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1. Introduction 

The advancement in efficient modeling and methodology for thermoelastic analysis of 

structure members requires a variety of the material characteristics to be taken into 

consideration. Due to the critical importance of such analysis for adequate determination of 

operational performance of structures, it presents a great deal of interest for scientists in both 

academia and industry. However, the assumption that the material properties depend on 

spatial coordinates (material inhomogeneity) presents a major challenge for analytical 

treatment of relevant heat conduction and thermoelasticity problems. The main difficulty lies 

in the need to solve the governing equations in the differential form with variable coefficients 

which are not pre-given for arbitrary dependence of thermo-physical and thermo-elastic 

material properties on the coordinate. Particularly, for functionally graded materials, whose 

properties vary continuously from one surface to another, it is impossible, except for few 

particular cases, to solve the mentioned problems analytically (Tanigawa, 1995). The analytical, 

semi-analytical, and numerical methods for solving the heat conduction and thermoelasticity 

problems in inhomogeneous solids attract considerable attention in recent years. The overview 

of the relevant literature is given in our publications (Tokovyy & Ma, 2008, 2008a, 2009, 2009a). 

On the other hand, determination of temperature gradients, stresses and deformations is 

usually an intermediate step of a complex engineering investigation. Therefore analytical 

methods are of particular importance representing the solutions in a most convenient form. 

The great many of existing analytical methods are developed for particular cases of 

inhomogeneity (e.g., in the form of power or exponential functions of a coordinate, etc.). The 

methods applicable for wider ranges of material properties are oriented mostly on 

representation the inhomogeneous solid as a composite consisting of tailored homogeneous 

layers. However, such approaches are inconvenient for applying to inhomogeneous materials 

with large gradients of inhomogeneity due to the weak convergence of the solution with 

increasing the number of layers. 

A general method for solution of the elasticity and thermoelasticity problems in terms of 
stresses has been developed by Prof. Vihak (Vigak) and his followers in (Vihak, 1996; Vihak 
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et al., 1998, 2001, 2002; Vigak, 1999; Vigak & Rychagivskii, 2000, 2002). The method consists 
in construction of analytical solutions to the problems of thermoelasticity based on direct 
integration of the original equilibrium and compatibility equations. Originally the 
equilibrium equations are in terms of stresses, and they do not depend on the physical 
stress-strain relations, as well as on the material properties. At the same time the general 
equilibrium relates all the stress-tensor components. This enables one to express all the 
stresses in terms of the governing stresses. The compatibility equations in terms of strain are 
then reduced to the governing equations for the governing stresses. When these equations 
are solved, all the stress-tensor components can be found by means of the aforementioned 
expressions. In addition, the method enables the derivation of: a) fundamental integral 
equilibrium and compatibility conditions for the imposed thermal and mechanical loadings 
and the stresses and strains; b) one-to-one relations between the stress-tensor and 
displacement-vector components. Therefore, when the stress-tensor components are found, 
then the displacement-vector components are also found automatically. Such relations have 
been derived for the case of one-dimensional problem for a thermoelastic hollow cylinder 
(Vigak, 1999a) and plane problems for elastic and thermoelastic semi-plane (Vihak & 
Rychahivskyy, 2001; Vigak, 2004; Rychahivskyy & Tokovyy, 2008). 
Since application of this method rests upon the direct integration of the equilibrium 
equations, the proposed solution scheme offers ample opportunities for efficient analysis of 
inhomogeneous solids. In contrast to homogeneous materials, the compatibility equations in 
terms of stresses are with variable coefficients. This causes that the governing equations, 
obtained on the basis of the compatibility ones, appear as integral equations of Volterra 
type. By following this solution strategy, the one-dimensional thermoelasticity problem for a 
radially-inhomogeneous cylinder has been analyzed (Vihak & Kalyniak, 1999; Kalynyak, 
2000). In the same manner, the two-dimensional elasticity and thermoelasticity problems for 
inhomogeneous cylinders, strips, planes and semi-planes were solved in (Tokovyy & 
Rychahivskyy, 2005; Tokovyy & Ma, 2008, 2008a, 2009, 2009a). The same method has also 
been extended for three-dimensional problems (Tokovyy & Ma, 2010, 2010a). Application of 
this method for analysis of inhomogeneous solids exhibits several advantages. First of all, 
this method is unified for various kinds of inhomogeneity and different shape of domain 
and it does not impose any restriction on the material properties. Moreover, when applying 
the resolvent-kernel algorithm for solution of  the governing Volterra-type integral equation, 
the solutions of corresponding elasticity and thermoelasticity problems for inhomogeneous 
solids appear in the form of explicit functional dependences on the thermal and mechanical 
loadings, which makes them to be rather usable for complex engineering analysis.  
Herein, we consider an application of the direct integration method for analysis of 
thermoelastic response of an inhomogeneous semi-plane within the framework of linear 
uncoupled thermoelasticity (Nowacki, 1962). The solution of this problem consists of two 
stages: i) solution of the in-plane steady-state heat conduction problem under certain 
boundary conditions, and ii) solution of the plane thermal stress problem due to the above 
determined temperature field and appropriate boundary conditions. Solution of both 
problems is reduced to the governing Volterra integral equation. By making use of the 
resolvent-kernel solution technique, the governing equation is solved and the solution of the 
original problem is presented in an explicit form. Due to the later result, the one-to-one 
relationships are set up between the tractions and displacements on the boundary of the 
inhomogeneous semi-plane. Using these relations and the solution in terms of stresses, we 
find solutions for the boundary value problems with displacements or mixed conditions 
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imposed on the boundary. It is shown that these solutions are correct if the tractions satisfy 
the necessary equilibrium conditions, the displacements meet the integral compatibility 
conditions, and the heat sources and heat flows satisfy the integral condition of thermal 
balance. 

2. Analysis of the steady-state heat conduction problem in an 
inhomogeneous semi-plane 

In this section, we consider an application of the direct integration method for solution of the 
in-plane steady-state (stationary) heat conduction problem for a semi-plane whose thermal 
conductivity is an arbitrary function of the depth-coordinate. Having applied the Fourier 
integral transformation to the differential heat conduction equation with variable coefficients, 
this equation is reduced to the Volterra-type integral equation, which then is solved by making 
use of the resolvent-kernel technique. As a result, the temperature distribution is found in an 
explicit functional form that can be efficiently used for analysis of thermal stresses and 
displacements in the semi-plane. 

2.1 Formulation of the heat conduction  problem 

Let us consider the two-dimensional heat conduction problem for semi-plane 

{( , ) ( , ) [0, )}D x y       in the dimensionless Cartesian coordinate system (x, y). In 

assumption of the isotropic material properties, the problem is governed by the following 
heat conduction equation (Hetnarski & Reza Eslami, 2008) 

 
( , ) ( , )

( ) ( ) ( , ),
T x y T x y

k y k y q x y
x x y y

               
 (1) 

where ( , )T x y  is the steady-state temperature distribution, k(y) stands for the coefficient of 

thermal conduction, and q(x, y) denotes the quantity of heat generated by internal heat 
sources in semi-plane D. When the coefficient of thermal conduction is constant, then 
equation (1) presents the classical equation of quasi-static heat conduction (Nowacki, 1962; 
Carslaw & Jaeger, 1959) 

 ( , ) ( , ),T x y W x y    (2) 

where 2 2 2 2/ /x y        and ( , ) ( , ) /W x y q x y k  denotes the density of internal sources 

of heat. In the steady-state case, the temperature ( , )T x y  can be determined from equation 

(1) for ( )k y  or (2) for constk   under certain boundary condition imposed at 0y   

(Nowacki, 1962). We consider the boundary condition in one of the following forms: 
a. the temperature distribution is prescribed on the boundary 

 0( , ) ( ), 0;T x y T x y   (3) 

b. the heat flux over the limiting line 0y   is prescribed on the boundary 

 0

( , )
( ), 0;

T x y
x y

y


  


 (4) 
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c. the heat exchange condition is imposed on the boundary 

 0 0

( , )
( , ) , 0.

T x y
T x y y

y
 


  


 (5) 

Here 0  and 0  are constants, 0( )T x  and 0( )x  are given functions. Assuming that the 

temperature field, heat fluxes, and the density of heat sources vanish with | |,x y  , we 

consider finding the solution to equation (1) or (2) under either of the boundary conditions 
(3) – (5) and the supplementary conditions of integrability of the functions in question in 
their domain of definition. 

2.2 Solution of the stated heat conduction problem by reducing to the Volterra-type 
integral equation 

In the case when constk  , it has been shown (Rychahivskyy & Tokovyy, 2008) that for 

construction of a correct solution to equation (2) with boundary condition (4), the following 
necessary condition  

 0( , )d d ( )d
D

W x y x y x x



    (6) 

is to be fulfilled. This condition of thermal balance postulates that the resultant heat flux 

trough the boundary 0y   is equal to the resultant action of internal heat sources within 

domain D. In the case of boundary conditions (3) or (5), the right-hand side of condition (6) 

should be replaced by the integral of the heat flux at 0y  , which is determined by the 

temperature. Due to this reason, condition (6) can be regarded as an efficient tool for 
verification of the solution correctness.   
Note that condition (6) is natural for steady-state thermal processes in bounded solids. 
However, it is not intuitive for non-stationary thermal regimes since then only certain 
distribution of the temperature field is possible inside the solid implying that the heating of 
the solid until an average temperature is not achievable. Thus, condition (6) for a semi-plane 
is a consequence of application of solid mechanics to the oversimplified geometrical model.  
By denoting 

 
( , ) ( , )

( , ) ( ) , ( , ) ( )x y

T x y T x y
x y k y x y k y

x y

 
   

 
  

in equation (1), when ( )k k y , and following the strategy presented in 

(Rychahivskyy & Tokovyy, 2008), it can be shown that condition (6) holds for the case of 
inhomogeneous material. In addition, the resultant of the temperature is necessarily equal to 
zero 

 ( , )d d 0
D

T x y x y   (7) 

for both homogeneous and inhomogeneous cases.  
Let us construct the solution to equation (1) under boundary conditions (3), (4), or (5) by 
taking conditions (6) and (7) into consideration. Having applied the Fourier integral 
transformation (Brychkov & Prudnikov,  1989) 
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 ( ; ) ( , )exp( )df y s f x y isx x



   (8) 

to the aforementioned equation and boundary conditions, we arrive at the following second 

order ODE 

 
2

2
2

d ( ; ) d ( ) d ( ; )1
( ; ) ( ; )

( ) d dd

T y s k y T y s
s T y s q y s

k y y yy

 
    

 
 (9) 

that is accompanied with one of the following boundary conditions: 

 0( ; ) ( ), 0;T y s T s y   (10) 

 0

d ( ; )
( ), 0;

d

T y s
s y

y
    (11) 

 0 0

d ( ; )
( ; ) , 0.

d

T y s
T y s y

y
     (12) 

Here s is a parameter of the integral transformation, 2 1i   ,    ,f x y L D . For the sake of 

brevity, the parameter s will be omitted from the arguments of functions in the following 

text.   

A general solution to equation (9) in semi-plane D can be given in the form 

0

( )1
( ) exp( | | ) exp( | || |)d

2| | ( )

q
T y C s y s y

s k


 




      

     
0

1 1 d ( ) d ( )
exp( | || |)d

2| | ( ) d d

k T
s y

s k

   
  


   , (13) 

where C is a constant of integration and | |  denotes the absolute-value function. By 

applying the integration by parts to the last integral in equation (13), we can obtain the 

following Volterra-type integral equation of second kind: 

 
0

(0) d (0)
( ) exp( | | ) *( ) ( ) ( , )d .

2| | (0) d

T k
T y C s y q y T K y

s k y
  

 
     
 

  (14) 

Here 

0

( )1
*( ) exp( | || |)d ,

2| | ( )

q
q y s y

s k


 




    

1 d 1 d ( )
( , ) exp( | || |)

( )2| |d d

k
K y s y

ks

 
 

 
    

 
 

www.intechopen.com



 
Heat Conduction – Basic Research 

 

254 

 
2

2

exp( | || |)1 1 d ( ) d ( ) d ( )
| |sgn( ) .

2| | ( ) d d ( )d

s yk k k
s y

s k k

  
   

    
        

 (15) 

To solve integral equation (14), different algorithms can be employed, for instance, the 

Picard’s process of successive approximations (Tricomi, 1957; Kalynyak, 2000; 

Tokovyy & Ma, 2008a), the operator series method (Bartoshevich, 1975), the Bubnov-

Galerkin method (Fedotkin et al., 1983), a numerical procedure based on trapezoidal 

integration and a Newton-Raphson method (Frankel, 1991), iterative-collocation method 

(Hącia, 2007), discretization method, special kernels method and projection-iterative method 

(Domke & Hącia, 2007), spline approximations (Kushnir et al., 2002), the quadratic-form 

method (Belik et al. 2008), the greed methods (Peng & Li, 2010). Herein we employ the 

resolvent-kernel algorithm (Pogorzelski, 1966; Porter & Stirling, 1990) in the same manner as 

it has been done in (Tokovyy & Ma, 2008, 2009a). This method allows us to obtain the 

explicit-form analytical solution that is convenient for analysis. As a result, the 

transformation of temperature appears as 

 
(0) d (0)

( ) ( ) ( ),
2| | (0) d

T k
T y C y y

s k y
 

 
   
 

 (16) 

where 

 
0

( ) exp( | | ) exp( | | ) ( , )d ,y s y s y   


      (17) 

 
0

( ) *( ) *( ) ( , )d ,y q y q y   


    (18) 

and the resolvent-kernel is determined by the recurring kernels as 

 1
0

( , ) ( , ),n
n

y K y 





   (19) 

1 1 0
( , ) ( , ), ( , ) ( , ) ( , )d , 1,2,...n nK y K y K y K y K n      


    

Note that expression (16) is advantageous in comparison with the analogous solutions 

constructed by means of the aforementioned techniques for solution of the Volterra integral 

equations. First of all, solution (16) is obtained in explicit functional form. This fact can be 

efficiently used for complex analysis involving solution of thermoelasticity problem. Next, 

the resolvent (19) is expressed only through the kernel (15) of integral equation (14) 

(“intrinsic” properties of an integral equation) and is non-dependent of the free term 

(“external” properties of an integral equation). Consequently, being computed once for 

certain kernel (which means for certain material properties, obviously), resolvent (19) can be 

employed for various kinds of thermal loading. 

To determine the unknown constant C in equation (16), one of conditions (10) – (12) should 

be employed. Insertion of (16) into condition (10)  yields 
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0 (0) d (0) (0)
1 ,

(0) 2| | (0) d (0)

T k
C

s k y

 
 

 
   

 
 

and then the temperature can be given as 

 
0 (0)

( ) ( ) ( ).
(0)

T
T y y y


 




   (20) 

In the case of boundary condition (11), the constant C appears as 

1 1

0

d (0) (0) d (0) d (0) d (0)
.

d 2| | (0) d d d

T k
C q

y s k y y y

  
 

   
     

   
 

Then the temperature can be given as 

 

1

0

d (0) d (0)
( ) ( ) ( ).

d d
T y q y y

y y

   


  
    
  

 (21) 

In the case of boundary condition (12), the constant C takes the form 

1

0 00

d (0) d (0) (0) d (0)
(0)(0)

d d 2| | (0) d

T k
C

y y s k y

    


  
      
  

, 

and, consequently,  

 

1

0 00

d (0) d (0)
( ) (0) ( ) ( ).(0)

d d
T y y y

y y

      


  
      
  

 (22) 

Having determined the expressions for the temperature field in the form (20), (21), or (22) 
and applying the formula 

 
1

( , ) ( ; )exp( )d
2

f x y f y s isx s






   (23) 

of inverse Fourier transformation (Brychkov & Prudnikov, 1989), we can obtain the 

expressions for temperature field in semi-plane D. 

Note that according to the resolvent-kernel theory (Verlan & Sizikov, 1986), the recurring 

kernels 1nK   tend to zero as n  . Thus, for practical computations, the series in 

expression (19) can be truncated. Consequently, 

 1
0

( , ) ( , ) ( , ),
N

N n
n

y y K y  


    (24) 

where N is a natural number which depends on required accuracy of calculation. 
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2.3 Numerical analysis  

To verify the obtained solution to the heat conduction problem, let us examine the case, 

when the semi-plane is heated by a single concentrated internal heat source 

 0 0( , ) ( ) ( ).q x y q x y y    (25) 

Meanwhile the boundary 0y   remains of the constant temperature, 0 0T  . Here 0q  is a 

constant dimensional parameter; ( )   denotes the Dirac delta-function. In this case, the 

temperature should be computed on the basis of expression (20). The coefficient of thermal 

conductivity is assumed to be in the following form 

 0( ) exp( ),k y k y  (26) 

where 0k  and   are constants. Note that for 0  , the thermal conductivity in the form 

(26) is constant, that corresponds to the case of homogeneous material. Then, on the basis of 

expression (19), the resolvent ( , ) 0y    and thus expression (20) presents an exact 

analytical solution 

  0
0 0

0

( ) 1
exp( | || |) exp( | |( ))

2| |

T y k
s y y s y y

q s
      . (27) 

Application of the Fourier inversion (23) to formula (27) yields the expression for the 

temperature in the homogeneous semi-plane, as follows: 

 
2 2

00
2 2

0 0

( )1
( , ) ln .

4 ( )

x y yk
T x y

q x y y
 


 

 (28) 

The full-field distributions of the temperature (28) and the components of corresponding 

heat flux are depicted in Fig. 1 for 0 1y  . Distribution of the temperature (28) versus the 

 

  

Fig. 1. Full-field distributions of (a) the dimensionless temperature 0

0

( , )k T x y

q
, and (b) trans-

versal 0

0

( , )T x yk

q y




 and (c) longitudinal 0

0

( , )T x yk

q x




 components of the heat flux for 0 1y   
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variable y is shown in Fig. 2 for x = 0.0; 0.5 and different values 0 1.0;2.0;3.0;4.0.y  As we 

can observe in both figures, the thermal state is symmetrical with respect to the line 0x  . 

The temperature vanish when mowing away from the location of the heat source 0(0, )y . 

When approaching the boundary 0y  , the temperature vanish faster than in the opposite 

direction (due to satisfaction of the boundary condition). When the location of the heat 
source is moving away from the boundary, then the thermal state tends to one symmetrical 

with respect to the line 0y y  (Fig. 2) due to the lowering influence of the boundary (in 

analogy to the case of an infinite plane).  
 

 

Fig. 2. Distribution of the temperature (28) versus coordinate y for 0.0;0.5x    

 

 

Fig. 3. The heat flux (29) for different values of 0 1.0;2.0;3.0;4.0y   

 

 

Fig. 4. Dependence of the thermal conductivity on the coordinate y for different values of   

For the obtained temperature, the heat flux trough the boundary 0y   can be found as 
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 00 0
2 2

0 0

.
( )

yk

q x y 





 (29) 

By taking formulae (25) and (29) into consideration, it is easy to see that condition (6) is 

satisfied for the considered case. Distribution of the heat flux (29) for different values of 0y  is 

shown in Fig. 3.  As we can see, the heat flux over the boundary is locally distributed with the 

maximum value at 0x   which decreases as the heat source is further from the boundary.  

Now let 0   in (26). For this case, the exact solution can be constructed by following the 

technique presented in (Ma & Lee, 2009; Ma & Chen, 2011). According to this technique, the 
exact solution to the problem (1), (3), (25) can be found in the form 

 
      
      
y y y y yqk

T y
q s y y y y y

  

  

       
     



  

   

0 0 0
00

2 2
0 0 0

exp /2 exp /2 exp /2 , ,
( )

4 exp /2 exp /2 exp /2 , ,
 (30) 

where 2 24s      . To obtain the distribution of temperature due to Fourier 

transform (30), the inversion formula (23) can be applied. The distributions of obtained 
temperature and corresponding heat flux are examined for different values of the parameter 

of inhomogeneity: 1  , 1   , and, for comparison with above-discussed homogeneous 

case, 0   (Fig. 4). For 1  , the thermal conductivity grows exponentially from 1 to 

infinity; for 1    it decreases from 1 to 0. 
 

 

Fig. 5. Distribution of the temperature due to transformant (30) versus coordinate y at 

0.0x   for 0, 1    

 

 

Fig. 6. Distribution  of the heat flux across the boundary  y  0  for 0 1.0;3.0y  , 0; 1    
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Fig. 7. Distribution of the heat flux for  0 1.0;3.0y  , 0, 1    

The effect of inhomogeneity on the temperature and heat flux over the boundary 0y   is 

shown in Figs. 5 and 6, respectively.  As we observe in Fig. 5, the temperature vanishes with 

y   as faster as the parameter of inhomogeneity   is greater, whereas for 00 y y   

vice-verse.  Consequently, the heat flux over the boundary 0y   is greater for greater 

values of   (Fig. 6).  

Now we consider application of formula (20) for computation of the temperature in the 
inhomogeneous semi-plane. We employ formula (24) instead of (19) in (17) and (18). 
Distribution of the temperature computed by formula (20) for different values of parameter 
N in (24) is shown in Fig. 7. With growing N, the result naturally tends to the exact solution 

(30) and for 5N   they coincide. This result shows that expression (24) provides sufficiently 

good  approximation for the resolvent ( , )y  by holding few terms only.   

3. Analysis of thermal stresses in an inhomogeneous semi-plane 

In this section, the technique for solving the plane thermoelasticity problem for an isotropic 
inhomogeneous semi-plane with boundary conditions for stresses or displacements, as well 
as mixed boundary conditions, is developed by establishing one-to-one relations between 
boundary tractions and displacements. This technique is based on integration of the Cauchy 
relations to express displacements in terms of strains. Then, by taking the physical strain-
stress relations into consideration, the displacements are expressed through the stress-tensor 
components. Finally, by making use of the explicit-form analytical solution to the 
corresponding problem with boundary tractions, the displacements on the boundary can be 
expressed through the tractions. The technique for establishment of the one-to-one relations 
between the tractions and displacements on the boundary, as well as for deriving the 
necessary equilibrium and compatibility conditions in the case of homogeneous semi-plane 
has been developed in (Rychahivskyy & Tokovyy, 2008). 

3.1 Formulation of the problem 
Let us consider the plane quasi-static thermoelasticity problem in inhomogeneous semi-
plane D . In absence of body forces, this problem is governed (Nowacki, 1962) by the 
equilibrium equations 

 
( , ) ( , ) ( , )( , )

0, 0,
xy xy yx

x y x y x yx y

x y x y

     
   

   
 (31) 
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the compatibility equation in terms of strains 

 

2 22

2 2

( , ) ( , )( , )
,

y xyx
x y x yx y

x yy x

   
 

  
 (32) 

the physical thermoelasticity relations 

* ( )1
( , ) ( , ) ( , ) *( ) ( , ),

* ( ) * ( )
x x y

y
x y x y x y y T x y

E y E y


       

 
* ( )1

( , ) ( , ) ( , ) *( ) ( , ),
* ( ) * ( )

y y x

y
x y x y x y y T x y

E y E y


       (33) 

1
( , ) ( , ),

( )
xy xyx y x y

G y
   

and the geometrical Cauchy relations 

 ( , ) ( , ) ( , ) ( , )
( , ) , , .x y xy

u x y v x y u x y v x y
x y

x y y x
  

   
   

   
 (34) 

Here , ,x y xy    and , ,x y xy    denote the stress- and strain-tensor components, 

respectively;  

2

( ) ( )
, plane strain, , plane strain,

1 ( )* ( ) 1 ( ) * ( )

( ), plane stress,( ), plane stress,

( )(1 ( )), plane strain,
* ( )

( ), plane stress,

E y y

yE y y y

yE y

y y
y

y


 



 




 
     
 




 


 

E(y) denotes the Young modulus, ( )y  stands for the Poisson ratio; 
( )

( )
2(1 ( ))

E y
G y

y



 is the 

shear modulus, ( )y  denotes the coefficient of linear thermal expansion; ( , )u x y  and 

( , )v x y  are the dimensionless displacements; ( , )T x y  is the temperature field that is given or 

determined in the form (20), (21), or (22) by means of the technique proposed in the previous 
section. 
We shall construct the solutions of the set of equations (31)–(34) for each of the three 
versions of boundary conditions prescribed on the line 0y  : 

a. in terms of stresses 

 ( , ) ( ), ( , ) ( ), 0;y xyx y p x x y q x y      (35) 

b. in terms of displacements 

 
0 0( , ) ( ), ( , ) ( ), 0;u x y u x v x y v x y    (36) 
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c. mixed conditions, when one of the following couples of relations  

 









   

   

  

  

0

0

0

0

( , ) ( ), ( , ) ( ), 0;

( ,0) ( ), ( ,0) ( ), 0;

( ,0) ( ), ( ,0) ( ), 0;

( ,0) ( ), ( ,0) ( ), 0

y

y

xy

xy

x y p x v x y v x y

x p x v x v x y

x q x u x u x y

x q x v x v x y

 (37) 

is imposed on the boundary. The boundary tractions and displacements, those are 

mentioned in conditions (35)—(37), as well the temperature field, vanish with | |x  , 

y  . We consider finding the solutions (stresses and displacements) of the stated 

boundary value problems. 

3.2 Construction of the solutions 
3.2.1 Case A: Boundary condition in terms of external tractions  

Let us consider the construction of solution to the  problem (31) – ( 34) under boundary 

conditions (35) with given tractions ( )p x  and ( )q x . The boundary displacements 0( )u x  and 

( )v x  are unknown and, thus, they should be determined in the process of solution. By 

following the solution strategy (Tokovyy & Ma, 2009), the stress-tensor components can be 

expressed trough the in-plane total stress x y     as 

  

 

0

0

,

| |
exp( | | ) ( ) exp( | || |) exp( | |( )) d ,

2
| |

exp( | | ) ( ) exp( | || |)sgn( ) exp( | |( )) d .
2

x y

y

xy

s
p s y s y s y

i s is
p s y s y y s y

s

  

     

      





 

        

        





(38) 

In turn, the total stress can be found as a solution of the Volterra-type integral equation of 
second kind: 

  
0

( ) * ( ) ( ) exp( | | ) * ( ) ( ) ( ) ( , )d ,y E y pP y A s y y T y M y     


       (39) 

where 

      
2

20

* ( ) d 1
( , ) exp | | | | | | exp | | | | d ,

8 ( )d

E y
M y s y s y

G
       


  

           
 

  

 
2

20

1 d 1
( ) exp | |( | |) d ,

4| | ( )d
P y s y

s G
  


  

    
 

  

and the constant of integration A is to be found from the following integral condition 

0
( )exp( | | )d

| |

p iq
y s y y

s s



    . 
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To solve equation (39), we employ the resolvent-kernel solution technique 

(Tokovyy & Ma, 2009a) with the following resolvent 

1
0

( , ) ( , ),n
n

y N y 





   

1 1 0
( , ) ( , ), ( , ) ( , ) ( , )d , 1,2,...n nN y M y N y M y N n      


    

As a result, the in-plane total stress appears in the form 

 ( ) ( ) ( ) ( ),Ay p y y Af y      (40) 

where 

1 1
(0) (0) ,

(0) | |A

iq
A p

f s s

  
           

 

0
( ) *( ) ( ) *( ) ( ) ( , )d ,y E y P y E P y   


     

0
( ) *( ) *( ) ( ) *( ) *( ) ( ) ( , )d ,y y E y T y E T y      


      

0
( ) *( )exp( | | ) *( )exp( | | ) ( , )d .Af y E y s y E s y   


      

Having determined the total stress   by formula (40), the stress-tensor components can be 

computed by means of formulae (38). The displacement-vector components ( , )u x y  and 

( , )v x y , as well as the boundary displacement  0( )u x  and 0( )v x , can be also determined by 

the stresses by means of correct integration of the Cauchy relations (34).  

3.2.2 Integration of the Cauchy relations and determination of the displacement-
vector components in the inhomogeneous semi-plane due to the given boundary 
tractions 

By taking the boundary conditions (36) with unknown boundary displacements 0( )u x  and 

0( )v x  into account, the first and second relations of (34) yield 

  
0

0

1
( , ) ( , )sgn( )d ,

2
1

( , ) ( , )sgn( )d .
2 2

x

y

u x y y x

v
v x y x y

   

   







 

  




 (41) 

By letting x    in the first equation of (41), we derive the integral condition  

 ( , )d 0x x y x



 , (42) 
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which is necessary for compatibility of strains. Analogously, by letting 0y   in the second 

equation of (41), the condition  

 00
( , )d ( )y x y y v x


   (43) 

can be obtained. By substitution of expressions (41) into the third formula of (34), we derive 
following equation 

0 ( , )d ( )
2 ( , ) sgn( )d

d
x

xy

yv x
x y x

x y

 
  






  

  

 
0

( , )
sgn( )d ,

y x
y

x

 
 

 
 

  (44) 

which presents the condition of compatibility for strains.  It is easy to see that by 
differentiation by variables x and y, equation (44) can be reduced to the classical 
compatibility equation (32). However, for the equivalence of these two equations, the 
following fitting condition 

 0d ( ) ( ,0)1
( ,0) sgn( )d

d 2
x

xy

v x
x x

x y

   





  

  (45) 

is to be fulfilled. This condition is obtained by integration of equation (32) over x and y with 

conditions (36) and (43) in view and comparison of the result to equation (44).   

To determine the displacement-vector components, we can employ formulae (41) with 

conditions (42), (43), and (45) in view. Having applied the Fourier transformation (8) to the 

mentioned equations, we arrive at the formulae 

 

 
0

( ) ( ),

1
( ) ( ) sgn( ) 1 d .

2

x

y

i
u y y

s

v y y



   


 

  
 (46) 

Putting the first and second physical relations of (33) along with (38) and (40) into the 

obtained formulae yields the following expressions: 

 
( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),
u u u

v v v

u y p y y Af y

v y p y y Af y

    
   

 (47) 

where 

 
0

( ) exp( | | )| |
( ) ( ) exp( | || |) exp( | |( )) d ,

*( ) 4 ( ) 2 ( )
u

y s yi s
y s y s y

s E y G y G y
   

  
           

 
  

 
0

( ) | |
( ) ( ) exp( | || |) exp( | |( )) d *( ) ( ) ,

*( ) 4 ( )
u

yi s
y s y s y y T y

s E y G y
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 
           

 
  
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 
0

( ) | |
( ) ( ) exp( | || |) exp( | |( )) d ,
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u A

f yi s
f y f s y s y

s E y G y
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 
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 
  

0

*( )1 exp( | | )
( ) (sgn( ) 1) ( )

2 2 ( ) *( )
v

s
y y

G E

  
 

  
      


  

 
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( ) exp( | || |) exp( | |( )) d d ,

4 ( )

s
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

  
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0
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( ) exp( | || |) exp( | |( )) d d ,
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s
s s

G y
      

 
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  

0
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( ) (sgn( ) 1) ( )

2 *( )
v Af y y f

E

 
 


 

    


  
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0

| |
( ) exp( | || |) exp( | |( )) d d .

4 ( )
A

s
f s s

G y
      

 
      


  

Formulae (47) present the expression for determination of the displacement-vector 

components in the inhomogeneous semi-plane due to given external tractions p  and q , 

and the temperature field ( )T y .  

3.2.3 One-to-one relations between the tractions and displacements on the boundary 

Putting 0y   into (45) and (46), we obtain the relations 

0

0

(0),

d (0)
(0) .

d

x

x
xy

i
u

s
i

isv
s y





 

 
 

Having substituted the corresponding physical relations (33) into the latter relations, we 
arrive at the following one-to-one relations  

 0 11 12 1

0 21 22 2

,u a p a q b

v a p a q b

  
  

 (48) 

between the tractions and displacements on the boundary of semi-plane D. Here 

11 12 12

1 1 1
, , *(0) (0),

| | *(0) 2 (0) *(0)

i i
a a b T

s s E G ss E


 
      

 
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0
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The obtained expressions of (48) allow us to determine the displacements on the boundary 
through the given tractions, and vice-versa.  

3.2.4 Case B: Boundary condition in terms of displacement  

Consider the problem of thermoelasticity (31) – (34), (36), where the boundary 

displacements 0( )u x  and 0( )v x  are given, meanwhile, the corresponding boundary 

tractions ( )p x  and ( )q x  are to be determined. By solving (48) with respect to p  and q , we 

find the transforms of tractions on the boundary through the displacements as 

 

22 12 12 2 22 1
0 0

21 11 21 1 11 2
0 0

,

,

a a a b a b
p u v

a a a b a b
q u v

  

  


  


   

 (49) 

where 11 22 12 21.a a a a    Having determined the boundary tractions (49), we can find the 

stress-tensor components by formulae (38), (40), and the displacement-vector components 
by formulae (47). 

3.2.5 Case C: Solution of the problem with mixed boundary conditions  

Finally, we consider the thermoelasticity problem (31) – (34) in the semi-plane D, when 
mixed boundary conditions of either the type (37) are imposed on the boundary. For four 
versions of the mixed boundary conditions (37), by making use of one of the relations (48), 
we express the Fourier transform of the unknown traction in terms of the given functions on 
the boundary and the temperature; inserting the expression into (38) and (40), we calculate 
the stresses and eventually the displacements by formula (47).  
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4. Conclusions 

Using the method of direct integration, the explicit-form analytical solutions have been 
found for the equations of in-plane heat conduction and plane thermoelasticity problems in 
an inhomogeneous semi-plane provided the tractions, displacement, and mixed conditions 
are prescribed on the boundary. Due to the fact that the application of technique for 
reducing the aforementioned equations to the governing Volterra-type integral equations 
with further employment of the resolvent-kernel solution algorithm provides us with the 
explicit-form solutions of the thermoelasticity problems, the one-to-one relations between 
the tractions and the displacements on the boundary of the semi-plane are derived. Making 
use of these relations, we have reduced quasi-static boundary value problems of the plane 
theory of thermoelasticity with displacement or mixed boundary conditions to the solution 
of the problem when the tractions are prescribed on the boundary. Application of this 
technique does not impose any restrictions for the functions prescribing the material 
properties (besides existence of corresponding derivatives, at least, in generalized sense). 
But from mechanical point of view, it can be concluded, that the material properties should 
be in agreement with the model of continua mechanics assuring strain-energy within the 
necessary restrictions. 
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