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1. Introduction 

Cancer is characterized by genetic alterations due, for instance, to mutations in genomic DNA 
caused by chemicals (mutagens such as pollutants or nitrosamines, and polycyclic aromatic 
hydrocarbons), radiations (e.g., prolonged exposure to ultraviolet radiation from the sun, 
which can lead to melanoma or other skin malignancies), and viral infections (e.g., papilloma 
virus; human T-cell leukemia viruses 1, 2, 3, and 4; and herpes simplex virus). Mutations in 
genes involved in cell proliferation, tumor suppressor genes, or proto-oncogenes may lead to 
uncontrolled cell proliferation into a tumor. Currently, the most widely used treatments for 
cancer are combinations of surgery, radiotherapy and chemotherapy. However, the 
effectiveness of these treatments is variable. Consequently, means of potentiating conventional 
treatments, as well as new strategies, need to be developed. 
Gene therapy is generally perceived as a treatment for rare genetic diseases, in which 
replacing the deficient gene by its normal counterpart has proved successful, most notably 
in severe combined immunodeficiency (SCID) (Fischer et al., 2010), adrenoleukodystrophy 
(Cartier et al., 2009), and ß-thalassemia (Cavazzana-Calvo et al., 2010). However, cancer is 
the main focus of basic and clinical research on gene therapy (http:// 
www.wiley.com//legacy/wileychi/genmed/clinical/). Variable levels of success have 
been achieved using a broad range of genes encoding tumor suppressor proteins such as 
p53, antiangiogenic proteins such as anti-vascular endothelial growth factor (VEGF), 
inflammatory cytokines, and other proteins (Lane et al., 2010), (Candolfi et al., 2010), 
(Adachi et al., 2010). 
One of the main hurdles in gene therapy is selective delivery of recombinant vectors to the 
target tissue. In cancer gene therapy, administration of the vector within the tumor may be of 
interest, but some tumors are not readily accessible and vector dissemination to healthy cells 
cannot be ruled out. Today, accurate tumor targeting is a major goal of cancer gene therapy. 
In this chapter, we will focus on the methods developed to improve targeting in cancer gene 

therapy, most notably gene-directed enzyme prodrug therapy (GDEPT), which is a major 

focus of research at our laboratory. 

2. Gene-directed enzyme prodrug therapy (GDEPT) 

Cytotoxic chemotherapy is often associated with severe systemic toxicities. Gene-directed 
enzyme prodrug therapy (GDEPT) or suicide gene therapy consists in selective delivery to 
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the tumor of a gene encoding a drug-metabolizing enzyme that catalyzes the in situ 
conversion of a non-toxic prodrug to a toxic active drug (Figure 1). GDEPT can be used to 
increase the levels of an enzyme produced by the tumor or to introduce an enzyme that is 
not expressed endogenously. The local production of the cytotoxic drug within the tumor is 
expected to result in greater effectiveness and less toxicity, compared to systemic drug 
delivery.  

 

 

Fig. 1. Principle of gene-directed enzyme prodrug therapy (GDEPT) 

Several studies have been performed with different enzyme and prodrug combinations. The 

most widely studied combinations are herpes simplex thymidine kinase/ganciclovir, 

cytosine deaminase/5-fluorouracile, and cytochrome P450 (CYP)/ 

oxazaphosphorines (cyclophosphamide [CPA] and ifosphamide) (Altaner, 2008) (Table 1) 

 

Enzymes Source Prodrug Drug Indication 

Herpes simplex 
thymidine kinase 

Herpes simplex 
virus 

Ganciclovir 
Ganciclovir 

triphosphate 
(GCV-TP) 

Glioma, 
pancreatic 

cancer 

Cytosine deaminase Escherichia coli 
5-Fluorocytosine 

(5-FC) 
5-Fluorouracil 

(5-FU) 
Glioblastoma, 

Colorectal cancer 

Cytochrome P450 Rat/human/dog
Cyclophosphamide

(CPA) 

4-OH 
Cyclophospha

mide (4-OH 
CPA) 

Head and neck 
cancer, lung 

cancer, Burkitt’s 
lymphoma 

Nitroreductase Escherichia Coli CB1954 
N-acetoxy 
derivatives 

Cancer cells in 
general 

Table 1. Enzyme/prodrug combinations used in GDEPT 

2.1 Cytochrome P450 (CYP)/cyclophosphamide (CPA) combination 

The chemotherapeutic prodrug CPA is widely used for the treatment of both solid tumors 

and hematological malignancies. Enzymatic bioactivation, chiefly via human CYP2B6 

(Gervot et al., 1999), produces the metabolite 4’-OH-CPA, which undergoes spontaneous 

decomposition to acrolein and phosphoramide mustard. Phosphoramide mustard is an 
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electrophilic alkylating agent that causes the formation of intra- and interstrand DNA cross-

links, which eventually lead to apoptotic cell death (Schwartz & Waxman, 2001). In patients 

treated with CPA, this prodrug is activated by CYP2B6 in the liver, and the active 

metabolites enter the bloodstream, which transports them not only to the tumor but also to 

healthy tissues where they may cause severe side effects including cardiotoxicity, renal 

toxicity, bone marrow suppression, and neurotoxicity (Fraiser et al., 1991) (Langford, 1997). 

To prevent these side effects, CYP2B-based gene-directed enzyme prodrug therapy was 

developed by D.J. Waxman and colleagues and, more recently, by our group (Waxman et 

al., 1999), (Jounaidi, 2002), (Jounaidi et al., 2006), (Tychopoulos et al., 2005). CYP2B 

expressed in tumor cells results in the in situ conversion of CPA to cytotoxic metabolites. 

Moreover, the diffusible 4’-OH-CPA metabolite can enter neighboring cells, where it is 

converted to phosphoramide mustard, leading to the death of nontransfected tumor cells 

(Wei et al., 1995), (Tychopoulos et al., 2005). This bystander effect plays a major role in the 

CYP2B-based GDEPT strategy, and several studies of various suicide gene and prodrug 

combinations have shown that complete eradication of the tumor is possible even when the 

suicide gene product is expressed by less than 10% of the cells (Portsmouth et al., 2007)  

In our laboratory, we are developing a GDEPT strategy based on human CYP2B6, the 

human CYP isoform that preferentially metabolizes CPA (Gervot et al., 1999). One of the 

main difficulties is the relatively low affinity of CYP2B6 for CPA. Modifications aimed at 

increasing the efficiency of CYP2B6 (Vmax/Km) in catalyzing the 4-hydroxylation of CPA 

have therefore been evaluated. We used site-directed mutagenesis of the active site of 

CYPB26 to produce a double mutant (I114V/V477W) characterized by a 4-fold increase in 

CPA-4-hydroxylation efficiency compared to the wild-type CYP2B6 (CYP2B6wt), ascribable 

chiefly to an increase in enzyme affinity (Nguyen et al., 2008). Recently, we obtained a triple 

CYP2B6 mutant (CYP2B6TM) that is 8 times more efficient than CYP2B6wt (unpublished 

results from our laboratory) 

Another means of improving the efficiency of CYP2B6-mediated GDEPT is co-expression in 

the tumor cells of NADPH-cytochrome P450 reductase (RED). RED is a FAD- and FMN-

containing enzyme that catalyzes the transfer from NADPH of electrons required for CYP-

dependent enzyme reactions. Within tumors, where RED expression is heterogeneous 

(Fitzsimmons et al., 1996; L. J. Yu et al., 2001), CYP-GDEPT results in high levels of CYP 

expression, and RED availability can limit the rate of CYP-catalyzed enzyme reactions and, 

therefore, of prodrug bioactivation. To ensure the production of both CYP2B6 and RED by 

the same cancer cell, a CYP2B6wt-RED fusion protein having both 4-hydroxylase activity 

and reductase activity was built. This fusion protein proved more efficient than CYP2B6wt 

alone for metabolizing CPA in several pulmonary cell lines (Tychopoulos et al., 2005). 

Recently, we produced a CYP2B6TM-RED fusion protein that is 10 times more efficient than 

CYP2B6wt-RED in activating CPA (unpublished results from our laboratory).  

These studies show that improving the efficiency of CYP2B6 is feasible. This method may 
allow the use of lower CPA dosages with no loss of cytotoxic effectiveness within the tumor 
but with less activation by hepatic CYP2B6 and, therefore, a possible decrease in cytotoxic 
effects on non-tumor tissue. Preliminary results in various human pulmonary and head-
and-neck cancer cell lines show that expression of the CYP2B6TM-RED protein sensitized 
the cancer cells to lower doses of CPA compared to expression of CYP2B6wt-RED 
(unpublished results from our laboratory). 
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3. Gene therapy vectors 

The most important step in any gene therapy protocol is the development of efficient vectors 
for delivering the transgene to its target. The ideal vector should be administered by a non-
invasive route, penetrate only into the targeted cells in order to limit adverse side effects, 
and express the transgene in amounts sufficient to produce strong therapeutic effects. A 
wide range of vectors have been developed including viral vectors, polymers, liposomes, 
nanoparticles, and bare DNA.  
Today, about 70% of clinical gene therapy trials worldwide use viral vectors such as 
retroviruses, adenoviruses, and adeno-associated viruses (AAV) or lentiviruses (Table 2) to 
transfer transgenes and 64.5% of these trials are conducted in patients with cancer 
(http://www.wiley.com//legacy/wileychi/genmed/clinical/). 
However, retroviral vectors used to treat SCID have been responsible for leukemia caused 
by transgene insertion into proto-oncogene regions (Hacein-Bey-Abina et al., 2003). This side 
effect has severely slowed the development of gene therapy. However, we now have safer 
vectors such as the lentivirus used for gene therapy of adrenoleukodistrophy (Cartier et al., 
2009) and ß-thalassemia (Cavazzana-Calvo et al., 2010). Transgenes from recombinant 
lentivirus may be integrated mainly within intragenic or intronic regions (S. H. Yang et al., 
2008).   
Here, we will focus on three viruses that are presently widely used in gene therapy, namely, 
adenoviruses, AAVs, and lentiviruses.  

3.1 Adenoviruses  

Adenoviruses cause mild upper airway diseases. They are non-enveloped icosahedral 

viruses composed of a nucleocapsid and double-stranded linear DNA genome of about 35 

kb with inverted terminal repeat (ITR) sequences at each end. There are 51 classified human 

adenovirus serotypes; serotypes 2 and 5 are those used most widely in ex vivo and in vivo 

gene therapy. They are very convenient vectors, because they can accommodate relatively 

large segments of DNA, up to 8 kb. Moreover, their transduction efficiency is high. To avoid 

a strong immune response after vector delivery, non-replicative recombinant adenoviruses 

lacking some of the early genes involved in the immune response are used. Deletion of the 

E1 sequence renders the virus unable to produce infectious viral particles in infected cells, 

and the E3 region is not necessary for viral production since it encodes proteins involved in 

evading host immunity. Thus, deletion of E1 and E3 is used to decrease the host immune 

response to the viral proteins (Alba et al., 2005). 

Adenoviral vectors allow episomal and, therefore, transient transgene expression by 

infected cells (no integration of the foreign DNA into the genome of the host cell) (Russell, 

2009) (Alemany & Curiel, 2001). 

To infect cells, adenoviruses use the coxsackie-adenovirus receptor (CAR) and integrins as 

primary cell surface attachment components (Figure 2). The adenovirus (Ad) fiber knob 

binds with high-affinity to the CAR receptor and the viral penton base interacts with 

integrins (Bergelson, 1999). CAR plays a significant role in liver transduction and, 

consequently, most of the adenoviral particles administered intravenously are sequestered 

in the liver (Vrancken Peeters  et al., 1996). However, the mechanism of adenoviral infection 

in vivo is controversial, especially as the introduction of mutations that abrogate CAR 

binding does not significantly impact the infectivity of adenoviral vectors. 
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Fig. 2. Schematic representation of adenoviral attachment and internalization 

Although immune responses have been limited, they have sometimes restricted the 

efficiency of adenoviral vectors in clinical trials. Increased immunogenicity has been 

reported, and many patients have pre-existing immunity to the adenoviral serotypes used in 

gene therapy. Cell-mediated recognition of the viral capsid components or nucleic acids has 

received considerable attention and is thought to be chiefly regulated by toll-like receptors 

(TLRs). Innate immune responses to viruses are initiated by the infected cells, which activate 

the interferon response to block viral replication, while simultaneously releasing 

chemokines that attract neutrophils, mononuclear cells, and natural killer cells.  In 2010, 

adenoviruses were still the most widely used vectors for gene therapy. Nevertheless, the use 

of adenoviral vectors relative to other vectors decreases year on year. 

3.2 Adeno-associated viruses (AAV) 

Adeno-associated viruses (AAV) are small non-enveloped DNA viruses belonging to the 

parvovirus family. The single-strand DNA genome of about 4.8 kb comprises two open 

reading frames (rep and cap) flanked by inverted terminal repeats (ITRs). Twelve serotypes 

have been isolated from primate or human tissues (Schmidt et al., 2008). Advantages of 

AAVs include an apparent lack of pathogenicity, an ability to infect both non-dividing and 

dividing cells, and stable integration into the host genome at a specific site of the human 
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chromosome 19 when the vector includes the rep gene. In the absence of the rep gene, 

chromosomal integration occurs infrequently and at random sites (Huser et al., 2010). 

The AAV infection cycle is initiated by the binding of the viral capsid to cell surface 
receptors. One of the main receptors involved is heparan sulfate proteoglycan (HSPG); 
moreover, several co-receptors contribute to transduction (Asokan et al., 2006). Receptor 
binding mediates endocytosis, endosomal escape and, finally, transport to the nucleus. 
AAV vectors are constructed by replacing the viral DNA with an expression cassette 
encoding the gene of interest under transcriptional control of a suitable promoter. Vector 
production is achieved by transfection of a cell line with three plasmids: one contains the 
expression cassette flanked by the ITRs; another contains rep cap helper sequences, and the 
third is an adenoviral helper plasmid encoding the adenoviral E2a, E4, and VA helper genes 
(Grimm & Kleinschmidt, 1999). 
AAVs have become very popular as gene therapy vectors because of both their ability to 

mediate stable and efficient gene expression and their good safety profile. The major 

drawbacks of AAVs are the small amount of DNA that the virus can carry, which results in 

low capacity; and the difficulty of producing the vector in high titers (Michelfelder & Trepel, 

2009). AAVs have been used in at least 80 clinical trials (as of 2011), in strategies based on 

the delivery of cytotoxic genes, tumor suppressor genes, and other types of genes. 

3.3 Lentiviruses 

Lentiviruses are retroviruses that include the human immunodeficiency virus 1 (HIV-1). 

They have a lipid envelope and two identical single-stranded genomic RNA molecules that 

require a reverse transcriptase for conversion to DNA. The HIV genome is composed of two 
 

 

 Adenovirus 
Adenovirus- 
associated virus 

Retrovirus Lentivirus 

Genome integration Rarely 

No (in absence of rep 
gene) 
Yes (in presence of 
rep gene) 

Yes Yes 

Transgene expression Transient Stable Stable Stable 

Immune response Marked 

According to 
conditions (animal, 
transgene, injection 
conditions,…) 

Absent to 
moderate 

Absent to 
moderate 

Target cells 
Quiescent or 
dividing 

Quiescent or dividing Dividing 
Quiescent 
or dividing 

Transgene size up to 8 kb limited 8-9 kb 8-9 kb 

Main use in gene 
therapy 

in vivo in vivo 
ex vivo – in 
vivo 

ex vivo 

Titer >1011 >1011 >108 >108 

Genotoxicity No No 
Mutagenesis-
related risks 

No 

Table 2. Characteristics of four viral vectors: adenovirus, adenovirus-associated virus, 
retrovirus, lentivirus. 
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regulatory genes, tat and rev, which are necessary for viral replication; and four accessory 
genes, vif, vpr, vpu, and nef, which are not required for in vitro replication or growth but are 
crucial for in vivo replication. The tat and rev proteins are involved in regulating HIV gene 
expression at the transcriptional and post-transcriptional levels, respectively (Pauwels et al., 
2009).  
Lentiviral particle production involves co-transfection by calcium phosphate precipitation of 
gag-pol, env, and vector plasmids into HEK 293T cells. Viral particles are then recovered 
from the cell medium, concentrated, and filtered. Finally, the viral titer is determined (Dull 
et al., 1998) (Kutner et al., 2009).The transgene present in recombinant lentiviruses is 
integrated into the host genome via an integrase and is therefore expressed in a stable 
manner over time. Among retroviruses, lentiviruses efficiently infect both dividing and non-
dividing cells (Naldini et al., 1996) without inducing genotoxicity with insertional 
mutagenesis (Montini et al., 2009), since they are integrated mainly within intragenic or 
intronic regions. Lentiviruses (e.g., the HIV) use cell receptors such as CD4 and the co-
receptors CCR5 or CXCR4 to penetrate the cells. Lentiviral vectors express various types of 
proteins that are recognized by cell receptors and co-receptors, leading to a very broad 
tropism. 
Since these vectors were first introduced, they have been modified in several ways with the 

goal of improving their safety profile. Now, these viral vectors are being increasingly used. 

However, their lack of tissue specificity may limit their use, and several methods have been 

developed to improve their ability to target the desired site. 

4. Current strategies for viral vector targeting 

Today, the major goal in cancer gene therapy is to improve tumor targeting, thus preventing 
transgene expression by normal cells and therefore diminishing the risk of toxic side effects. 
Initially, the vector was injected directly into the tumor. However, vectors are now available 
that target the tumor after being administered systemically. 
Efforts to improve viral vector targeting can modify the binding of the virus to the cell and 

entry of the virus into the cell (entry targeting/transductional regulation) or the events that 

occur once the virus is in the cell (post-entry targeting/transcriptional regulation). Several 

approaches have been devised such as envelope or capsid modifications, the use of various 

adapters, placement of transgene expression under specific promoter control, and 

modifications of the transgene sequence. 

4.1 Pseudotyping: Envelope or capsid modification 

Viral vectors infect their natural host-cell populations preferentially and with the greatest 

efficiency. Viral infection occurs when host-cell receptors recognize the viral envelope 

proteins. Pseudotyping consists in changing the plasmid encoding the expression of 

envelope proteins. The result is a shift in the range of host cells and, consequently, in the 

tissue tropism of the viral vector. The vector surface is modified via  the incorporation of 

foreign envelope glycoproteins that have a restricted natural population of host-cell 

receptors (Frecha et al., 2008). This technique was the first to be used for modifying viral 

tropism, particularly in retroviruses such as lentiviruses, which have an envelope. 

Adenoviral vectors have no envelope, and the viral attachment protein must therefore be 

incorporated into a protein capsid instead of a lipid bilayer. 
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Lentiviral vector pseudotyping is usually achieved using the vesicular stomatitis virus G 
(VSV-G) protein, which exhibits a broad tropism for various cell types. Additional 
advantages of VSV-G-pseudotyped lentivirus are the higher viral titers compared to those 
obtained with other envelope proteins and the improved vector particle purification due to 
increased stability of the virus. However, when used in high concentrations, lentiviral 
vectors bearing VSV-G may exert cytotoxic effects (Chen et al., 1996). Fortunately, this 
drawback can be overcome either by improving purification of the lentiviral particles using 
gradient centrifugation to eliminate unincorporated transgene particles (Ricks et al., 2008) or 
by using other proteins for pseudotyping. VSV-G-pseudotyped particles are convenient to 
use ex vivo to express a transgene in a broad spectrum of cell lines. However, VSV-G-
pseudotyped viruses can be inactivated by human serum (DePolo et al., 2000). In clinical 
trials of cancer gene therapy, the objective is to limit the tropism of the vector to the cancer 
cells.  
Miletic et al., worked on a gene therapy strategy for malignant gliomas, which are the most 
common primary brain tumors and carry a poor prognosis due to their infiltrative growth 
(Miletic et al., 2004). Miletic and co-workers compared the expression of various 
pseudotyped lentiviruses in normal brain cells and malignant glioma cells. VSV-G 
pseudotyped lentiviruses infected the neurons and astrocytes, whereas the tropism of 
lymphocytic choriomeningitis virus glycoprotein (LCMV-GP) pseudotypes was virtually 
confined to the astrocytes. LCMV-G-pseudotyped lentivirus was specifically and efficiently 
transduced in rat gliomas, whereas VSV-G-pseudotyped lentivirus was considerably less 
efficient in transducing glioma cells. 
Another protein often used to target cancer cells is the modified sindbis virus envelope. 
Pariente et al., (2007) used it successfully to target prostate cancer cells.  
Transduction efficiency is low after tumor cell infection with adenoviruses. One reason is 
the limited expression of the coxsackievirus-adenovirus receptor (CAR) in tumor cells. To 
overcome this obstacle, the adenovirus fiber can be modified by removing interactions with 
both CAR and integrins, the main components involved in adenovirus transduction (Einfeld 
et al., 2001). This modification diminishes the native tropism and enhances the efficacy of 
specific targeting ligands in redirecting the adenovirus to the target tissues. 
Malignant gliomas are refractory to adenovirus-mediated gene therapy, chiefly because 
CAR is not expressed by the tumor cells. Zheng et al. identified several receptors that were 
over-expressed in tumor cells, and they created a series of pseudotyped adenoviral vectors. 
Some of these vectors enhance gene transfer to tumors and warrant further development for 
glioma gene therapy. (Zheng et al., 2007) 
Yu et al., (L. Yu et al., 2005) reported increased infection of esophageal and oral carcinoma 
cells with adenoviruses whose Ad5 fiber was substituted with fibers from Ad11 or Ad35, 
compared to unmodified adenoviruses. Similarly, attaching the Ad3 fiber to the Ad5 
backbone was particularly effective for targeting ovarian cancer and squamous cell 
carcinoma of the head and neck.  
The efficacy of pseudotyping may be limited by the lack of tissue specificity and ubiquitous 
expression of some of the receptors. Furthermore, the viral envelope modifications may 
diminish viral stability and limit viral production, leading to low titers.  

4.2 Use of adapters: Antibody/ligand 

Another technique consists in fusing special adapters or proteins to the envelope proteins. 
These adapters determine the affinity of the vector for the target. 
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4.2.1 Antibody 

A protein can be specifically targeted by the use of specific antibodies, antibody fragments, 
or single-chain antibodies fused to the viral membrane. There are two main methods for 
using antibodies to improve targeting by vectors. 

• The entire antibody or an antibody fragment directed against both a viral envelope 
protein and a tumor cell membrane receptor can be used as a bridge to attach the virus 
to specific cells.  

• An antibody fragment (usually the fragment crystallizable region Fc) can be expressed 
at the viral envelope and the rest of the antibody can be directed against a specific 
antigen of the target cells. 

For prostate cancer gene therapy, Kraaij et al. developed a targeted method based on bi-
specific antibodies constructed as conjugates between an anti-adenovirus fiber knob Fab’ 
fragment and an anti-prostate specific membrane antigen (PSMA) (Kraaij et al., 2005). These 
bi-functional antibodies, used as a bridge between capsid proteins and cell surface receptors, 
were selective for the prostate cancer cell lines. They may hold promise for gene therapy of 
prostate cancer. 
Another strategy, developed by Zhang et al., consists in binding trastuzumab (or 
Herceptin®, a monoclonal antibody directed against the human epidermal growth factor 
receptor (HER-2)) to the lentivirus envelope. Thus, the vector targets cells that overexpress 
HER-2, such as prostate cancer cells, to which it delivers the transgene. Zhang et al. 
engineered these lentiviruses to express thymidine kinase and showed that prostate cancer 
cell lines infected by these lentiviruses became vulnerable to ganciclovir. (Zhang et al., 2009) 
Poulin et al. worked on a new adenoviral vector and investigated the usefulness of capsid 
protein IX (a minor protein of the adenoviral capsid) as a platform for presenting single-
chain variable-fragment antibodies and single-domain antibodies for virus targeting. Given 
the ability of this protein to fuse to large polypeptides, Poulin et al. decided to test large 
targeting ligands such as antibodies. Presence in the vector of single-chain variable-fragment 
antibodies was not sufficient to ensure accurate targeting, contrary to the presence of single-
domain antibodies (Poulin et al., 2010).  
However, this method is still complicated to use, as it requires the production of monoclonal 
antibodies, which is both time-consuming and costly. In addition, a specific tumor cell 
antigen must be obtained, which may be difficult. Finally, the titer of vectors that express 
the antibody in their envelope is sometimes low. 

4.2.2 Ligand 
The first attempts at inserting a ligand into the viral membrane used various types of ligand 
such as growth factors, hormones, and peptides, which were inserted at various sites of the 
viral surface. 
Morizono et al., (Morizono et al., 2009) used a strategy based on a lentiviral vector bearing 
the biotin-adapter-peptide. In earlier studies of adenoviral or AAV vectors, peptides that 
were biotinylation substrates were inserted and associated with biotinylated sites, bound 
avidin, neutravidin, or streptavidin. (Parrott et al., 2003; Pereboeva et al., 2007; Stachler et 
al., 2008)  
Similarly, Liu and colleagues (Liu et al., 2011) used a serotype 5 adenoviral vector (Ad5) 
whose fiber knob was deleted and replaced by a biotin-acceptor peptide. The advantage of 
this new adenoviral vector is that no CAR-dependent cell uptake and transduction occurs; 
moreover when the vector is biotinylated, biotinylated antibodies can be used to achieve 
targeting. AAV vectors can also be biotinylated. 
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A hybrid approach using an antibody and a protein ligand has been described in two papers 
by a group working at the University of California, Los Angeles. (Joo & Wang, 2008), (L. 
Yang et al., 2006). This group of researchers engineered a lentiviral vector whose surface 
bears two distinct molecules, an antibody conferring target specificity to the engineered 
vector and a pH-dependent fusogenic protein that allows the engineered vector to penetrate 
the target cells. Evaluation by image processing showed highly specific incorporation of this 
lentivirus into the cells.  
Hajitou et al. (Hajitou et al., 2006) developed an AAV vector combined with a double cyclic 

peptide (RGD-4C) of an fd-tet phage. Their aim was to target αV integrins, a cell surface 
receptor that is overexpressed in tumors and interacts with the RGD peptide. The native 
tropism of AAV for mammalian cells is eliminated, since there is no AAV capside formation 
and the ligand peptides allow homing to tissue specific receptors. To obtain chimeric 
viruses, Hajitou et al. inserted an eukaryotic gene cassette from the AAV into an 
intergenomic region of the RGD-4C phage. The vector was functional and efficiently 
targeted human Kaposi sarcoma (KS 1767 cells) grafted in nude mice in vivo. Using a 
ganciclovir cytotoxicity strategy, Hajitou et al. obtained a decrease in tumor volume in mice 
receiving this vector compared with those given a non-specific vector. Using the same 
strategy, Bauerschmitz et al. (Bauerschmitz et al., 2002) used an adenovirus modified with a 
RGD domain to target ovarian cancer cells. As seen with the other approaches involving 
transductional targeting, limited viral production and stability may occur when the viral 
envelope is modified. 

4.3 Tissue-specific promoter 

A promoter is a DNA region that is located upstream of the gene and plays a key role in 
regulating gene expression. The insertion of a cell-specific regulated promoter upstream 
from the transgene may limit the expression of the promoter to the targeted cells. Several 
cancer-specific promoters have been found effective in cancer gene therapy, including 
prostate stem cell antigen (PSCA) promoter in prostate cancer (Petrigliano et al., 2009), 
carcinoembryonic antigen (CEA) promoter in gastric cancer (Tanaka et al., 2006), and alpha-
fetoprotein (AFP) enhancer and albumin promoter in hepatocellular carcinoma (He et al., 
2000).  
These promoters are tissue-dependent, however. A universal tumor-specific promoter 

targeting tumor cells of any origin would be of considerable interest. For instance, given that 

hypoxia is a common physiological feature of tumor tissue, an optimized hypoxia-

responsive promoter (OBHRE) may be effective in increasing the therapeutic window of 

cytotoxic cancer gene therapy (Binley et al., 2003). In a range of cell types, this promoter 

expresses high levels of transgene in hypoxic tissue but has minimal activity in normoxia. 

Moreover, the OBHRE promoter in a recombinant adenovirus allowed high-level expression 

of the transgene in tumor cells but was not expressed in normal tissues such as the liver, 

spleen, lung, and kidney. Binley et al. developed a GDEPT strategy using CYP2B6 or 

thymidine kinase as the transgene in combination with CPA and ganciclovir, respectively. 

Direct administration of the gene therapy vector containing OBHRE into established tumor 

models was effective, and this method limited the toxic effects due to hepatic sequestration 

of the adenovirus. 

A characteristic promoter of cancer cells is the prostate stem cell antigen (PSCA) promoter. 
Petrigliano et al. (Petrigliano et al., 2009) used the PSCA promoter to develop a lentiviral 
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vector targeting prostate cells. PSCA is consistently expressed by high-grade prostate 
intraepithelial neoplasias and invasive prostate cancers (Watabe et al., 2002). The lentiviral 
vector carried a cytotoxic thymidine kinase gene and was combined with ganciclovir 
treatment. Lentiviral gene therapy vector driven by a short PSCA promoter induced 
prostate-specific cellular toxicity in vivo and in vitro. This strategy could be used to treat local 
and advanced metastatic prostate cancer. 
However, one of the main problems with the specific promoter strategy is that faithful 
reconstitution of a complete gene sequence promoter can be difficult. Moreover, 
transcriptional targeting cannot prevent the sequestration of therapeutic viruses in normal 
tissues, which may result in toxicity and loss of efficacy. 

5. A new strategy for viral vector targeting: micro RNAs (miRNA) 

In addition to the above-mentioned methods, microRNAs (miRNAs) may hold potential for 
improving viral vector targeting, as they are involved in the post-transcriptional regulation 
of gene expression. 

5.1 microRNAs (miRNAs)  

The small non-coding RNAs (~20-25 nucleotides) known as miRNAs regulate gene 
expression at the post-transcriptional level. They are involved in a variety of biological 
processes including development, differentiation, apoptosis, and cell proliferation. They 
repress gene expression by binding to their complementary target sites in mRNAs, thereby 
increasing the degradation or preventing the translation of the transcripts. Thus, cells that 
express an miRNA complementary to an mRNA do not express the protein coded by this 
mRNA: miRNAs are endogenous negative gene regulators. (Figure 3). 
In 1993, miRNAs were identified for the first time, in the nematode  Caenorhabdtis elegans, in 
which they were encoded by the lin-4 and were complementary to mRNA for the lin-14 gene 
(R. C. Lee et al., 1993). The lin-4 gene product is a small RNA of 22 nucleotides (i.e., na 
miRNA) that is specific of the 3’UTR of the lin-14 gene and therefore inhibits the production 
of the lin-14 protein, thus preventing the transition from larval stage L1 to stage L2. Since 
the discovery of miRNAs, their mechanisms of action and biogenesis have been studied in 
detail, and they have been shown to play a major role in physiological processes, 
development, and disease.  
Briefly, miRNA biogenesis involves four stages: transcription of pri-miRNA; cleavage by 
Drosha to release a precursor pre-miRNA; export of the precursor to the cytoplasm; and 
cleavage of the pre-miRNA precursor by Dicer. All miRNAs are processed from precursor 
molecules called pri-miRNAs (Y. Lee et al., 2002), which are transcribed from independent 
miRNA genes or are portions of introns of protein-coding RNA polymerase II transcripts. 
Typically, a single pri-miRNA often contains sequences of several different miRNAs. 
These pri-miRNAs of about 100 nucleotides are folded into hairpin structures and 
characterized by imperfectly base-paired stems. These molecules are then processed by a 
multiprotein complex including the Rnase III type endonuclease Drosha and DiGeorge 
syndrome critical region gene 8 (DGCR 8). The hairpin structures are recognized in the 
nucleus by DGCR 8, a double-stranded RNA-binding protein (dsRBP). DGCR8 and the 
Drosha complex process the pri-miRNAs to pre-miRNA hairpins composed of about 70 
nucleotides. Pre-miRNAs are then transported from the nucleus to the cytoplasm by 
exportin 5. In the cytoplasm, they undergo a final maturation step consisting in cleavage by 
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Dicer, which is complexed with TAR RNA binding protein (TRBP). This cleavage step 
releases an miRNA duplex of about 20 nucleotides. Mature miRNAs are integrated into a 
ribonucleoprotein complex called RNA induced silencing complex (RISC) or miRNA-
induced silencing complex (miRISC). The components of miRISC complexes are mature 
miRNAs, Dicer and TRBP proteins, and proteins of the Argonaute family (AGO). 
 

 

Fig. 3. Principle of miRNA biogenesis  

AGO proteins represent the key components of miRISCs; in mammals, four AGO proteins 
(AGOs 1, 2, 3, and 4) have been identified. They are involved in the miRNA repression 
function via protein synthesis repression, whereas only AGO2 contributes to the RNA 
interference (RNAi) function. (Jaskiewicz & Filipowicz, 2008). 
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Binding of miRNAs to complementary target sites on mRNAs prevents the translation of the 
transcript or accelerates its decay. The regulation of miRNAs depends on the binding of the 
first 2 – 8 bases of their mature sequence to the 3’UTR of target genes. To date, 1048 human 
miRNA precursor sequences have been deposited in the miRBase (http://www.mirbase.org) 
(Kozomara & Griffiths-Jones) 
There is now sound evidence that miRNAs are involved in the pathogenesis of conditions 
such as cancer and inflammatory responses. It has been shown that miRNA expression is 
deregulated in cancer cells. The differences in miRNA expression between normal and 
malignant cells may be related to the location of miRNA genes in cancer-associated regions, 
to epigenetic mechanisms, and to alterations in the miRNA processing machinery (Calin & 
Croce, 2006). Several studies suggest that miRNAs may contribute to oncogenesis by acting 
either as tumor suppressors (excessive regulation) or as oncogenes (insufficient regulation). 

5.2 Targeting strategy using miRNA 

Recently, researchers have started to evaluate endogenous miRNA-mediated regulation as a 
means of targeting the expression of exogenous genes. Naldini and co-workers demonstrated 
that endogenous miRNAs could be broadly exploited to regulate transgene expression in 
various cell lines. This very elegant approach to the control of protein expression relies on the 
potent regulatory properties of miRNAs. Several studies demonstrated that miRNA 
expression in cancer cells is deregulated compared to normal cells. The idea is to use this 
deregulation to modulate the expression of the transgene (B. D. Brown et al., 2007a) (Figure 4). 
Naldini and colleagues first developed a vector characterized by suppression of transgene 
expression in hematopoietic cells. The vector contains target sequences for the hematopoietic 
cell-specific miRNA miR 142-3p; thus, transgene expression is specifically suppressed in all 
hematopoietic cell lines but is not affected in other cell types. (B. D. Brown et al., 2007a) 
 

 

Fig. 4. Principle of miRNA targeting strategy 
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During the development of this technique, one issue was determination of the amount of 
endogenous miRNA needed to obtain effective target mRNA suppression. Brown et al., (B. 
D. Brown et al., 2007b) investigated this issue and concluded that target suppression 
depended on a threshold miRNA concentration. 
Suzuki et al., (Suzuki et al., 2008) worked on a suicide gene therapy strategy based on the 
herpes simplex virus thymidine kinase (HSVtk) gene and ganciclovir (GCV), with 
adenoviral vectors. Based on the literature and their experiments, they showed that 
intratumorally injected adenoviral vectors were disseminated into the systemic circulation 
and transduced in the liver, resulting in hepatotoxicity. They therefore decided to produce a 
vector capable of preventing the hepatotoxicity of adenoviruses without altering the 
antitumor effects of suicide gene therapy. They hypothesized that insertion of sequences 
complementary to miR122a (which is highly expressed in the liver) into the 3’-UTR of a 
transgene expression cassette in adenoviral vectors would reduce hepatic transduction 
without affecting transgene expression in the tumor.  
They constructed several vectors; among them, one had four tandem copies of sequences 
with perfect complementarities to miR122a. The copy number of miRNA target sequences is 
expected to play an important role in the regulation of transgene expression. An increase in 
the number of miRNA sequences leads to greater suppression of transgene expression 
(Doench et al., 2003); thus, four copies are better than two (B. D. Brown et al., 2007b). 
However, considerable work remains needed to determine the best number of copies and 
the best spacing elements between tandem copies of miRNA. 
Simultaneously, Ylosmaki et al. have developed an adenoviral vector containing sequences 
complementary to miR 122. They tested the expression of a protein encoded by the vector in 
Huh7 cells. Huh7 cells resemble normal hepatocytes in that they have a high level of miR 
122 expression. As mentioned previously, this strategy prevented transgene expression in 
the liver, thus avoiding adenovirus-induced hepatotoxicity. 
An increasing number of studies combine tissue promoter regulation with miRNA 

regulation. For instance, Wu C et al. (Wu et al., 2009) developed a baculoviral vector, a 

strategy that could be extended to other viral vectors. To target glioblastoma cells, they used 

thymidine kinase/ganciclovir, and a glial fibrillary acidic protein (GFAP) gene promoter. 

Expression of the herpes simplex virus thymidine kinase gene was controlled by adding the 

repeated target sequences of three miRNAs that are enriched in astrocytes but 

downregulated in glioblastoma cells. To determine which miRNA sequences should be 

used, they reviewed the literature on miRNA expression in gliomas and normal brain 

tissues.  

Downregulated miRNAs are miR 128, 137, 299, 31, 107, 132, 133a, 133b, 154, 323, 330, 127, 

134, 181a, and 181b (Ciafre et al., 2005) (Silber et al., 2008); there is only one upregulated 

miRNA, namely, miR 10b. Wu and colleagues used these results to construct targeting 

vectors. Suicide gene expression controlled by specific miRNA sequences exerted selective 

cellular effects in vitro and in vivo. Glioma cells were specifically targeted, and ganciclovir 

was toxic in these cells. Wu et al. concluded that incorporating miRNA regulation into a 

transcriptional targeting vector provided a high level of control over transgene expression. 

The crucial steps in developing an efficient system include selection of a relevant tissue-

specific promoter and determination of relative miRNA expressions in tumor cells and their 

normal counterparts. The next step is selection of miRNAs that are downregulated in tumor 

cells and expressed at high levels in normal cells.  
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This approach has also been studied in another cancer treatment strategy based on oncolytic 
viruses. Thus, Leja et al., (Leja et al., 2010) worked on an oncolytic adenovirus. Their aim 
was to abolish the hepatic tropism of the adenovirus, and therefore the occurrence of 
hepatotoxicity, without altering the antitumoral effects in neuroendocrine cells. They used 
not only a specific promoter but also miR 122 sequences. Similar to Suzuki et al. (Suzuki et 
al., 2008) and Ylosmaki et al. (Ylosmaki et al., 2008), Leja et al. found that hepatic tropism 
and expression were abolished.  
Edge et al. (Edge et al., 2008) used another oncolytic virus, the vesicular stomatitis virus 
(VSV). They incorporated let-7 miRNA complementary sequences within the VSV to 
eliminate toxicity for normal cells without preventing expression in cancer cells in vitro and 
in vivo. 
This approach has also been found effective in diseases other than cancer. Thus, an miR 142-
3p regulated lentiviral vector has been used in hemophilia B (B. D. Brown et al., 2007a); miR 
122 regulated transgene expression improved targeting to the heart (Geisler et al.); and a 
lentiviral vector containing miR 142 sequences regulated UGT1A1 expression in the liver 
(Schmitt et al., 2010)). 

6. Conclusion  

Cancer gene therapy and, in particular, suicide gene therapy holds considerable promise as 
a substitute for conventional chemotherapy. However, several aspects of gene therapy 
remain to be improved. In particular, there is a need for developing enzymes such as mutant 
forms of human enzymes that are more efficient than the wild-type enzyme regarding 
specificity and kinetics for the prodrugs, as exemplified by our CYP2B6TM-RED and CPA 
combination.  
The viral vectors used to achieve gene transfer may have a broad tropism and may therefore 
infect healthy tissue. An insufficient ability of vectors to target tumors has contributed to 
slow the development of cancer gene therapy. Researchers have therefore expended 
considerable effort to improve viral vector targeting, as discussed in this chapter. Moreover, 
the accumulation of knowledge about miRNAs has opened up a new field of gene 
regulation. Using miRNA properties to regulate transgene expression, and therefore 
targeting, in cancer gene therapy is both extremely elegant and quite simple. Future 
strategies should combine several targeting methods (Figure 5). Several groups have already 
constructed vectors characterized by a double targeting system consisting of specific 
promoters and miRNA. Today, the development of vectors characterized by both 
transductional and transcriptional targeting is within reach. It is reasonable to hope that safe 
vectors capable of specifically targeting cancer cells will be available soon and will open up 
new horizons for cancer gene therapy.  
Last, new prodrugs with greater effectiveness are needed. Given that hypoxia is a common 
environmental feature in solid tumors, prodrugs specifically activated by hypoxia should be 
designed. For example, our previously described fusion gene expresses both CYP2B6 and 
RED catalytic activities, and we plan to use CPA treatment in combination with additional 
prodrugs known to be activated to cytotoxic metabolites under hypoxic conditions, such as 
AQ4N by CYP 2B6 or mitomycin C and tirapazamine by RED (J. M. Brown & Wang, 1998; 
Cavazzana-Calvo et al., 2010; Friery et al., 2000; McErlane et al., 2005).  
Recent clinical trials confirmed the usefulness of cancer gene therapy and its potential for 
application in the clinical setting, as a substitute for conventional chemotherapy or, if the 
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result is only a decrease in tumor size, in combination with surgery and radiotherapy. We 
hope that the expected improvements in cancer gene therapy outlined above will further 
facilitate the use of this strategy for treating solid tumors. 
 

 

Fig. 5. Summary of various strategies for targeting lentiviral expression to cancer cells 
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