacillus strains may exert probiotic properties in the colon, resulting for instance in an 

improvement of the gastrointestinal environment, immune stimulation, antimicrobial 

activities and competitive exclusion (Cutting, 2011). A final added value is that, compared to 

other vegetative bacteria which are typically used as ingredient/probiotic, Bacillus spores 

are particularly attractive because they can be stored at ambient temperature in liquid or 

dried form indefinitely without the need for refrigeration, thereby ensuring better control of 

the administered doses. 
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Fig. 1. Schematic overview of the microbial metabolic potential and its interference with the 
enterohepatic circulation. Adapted from Possemiers et al. (2011a) 
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3. Gut models for studying microbial modulation of human health 

As mentioned in the previous paragraphs, the high complexity of intestinal microbial 
processes is a main challenge in new drug development strategies. There is a clear necessity 
of creating suitable in vitro and in silico models to predict metabolic fate of drugs. These 
models need to take into account the dramatic interindividual variability of the gut 
microbiota (both in terms of composition and activity) that ultimately leads to a strongly 
varying response between individuals. When using animals or humans in the screening 
processes, the lack of direct accessibility to study intestinal processes in the gut itself 
represents a serious obstacle to elucidate the importance of intestinal processes for a specific 
drug candidate. Moreover, whereas final in vivo testing is off course required to confirm 
formulation performance, this approach holds a number of drawbacks to be used in early 
stages of drug development such as ethical concerns, lack of information on the mechanism 
of action, analytical difficulties related to dilution of the active compounds and their 
metabolites in the plasma and the rest of the body as well as doubts on the 
representativeness of animal models for the human situation (Pieper & Bertau, 2010).  
In vitro simulation studies may offer many unique advantages, even if they suffer from the 
absence of a complete physiological environment. They are easy to set up and sample, and 
have a high reproducibility. They offer the possibility of performing mechanistic studies and 
there are no ethical constraints. However, it is clearly of key importance to evaluate the 
specific properties of a candidate active compound under conditions that are relevant to in 
vivo situations. In fact, the better an in vitro system can simulate the real gut situation, the 
higher is the physiological significance of the obtained information (Marzorati et al., 2009). 
In this respect, simple batch experiments, single stage reactors or the conventional 

dissolution systems do not replicate the rapidly changing dynamic environment of the gut 

lumen and the physiological processes occurring therein. In the last decade, the need of 

having systems that could better simulate in vivo conditions led to the creation and 

perfectioning of dynamic in vitro simulators that attempt to reproduce all or part of the 

physiological parameters that could influence the gastrointestinal microbial community and 

its metabolic activity (Macfarlane & Dillon, 2007; Minekus et al., 1999; Molly et al., 1993). 

These systems should allow recreating in vivo-like conditions in relation to the different 

sections of the GIT, i.e. stomach (secretion of gastric juice and simulation of fasted and fed 

condition); small intestine (secretion of pancreatic juice and bile salts, absorption of 

nutrients/electrolytes and high shear forces); large intestine (presence of a representative 

microbial community – in terms of activity and composition – in the ascending, transverse 

and descending colon); and finally, host-microbiota interaction (simulation of the final effect 

on the host). 

Among the several options available on the market, the TIM model (TNO, Delft, The 
Netherlands) and the SHIME® (ProDigest and Ghent University, Gent, Belgium) are 
considered as being the most accurate imitations of the GIT both on a structural and a 
functional level (Pieper & Bertau, 2010). 
The TIM model is composed of two separate computer-controlled units - TIM 1 and 2 - 
running independently (Minekus & Havenaar, 1996; Minekus et al., 1999). The TIM 1 system 
mimics the stomach and small intestine (i.e. duodenum, jejunum and ileum), while the TIM 
2 is a simulation of the proximal colon of monogastric animals (pH = 5.8). Fluid 
transportation from vessel to vessel is executed by peristaltic valve-pumps and there is a 
constant absorption of water and of small lipophilic and hydrophilic compounds by means 
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of hollow fiber membranes. This system can be used to study drug-nutrient interactions, 
molecule bioconversion and nutrient compound bioavailability (Anson et al., 2009b; 
Blanquet et al., 2003). For example, the bioavailability of ferulic acid, an antioxidant, was 
studied with the TIM 1 system. It was found to be very variable and dependent on the food 
source (bran, flour, aleurone). However, supplementation of free ferulic acid to flour 
significantly increased its bioavailability. The authors concluded that the TIM model was a 
valid model to predict the in vivo bioavailability of ferulic acid (Anson et al., 2009b). In a 
TIM 2 simulation, the model is first inoculated with a frozen-conserved cell culture derived 
from a fecal inoculum. During the experiment, the system is fed with a ‘Standard Ileal Efflux 
Medium’ and samples can be taken both from the lumen of the simulator and from the 
dialyzed liquid during the simulation. It was shown by the TIM 2 model that bioprocessing 
of wheat bran (fermentation treatment or enzymatic- in combination with fermentation 
treatment) improves the colonic metabolism of ferulic acid (Anson et al., 2009a). 
The prototype of the SHIME® was originally developed by Molly et al. (1993) (Figure 2). 
Nowadays, it is a computer-controlled system consisting of a succession of five reactors 
representing the complete GIT of the adult humans. The first two reactors are of the fill-and-
draw principle and simulate the physiological processing occurring in the stomach and in 
the small intestine (i.e. different sigmoidal decrease of pH under fasted or fed conditions; 
addition of gastric enzymes, pancreatic and bile liquid). A dialysis filter is used to simulate 
the absorptive processes occurring in this area of the GIT. The last three compartments are 
continuously stirred reactors inoculated with a fresh dilution of a fecal sample (the 
characteristics of the donor can be decided according to the aim of the study). Retention 
time and pH of the different vessels are chosen in order to resemble in vivo conditions in the 
different parts of the GIT (pH in the range 5.6-5.9, 6.2-6.5 and 6.6-6.9 in the ascending, 
transverse and descending colon, respectively) (Possemiers et al., 2004). No absorption is 
simulated in the large intestine. In a TWINSHIME®, in which 2 systems are run in parallel, 
long-term (up to 3 weeks) placebo-controlled in vitro studies or direct comparison of two 
different treatments are possible without interference of external parameters (Grootaert et 
al., 2009; Marzorati et al., 2009; Possemiers et al., 2008). The possibility of performing long-
term studies with the SHIME® is of special interest. In fact, it has to be taken into account 
that bacteria may need to adapt their metabolism in order to be able to degrade a specific 
active compound. In this respect, a study conducted with a single dose of the active product 
may results in a wrong interpretation of the possible effect of the microbial metabolism on 
the product itself. These long-term studies are of special relevance when investigating the 
chronic exposure to a given compound. The SHIME® model was found to be an ideal model 
to study the bioavailability of isoxanthohumol, a phytoestrogen, allowing to study the 
microbial metabolism in the different parts of the intestine (Possemiers et al., 2006). 
Moreover, using the TWINSHIME® model, the probiotic effect of the 8-PN producing strain 
Eubacterium limosum could be compared for high and low 8-PN producing individuals 
(Possemiers et al., 2008). 
Whereas the TIM system appears nowadays as the most suitable simulator for the processes 

occurring in the upper GIT, the SHIME® can provide more reliable results in terms of 

simulation of processes at the level of microbial metabolism.  

It has to be acknowledged that the simulation of absorption, which takes into account only 
diffusion, is limited in both systems, as well as the absence of a direct prediction of the 
possible effect of the treatment on the host (Pieper & Bertau, 2010). The coupling of these 
dynamic simulators with an “off-line” test system that makes use of Caco-2/HT 29 cell lines 
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has been proposed as a possible approach to increase the scientific outcome of the in vitro 
simulation (Deat et al., 2009; Possemiers et al., 2011a). Indeed, cellular models are a 
complementary tool to mimic the active uptake of active compounds and their metabolites. 
Moreover, the exposure of these cells to the complete luminal content of the GIT, containing 
both the active compound, its potential metabolites and the rest of the intestinal 
environment, creates a situation closer to the in vivo condition as compared to those studies 
where the cells are only exposed to the active compound as a pure product. This approach 
was recently used to study the immune modulating properties of a dried fermentate derived 
from Saccharomyces cerevisiae. The SHIME® experiment confirmed quantitative increases in 
lactobacilli, qualitative modulation of both general and specific populations, reduction of 
pathogens, and even showed an increase in the production of the immune-protective short-
chain fatty acid, butyrate. Moreover, treatment of Caco-2 cell lines with the intestinal 
suspension significantly decreased the production of the pro-inflammatory cytokine IL-8 
(Possemiers et al., 2011b). 
 

 

Fig. 2. Scheme of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) 

As compared to the state of the art, two further developments have been recently conducted 
in order to improve the simulation power of the SHIME®: the M-SHIME (Mucus-SHIME) 
and the HMI (Host-Microbiota Interaction) module. In the so-called M-SHIME, a mucosal 
compartment (mucin-covered microcosms) has been introduced in each colon vessel in 
order to reproduce the bacterial adhesion to the gut wall mucus layer (Van den Abbeele et 
al., 2011). This improvement allows evaluating the colonization and development of specific 
microorganisms that benefit from mucosal adhesion, microorganisms that would otherwise 
be washed out in those systems that only simulate the gut lumen. These are those 
microorganisms whose metabolism can have profound health effects in consideration of the 
fact they live in strict contact with the host surfaces. 
Finally, the HMI module is a two-compartment model which allows to investigate in one 
anaerobic compartment the development of the mucosa-associated microbiota under 
realistic conditions of shear stress and to culture eukaryotic cells in the lower aerobic 
compartment for up to 48 h (Marzorati, 2010). The two compartments are separated by a 
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semi-permeable membrane that allows to simulate oxygen diffusion (micro-aerophilic 
conditions at the base of the biofilm) and bi-directional transport of molecules (i.e. 
absorption of microbial metabolites and excretion of host defence molecules). This new 
module has been tested in combination with the above-mentioned SHIME® in order to 
perform ‘on-line’ continuous experiments but, in principle, it can also be combined with 
other GIT simulators available on the market (Marzorati et al., 2011). Also in this model, the 
dried Saccharomyces cerevisiae fermentate was found to have immunomodulatory effects by 
decreasing the production of pro-inflammatory compounds, IL-8 and IL-1ǃ (Marzorati et al., 
2011). At the moment the system is conceived to evaluate the effect of microbial processes 
on the host cells and the effect of host cells on microbial processes. However, a simple 
addition of a third compartment would provide also the possibility of performing studies of 
bioavailability through cell lines (Figure 3). 
 

 

Fig. 3. Scheme of the Host-Microbiota Interaction (HMI) module. Adapted from Marzorati et 
al. (2011) 

Table 1 summarizes the main characteristics of the two GIT simulators with respect to: i) the 
possibility of performing studies related to new drug development, and ii) the possibility to 
investigate the role of the microbial metabolism on the biotransformation of active 
compounds. 
Another tool that can be useful in the cost-intensive process of a new drug development is 
the use of in silico models for biosimulation. These are normally considered as an alternative 
to the classical in vivo and in vitro studies. They make use of mathematical models to assess 
drug absorption, distribution, metabolism and excretion (Pieper & Bertau, 2010). The most 
commonly used models are the physiologically-based pharmacokinetics (Leahy, 2003), the 
systems biology-based drug metabolism simulation (Bugrim et al., 2004), the quantitative 
structure-activity relationship modelling (Chang & Swaan, 2006), and the computational 
oral absorption simulation (Sugano, 2009). More specific information on the topic has been 
recently reviewed by Bertau et al. (2008) and Pieper & Bertau (2010). A common trait of all 
these models is the fact they mainly focus on (hepatic) host metabolism, thereby omitting 
the role of the gut microbiota due to its extreme complexity and the lack of knowledge 
related to several metabolic processes occurring in the GIT. Even if the potential role of 
bacteria in metabolizing the active compound into other intermediates of degradation – that 
could have a deleterious effect for the human health or simply hinder the efficacy of the 
product itself – is clearly acknowledged, it is still not possible to model the complex 
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bacterial network within the gut. Currently on-going metagenomic and metatranscriptomic 
studies will provide us with further information with respect to this topic and, in a later 
stage, it will be possible to complement the already available models with a new set of data 
that will allow a simulation of the processes closer to the reality. 
 

Characteristic TIM SHIME® 

Simulation of the upper GIT Yes Yes 

Simulation of the lower GIT Yes Yes 

Full GIT in a single system No Yes 

Simulation of the different regions of the small intestine Yes No1 

Simulation of the different regions of the colon No Yes 

Fecal inoculum 
Frozen 
culture

Fresh inoculum2 

Peristaltic movement Yes No3 

Simulation of the absorption in the colon Yes No 

Possibility of performing bioavailability studies (passive diffusion) Yes4 Yes 

Possibility of using the fluid from the system on Caco-2 cell lines 
to study active transport 

Yes Yes 

Possibility of combining the simulator with the HMI module No Yes 

Possibility of performing long-term studies5 No Yes 

1 The pH increase along the small intestine can be simulated during the incubation 
2 Possibility of choosing a donor with specific characteristics 
3 Magnetic stirring 
4 TIM1 was specifically designed for this purpose 
5 To specifically follow up the adaptation of the microbial metabolism to the active compound 

Table 1. Comparison of the TIM and SHIME® model 

4. Case study: The gastrointestinal microbiota and inflammatory bowel 
diseases 

In the next paragraph, the importance of the gut microbiome and its metabolism in drug 

development will be further discussed by means of a specific case study, i.e. IBD. The 

microbial metabolic potential as a therapy for IBD has been exploited and has provided a 

successful and widely used treatment for IBD which will be futher discussed in detail. 

Moreover, as no cure is available, there is an ungoing search for new therapies with the 

microbial potential as a very interesting target and tool. 

4.1 The role of gut bacteria in immune homeostasis 

Optimal immune functioning is crucial for the health and normal performance of humans and 

animals. The immune system operates at the systemic as well as at the local level, the latter 

which includes the mucosal tissue in the gut and upper respiratory tract. Whereas the systemic 
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immune system protects us from infections and disease in general, mucosal immunity has the 

important function of first line defence against penetrating allergens and pathogens. 

Due to its unique function, about 70% of the body's immune system is found in the digestive 

tract. Indeed, the GIT is the site where the divergent needs of nutrient absorption and host 

defence collide. Whereas nutrient absorption requires a large surface area and thin 

epithelium, such design has the potential to compromise host defence. The body therefore 

needs an extensive immune protection in the gut to counteract this potential threat. The 

immune system of the gut divides into two parts, the physical barrier of the intestine and 

the active immune components. The physical barrier is central to the protection of the body 

to infections and the excessive penetration of allergens. Acid in the stomach, active 

peristalsis, mucus secretion and the tightly connected monolayer of the epithelium each play 

a major role in preventing microorganisms from entering the body. The cells of the immune 

system are organized in a complex pattern within the intestine, i.e. the gut-associated 

lymphoid tissue (GALT) (Gaskins, 1997). GALT comprises cells from both the innate and 

adaptive immune system. The innate immunity is responsible for the recognition of 

endogenous microorganisms, which is essential to maintain intestinal immune homeostasis. 

A schematic overview of the recognition, activation and response of the innate immune 

system is shown in Figure 4. Innate immune recognition is based on the detection of 

molecular structures that are unique to both pathogenic and non-pathogenic 

microorganisms, called microbe-associated molecular patterns (MAMPs), like 

lipopolysaccharide (LPS) or lipoteichoic acids (LTA) (Medzhitov, 2007). The main classes for 

the detection of MAMPs are pattern-recognition receptors (PRRs) including transmembrane 

Toll-like receptors (TLRs) and cytosolic nucleotide-binding oligomerization domain (NOD) 

like receptors (NLRs) (Kelly et al., 2005). GALT has the constant challenge of responding to 

pathogens, while remaining relatively unresponsive to food antigens and commensal 

bacteria, the normal inhabitants of the gut (Sanderson & Walker, 2007). After the detection 

of the ligands, intracellular signaling results in the transcription of pro-inflammatory 

cytokines (Kawai & Akira). In response, the production of antimicrobial peptides (Salzman 

et al., 2010), tight junctions associated proteins (Su et al., 2009) and mucus that forms a 

protective polysaccharide glycocalyx bilayer on top of the epithelial cells (Johansson et al., 

2008) is induced. While maintaining the capacity to eliminate infection and induce proper 

tissue repair, the host has to activate specific negative regulators and regulatory pathways to 

reduce the response to tissue injury. 

Besides the activation of antimicrobial defence processes, the innate immune system can 

stimulate the adaptive immune response. The latter is activated by antigens that cross the 

epithelial barrier and are engulfed by antigen presenting cells (APCs) resulting in an 

antibody-mediated or cell-mediated immune response. The receptors on the immune cells 

provide a system by which infections with the same pathogen are remembered. This so 

called long-term memory is characteristic for the adaptive immune system (Carroll, 2004; 

Cooper & Alder, 2006). 

Suboptimal functioning of the immune system in the gut may have important consequences 
for the gut environment itself (overstimulation may lead to excessive inflammation and 
inflammatory bowel diseases, whereas insufficient activity opens the way for pathogen 
infections) but may also affect the rest of the body (pathogen translocation or leakage of 
bacterial fragments from the gut into the blood may cause both acute and chronic 
inflammation). 
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Fig. 4. Schematic overview of the activation and response of the innate immune system. 
AMP: antimicrobial peptides, IFNs: type I interferons, MAMPs: microbe-associated 
molecular patterns, MAPK: mitogen-activated protein kinase, NF-κB: nuclear factor-κB, 
NLR: nucleotide-binding oligomerization domain-like receptors, and TLR: Toll-like receptor 

4.2 The role of gut bacteria in inflammation 

IBD is a collective term for idiopathic and chronic inflammatory disorders of the intestinal 
tract. The best known forms of IBD are Crohn’s disease (CD) and ulcerative colitis (UC). 
Research from the last decade has given us new insights into the etiology of IBD although 
the cause still remains speculative. The most widely accepted theory is that a genetically 
dysregulated host immune response is over-aggressive against the commensal microbiota 
(Cho, 2008; Sartor, 2006; Strober et al., 2007). 
Genome-wide association (GWA) studies have become a useful and powerful tool to 
identify disease-associated genes involved in the immunopathogenesis of IBD. The most 
well-known CD associated gene is NOD2 (also designated CARD15) (Hugot et al., 1996). 
Three single nucleotide polymorphisms (SNPs) are located within or near the LRR domain 
of the NOD2 protein, the domain that senses the bacterial products. Studies in primary 
human cells carrying the 3 major NOD2 SNPs have consistently demonstrated a deficient 
signalisation pathway what makes an intestinal immune response against the bacteria 

impossible. In contrast, in mice, NOD2 polymorphisms were shown to potentiate the NF-B 
activity (Maeda, 2005; Watanabe et al., 2004). It is clear from these studies that the role of 
NOD2 mutation in the innate immune signaling is very complex and not completely 
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understood. Other genes that were associated with CD are two autophagy-related genes 
ATG16L1 and IRGM (Cho, 2008). GWA studies have further revealed that significant 
association of numerous SNPs throughout the IL23R gene region are associated with CD 
and UC (Duerr et al., 2006). Although genetic defects are apparent, they cannot explain 
completely the increase in the prevalence of IBD. 
Several lines of evidence suggest a role for the microbiota in the development of IBD. The 
most compelling is probably the study by Garrett et al. (2007) in which T-bet deficient mice 
were used. T-bet regulates the response of the mucosal immune system to the commensal 
bacteria by controlling TNF-ǂ production. T-bet deficient mice develop a disease that 
resembles UC. Remarkably, the transmission of the gut microbiota from T-bet deficient mice 
induced a colitogenic process in T-bet sufficient pups (Garrett et al., 2007). More evidence 
comes from animal models in which the presence of gut microbiota is required in order to 
develop intestinal inflammation (Nell et al., 2010; Saleh & Elson, 2011) and antibiotic 
treatments being effective in subsets of patients with CD (Perencevich & Burakoff, 2006).  
One of the theories states that the pathogen Mycobacterium avium subspecies 
paratuberculosis (MAP) is the causative agent for IBD. However, studies based on the 
detection of MAP by PCR or ELISA in blood samples or biopsies have shown conflicting 
results (Autschbach et al., 2005; Baksh et al., 2004; Bentley et al., 2008; Clancy et al., 2007; 
Rowbotham et al., 1995; Wu et al., 1991). More recently, a newly defined E. coli pathovar, 
adherent-invasive E. coli (AIEC) was found to be highly associated with ileal mucosa of CD 
patients (Darfeuille-Michaud et al., 2004). 
Other studies focused on a dysbiosis between the commensal microbial communities. Using 
a wide range of different techniques, changes in the population diversity of both the luminal 
and mucosa-associated microbiota have been demonstrated. Luminal changes were mainly 
associated with a decrease in the diversity of the Firmicutes, in particular Lactobacilli and 
Clostridia, and Bacteroidetes (Manichanh et al., 2006; Marteau, 2009; Scanlan et al., 2006; 
Sokol et al., 2009), while an increase in the Enterobacteriaceae population was reported for 
CD (Seksik et al., 2003). All reports described a reduced diversity of the mucosa-associated 
microbial communities in IBD. The reduction in diversity was comparable to the changes 
found in the luminal microbiota, i.e. a loss of Firmicutes and Bacteroidetes, particularly 
Lactobacilli and Eubacterium, with an increase in Enterobacteriaceae species for CD samples 
(Frank et al., 2007; Nishikawa et al., 2009; Ott et al., 2004; Tamboli et al., 2004). In addition, 
microscopy studies found an increased bacterial load in the mucosa of IBD patients 
(Swidsinski et al., 2005). Considering the different studies, no consensus has been reached 
concerning differences in the diversity of the fecal or mucosa-associated microbiota of IBD 
patients and healthy volunteers as etiological factor in IBD. 
Finally, products of bacterial activity, such as butyrate are also known to have a regulatory 
effect on inflammation in IBD (Sanderson, 2004; Segain et al., 2000). 

4.3 Innovative approaches for drug development in IBD 

As dysbiosis in the microbiota is believed to be involved in IBD, strategies to deliberately 
modulate the microbiota have been developed. These strategies can be of nutritional origin 
using pro-, pre-, and synbiotics to induce directed changes in the microbial communities 
leading to health benefits for the host. Probiotics are live microorganisms that confer health 
benefits when administered in adequate amounts. Prebiotics are indigestible food 
compounds that selectively stimulate the growth and/or activity of one or a limited number 
of microbial species in the gut. Synbiotics are a combination of pro- and prebiotics. More 
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than 25 individual bacterial species (f. ex. E. coli Nissle 1917, Saccharomyces boulardii 750, 
Lactobacillus rahmnosus LGG), a few formulations containing multiple species (f. ex. VSL#3), 
short-chain carbohydrates (f. ex. fructooligosaccharides, galactooligosaccharides and 
arabinoxylans), germinated barley foodstuff or a combination of those have been studied 
using experimental models of colitis. Evidence from these animal models indicated that 
probiotics can alter the intestinal microbiota and ameliorate disease (Sartor, 2004) while 
prebiotic supplementation has been shown to enhance luminal immunoregulatory bacteria, 
reduce the risk of intestinal infections and the activity of pro-inflammatory transcription 
factors, and attenuate inflammation and mucosal damage (Cavin et al., 2005; Hedin et al., 
2007; Holma et al., 2002; Kanauchi et al., 2008; Komiyama et al., 2011; Sartor, 2004). In 
addition, prebiotics can stimulate the production of short-chain fatty acids, such as 
propionate and butyrate, which are believed to improve colonic health. Probiotic therapy 
with E. coli Nissle 1917, bifidobacteria and bifidobacteria fermented milk showed efficacy 
and safety in maintaining remission of UC and had possible preventive effects on the 
relapse (Cui et al., 2004; Ishikawa et al., 2003; Kruis et al., 2004). Effectiveness in the 
induction of remission in UC patients was shown for combined therapy of VSL#3 with 
balsalazide and direct delivery of E. coli Nissle 1917 enemas to the colon (Matthes et al., 
2010; Tursi et al., 2004). Germinated barley foodstuff showed a significant decrease in the 
mean clinical activity of patients with mild- to moderately-active UC (Mitsuyama et al., 
1998). Moreover, the combination of oligofructose, inulin, and a probiotic strain 
(Bifidobacterium longum) showed an increase in mucosal-associated bifidobacteria 
concentrations associated with a decrease in both pro-inflammatory cytokines and 
antimicrobial defensins. However, the observed alterations in the mucosal cytokine balance 
was not translated into clinical changes (Furrie et al., 2005). Maintenance of remission in CD 
patients was reported to be effective when S. boulardii combined with the antibiotic 
mesalazine was administered (Guslandi et al., 2000). However, more studies report that  
pro-, pre-, and synbiotics are not effective in the induction and maintenance of remission in 
CD patients (Hedin et al., 2007). To summarize, some human trials indicate the effectiveness 
of pro-, pre-, and synbiotics in UC but they are scarce in CD. Due to variation in the 
populations studied, in the distribution of the disease, in the prevalence of genotypes, the 
small numbers of patients and the lack of details on the diet of the patients (Hedin et al., 
2007), there is a marked heterogeneity in the performed studies making a consensus on the 
treatment of IBD with pro-, pre-, and synbiotics difficult and controversial. 
As described above, a strategie which makes actively use of bacterial metabolism to improve 
drug bioavailability and which is used in the therapy of IBD, is linkage of the drug to a 
conjugate. Due to the metabolic activity of one or a few species of the microbiota, the release of 
the active compound is specific for the colon. By using this approach, side effects due to 
systemic release of the compound can be avoided. The most prevalent example in this 
category is sulfasalazine, a drug originally designed for the treatment of rheumatoid arthritis 
that was later discovered to also benefit patients with inflammatory disorders and which is 
widely used now. Due to the azoreductase activity of the colonic bacteria, the azo-bond 
connecting the active compound 5-ASA to sulfapyridine, is hydrolyzed. As the azoreductase 
enzyme is specific for colonic bacteria, 5-ASA is mainly released in the colon (Azad Khan et al., 
1982) leading to a highly specific delivery of the active compound. While there is solid data 
supporting 5-aminosalicylic acid in the induction and maintenance of remission for UC, its 
efficacy in the treatment of CD is not as clear. One of the aspects involved is the effectiveness 
of the release of 5-ASA in the small intestines as the colonic release has not occurred yet in this 
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region. Limitations of sulfasalazine include allergic reactions and side effects, largely 
attributed to the sulfapyridine moiety. In response, two non-sulfapyridine-containing 5-ASA 
agents, balsalazide and olsalazine were developed (Patel et al., 2007). In addition, inhibition of 
sulfide production by 5-aminosalicylic acid-containing drugs was reported and may 
contribute to their therapeutic effect in UC (Edmond et al., 2003). 
Furthermore, bacteria may be used as actual production facilities for local delivery of drugs 
as described above for carotenoid-producing spore-forming Bacillus spp.. A first example for 
IBD is the strain Bacillus subtilis PB6 that has been found to secrete surfactins and cyclic 
lipopeptides and was investigated for its therapeutic effect. Surfactins have exceptional 
emulsifying but also antibacterial, antiviral and antitumoral properties. As inhibitors of 
cytosolic phospholipase A2 (PLA2), surfactins may also function as anti-inflammatory 
agents. PLA2 is the key enzyme in the production of diverse lipid mediators and is involved 
in the pathophysiology of IBD. Oral administration of B. subtilis PB6 to TNBS-treated rats 
suppressed the inflammation which was seen on several parameters, i.e. mortality rate, 
weight gain, colon pathology and weight, and plasma levels of pro- and anti-inflammatory 
cytokines (Selvam et al., 2009).  
The production capacity of a bacterium for a specific compound does not necessarily have to 
be an intrinsic property of the strain. For example, a specific strain of Lactococcus lactis has 
been genetically modified to secrete human interleukin-10 (IL-10), an anti-inflammatory 
cytokine. IL-10 is a good candidate for the treatment of IBD, yet direct injection of IL-10 
induces several undesired side effects. Local delivery of IL-10 in the colon produced by 
Lactococcus lactis offers great advantages over the standard delivery method as the latter is 
associated with patient discomfort, various systemic side effects and costly production 
processes (Steidler et al., 2000). However, the use of genetically modified (GM) organisms in 
healthcare raises legitimate concerns on deliberate release and potential spread of the GM 
trait. To prevent spreading of the transgene and the GM bacteria into the environment, the 
thymidylate synthase gene (thyA) was replaced with the expression cassette for hIL10. ThyA 
codes for an enzyme necessary for the synthesis of the nucleobase thymine and nucleoside 
thymidine. As a result, the modified strain can only survive when thymidine or thymine are 
available in the intestinal environment. When deprived of one of these compounds, 
thymineless death is rapidly induced, preventing the accumulation of the GM bacteria in the 
environment. Moreover, as thymineless death results in the fragmentation of the DNA, the 
chances for uptake of L. lactis DNA by other strains are very small (Steidler et al., 2003). 
Several health authorities and biosafety committees have positively evaluated this 
containment strategy (Rottiers et al., 2009). A phase I trial with the modified L. lactis strain 
(LL-Thy12) showed promising results as maintenance treatment in CD avoiding systemic 
side effects (Braat et al., 2006). A second example of a bacterium engineered as production 
facility is a genetically modified L. lactis able to secrete the low calcium response V (LcrV) 
protein from the enteropathogenic species Yersinia pseudotuberculosis. Oral administration of 
this L. lactis induced the expression of IL-10 in the colon and decreased inflammation in 2 
murine models of colitis, i.e. TNBS and DSS (Foligne et al., 2007). As these effects were 
absent in the IL-10-/- mice model, this study once more confirmed the therapeutic potential 
of IL-10. Recently, Steidler and colleagues proposed L. lactis genetically engineered to 
secrete anti-TNF nanobodies, trefoil factor (TFF) or IL-27 as promising therapeutics for IBD 
(Durum et al., 2010; Vandenbroucke et al., 2010; Vandenbroucke et al., 2004). These strains 
have only been tested in preclinical studies. 
Table 2 summarizes the different strategies for drug development in which the microbial 
metabolism plays a key role. 
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Approach Species involved 
Specific 

bacterial activity 
Advantages 

Progress of 
development 

References 

Targeted 
alterations of 

the gut 
microbiota 

Probiotics 
f. ex. E. coli Nissle 

1917, 
bifidobacteria 

fermented milk, 
VSL#3 

Modulation of 
the host-microbe 
interactions by 
the growth of 

health-
promoting 

bacteria 

Inhibition of intestinal 
pathogens 

Improve epithelial and 
mucosal barrier 

function 
Alteration of the 

immunoregulation 

Commercialized 

(Cui et al., 2004; 
Guslandi et al., 2000; 
Ishikawa et al., 2003; 

Kruis et al., 2004; 
Matthes et al., 2010; 

Tursi et al., 2004) 

Prebiotics 
f. ex. germinated 
barley foodstuff, 

arabinoxylans 

Commercialized 
(Komiyama et al., 

2011; Mitsuyama et 
al., 1998) 

Synbiotics 
f. ex. oligofructose, 

inulin, and 
Bifidobacterium 

longum 

Commercialized (Furrie et al., 2005) 

Microbial 
metabolism for 
colon targeted 
drug release 

Colonic bacteria 

Azo-reductase 
and others for 

the conversion of 
the prodrug to 

the active 
compound 

Specific release of the 
active compound in the 

colon 

Commercialized 
f. ex. sulfasalazine, 

olsalazine, 
balsalazide 

(Azad Khan et al., 
1982) 

Colonic bacteria 

Azo-reductase 
and others for 

the degradation 
of the polymer 

capsule 

Commercialized 
f. ex. mesalazine, 

budesonide 

(Chavan et al., 2001; 
Kimura et al., 1992) 

Bacteria as 
production 
facilities- 

Cyanobacteria, 
Burkholderia spp., 
Actinomycetes, 
Myxobacteria 

Production of 
new classes of 

antibiotics 

Natural product to 
combat resistant 

pathogens 
Preclinical studies 

(Donia et al., 2008; 
Partida-Martinez & 

Hertweck, 2005; 
Scott et al., 2008; 

Wenzel & Muller, 
2009) 

Carotenoid 
producing Bacillus 

spores 

Production of 
carotenoids 

Resistant to gastric 
conditions but 

germination under 
colonic conditions 
Storage at ambient 

temperature 

Preclinical studies 

(Duc et al., 2006; 
Hong et al., 2009; 

Khaneja et al., 2010; 
Perez-Fons et al., 

2011) 

Bacillus subtilis PB6 
spores 

Production of 
surfactins 

Preclinical studies (Selvam et al., 2009) 

Lactococcus lactis 

Production of 
hIL-10 

Oral administration 
Efficient local delivery 

More favorable side 
effect profile 
Cost-efficient 

manufacturing process 

Ongoing large-scale,
double-blind, 

placebo-controlled 
phase IIA trial 

(Braat et al., 2006; 
Rottiers et al., 2009; 
Steidler et al., 2000; 
Steidler et al., 2003) 

Production of 
Trefoil factor 

(TFF) 
Preclinical studies 

(Vandenbroucke et 
al., 2004) 

Production of 
low calcium 
response V 

(LcrV) 

Preclinical studies (Foligne et al., 2007) 

Production of 
anti-TNF 

nanobodies 
Preclinical studies 

(Vandenbroucke et 
al., 2010) 

Production of IL-
27 

Preclinical studies (Durum et al., 2010) 

Table 2. Innovative approaches for the development of biopharmaceuticals making benefit 
of specific microbial functionalities 
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5. Conclusion 

This chapter has highlighted the enormous potential of the gut microbial metabolism in the 
modulation of nutritional compounds, drugs and environmental contaminants. We have 
shown that the intestinal microbiome can be involved in different levels of the ADME 
characteristics of active compounds. The microbiota can interfere in the absorption of drugs, 
f. ex. by slow release of the active compound. They can interfere in the metabolism as 
illustrated by many examples and they may prolong the action of drugs by allowing their 
enterohepatic circulation to continue and to inhibit excretion. Moreover, the microbial 
metabolism from ingested compounds can have varying responses, which can be beneficial 
but can cause some serious risks as well. Due to their interference in ADME and the 
resulting health effects, a complete understanding of the full metabolic potency of the gut 
microbiome to predict its modulating effect on xenobiotics is emerging. Gut microbial 
processes therefore need to be incorporated in pharmacokinetic models. 
To achieve full understanding of the microbial potential, the development of suitable in vitro 
models is essential. Two dynamic GIT simulators, the TIM and SHIME® model have been 
developed for this purpose, each with their own specific advantages an disadvantages to 
investigate the role of the microbial metabolism on the biotransformation of active 
compounds. Incorporation of absorptive processes in these models drastically improves the 
simulation of the bioavailability of the active compounds and by incorporating host cells in 
the SHIME® model, this model will be a useful tool to evaluate the effect of microbial 
processes on the host cells and vice versa. 
In vitro models do not merely offer opportunities to understand the biotransformation of 
active compounds but they offer the possibility to investigate the metabolic fate of newly 
developed drugs. Moreover, new strategies making use of the microbial metabolic potential 
to improve drug efficacy were discussed going from the local release of active compounds 
from prodrugs to engineering of strains to secrete specific health promoting compounds. 
Inflammatory disorders offer the perfect case for the application of these strategies. What 
has been described until now is only the beginning of a new generation of drugs making use 
of the enormous potential of the intestinal microbiome. 
Finally, given the potential implications the microbiota may have on the stability, 
bioavailablity and safety of xenobiotics, assessment of the activity of the intestinal 
microbiome should become a standard process in pharmaceutical drug development. The 
microbial potential should be further exploited to improve drug development and develop 
new strategies. By the ongoing technical improvements of in vitro models, these offer a valid 
tool to evaluate the bioavailability of new compounds and their therapeutic effect on host 
cells. Moreover, as personalized health care is becoming more and more integrated in 
modern medicine, interindividual variability in the gut microbiome should be an integral 
part of this process. 
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