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1. Introduction 

To provide efficient investigations for engineering problems related to heating/cooling 
process in solids, the effect of thermosensitivity (the material characteristics depend on the 
temperature) should be taken into consideration when solving the heat conductivity 
problems (Carslaw & Jaeger, 1959; Noda, 1986; Nowinski, 1962; Podstrihach & Kolyano, 
1972). It is important to construct the solutions to the aforementioned heat conduction 
problems in analytical form. This requirement is motivated, for instance, by the need to 
solve the thermoelasticity problems for thermosensitive bodies, for which the determined 
temperature is a kind of input data, and thus, is desired in analytical form. 
In general, the model of a thermosensitive body leads to a nonlinear heat conductivity 
problem. It is mentioned in (Carslaw & Jaeger, 1959) that the exact solutions of such 
problems  can be determined when the temperature or heat flux is given on the surface by 

assuming the material to be “simply nonlinear” (thermal conductivity t  and volumetric 

volumetric heat capacity vc  depend on the temperature, but the relation, called thermal 

diffusivity t va c , is assumed to be constant). For construction of the solution in this case, 

it is sufficient to use the Kirchhoff’s transformation to obtain the corresponding linear 
problem for the Kirchhoff’s variable. This problem can be solved (Ditkin & Prudnikov, 1975; 
Galitsyn & Zhukovskii, 1976; Sneddon, 1951) by application of classical methods (separation 
of variables, integral transformations, etc.). The solutions to the heat conductivity problems 
for crystal bodies, whose thermal characteristics are proportional to the third power of the 
absolute temperature, can be constructed in a similar manner for the case of radiation heat 
exchange with environment.  
In the case of complex heat exchange, the Kirchhoff transform makes the heat conductivity 
problem to be linear only in part. In the heat conductivity problem for the Kirchhoff’s 
variable, the heat conduction equation is nonlinear due to dependence of the thermal 
diffusivity on the Kirchhoff’s variable. The boundary condition of the complex heat 
exchange is also nonlinear due to a nonlinear expression of the temperature on the surface. 
Herein we discuss several approaches, developed by the authors for determining 
temperature distribution in thermosensitive bodies of classical shape under complex 
(convective, radiation or convective-radiation) heat exchange on the surface (Kushnir & 
Popovych, 2006, 2007, 2009; Kushnir & Protsiuk, 2009; Kushnir et al., 2001, 2008; Popovych, 
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1993a, 1993b; Popovych & Harmatiy, 1996, 1998; Popovych & Sulym, 2004; Popovych et al. 
2006). Note that the necessity of these investigations is emphasized in (Carslaw & Jaeger, 
1959). 

2. The step-by-step linearization method for solving the one-dimensional 
transient heat conductivity problems with simple thermal non-linearity 

Let us consider the step-by-step method for determining one-dimensional transient 

temperature field ( , )t x  , which can be found from the following non-linear heat conduction 

equation:  

 
1

( ) ( )m
t vm

t t
x t c t W

x xx



         

,   (1) 

where ( )t t  is the thermal conductivity; ( )vc t  is the volumetric heat capacity; 0; 1; 2m   

corresponds to Cartesian, cylindrical and spherical coordinate systems, respectively; 

, 0,a x b a a b      . The thermosensitive body of consideration is made of a material 

with simple nonlinearity. The density of heat sources W  is a function of coordinate x  and 

time   . Let the surface x a , for instance, is exposed to convective-radiation heat exchange  

 4 4( ) ( )( ) ( )( ) 0t a a a a
x a

t
t t t t t t t

x
  



       
   (2) 

with the environment of constant temperature at , where ( )a t  is the temperature 

dependent coefficient of heat exchange between the surface and the environment;  ( )a t  is 

the temperature dependent emittance;   is the Stefan-Boltzmann constant. The surface 

x b  is heated with constant temperature bt  or constant heat flux bq :  

 t   or    ( ) .b bx b
x b

t
t t t q

x





 


 (3) 

At the initial moment of time, the temperature is uniformly distributed within the body: 

 
0 pt t   . (4) 

The key point of the solution method for the formulated non-linear heat conductivity 

problem (1)–(4), which is presented below, consists in the step-by-step linearization 

involving the Kirchhoff transformation along with linearization of the nonlinear term in the 

boundary conditions by means of the spline approximation. 

By introducing the dimensionless coordinates 0x x l , temperature 0T t t , and  time 

2
0Fo a l  (the Fourier number), we can present the functional parameters ( )t t , ( )vc t , 

( )a t , and ( )a t  in the form 0( ) ( )t T   , where 0  is a reference value and ( )T  

stands for the dimensionless function; 0t  is a reference temperature and 0l  is a characteristic 

dimension. The density of heat sources can be presented as 0 ( ,Fo)W q q x , where 0q  is the 
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dimensional constants, ( ,Fo)q x  is the dimensionless function describing the time variation 

of the heat sources. As a result, the problem (1)–(4) takes the form 

 
1

( ) ( ) Po ( ,Fo)
Fo

m
t vm

T T
x T c T q x

x xx
          

, (5) 

 4 4( ) Bi ( )( ) Sk ( )( ) 0t a a a a a a
x a

T
T T T T T T T

x
    



      
, (6) 

 bx b
T T   or ( ) Kit b

x b

T
T

x








, (7) 

 
Fo 0 pT T  .  (8) 

Here 2
0 0 0 0 0/( )tP q l t   (the Pomerantsev number), (0)

0 0Bia a tr   (the Biot number), 

(0) 3
0 0 0Ska a tl t   (the Starc number),   0 0 0Ki /( )b b tq l t   (the Kirpichev number), 

0/b bT t t , 0p pT t t . 

Let us apply the Kirchhoff’s integral transformation (Carslaw & Jaeger, 1959; Noda, 1986; 
Podstrihach & Kolyano, 1972) 

 *( )

p

T

t

T

t dt     (9) 

to the problem (5)–(8). By taking into account the feature of simple nonlinearity 

( ( ) ( )t vT c T  ) and expressions ( ) ,t

T
T

x x

  


 
 ( ) ( )

Fo Fo Fo
t v

T T
T c T

    
 

  
, the equation  

 
1

Po ( ,Fo)
Fo

m
m

x q x
x xx

          
 (10) 

follows from the nonlinear heat conductivity equation (5). The boundary condition of 

convective-radiation heat exchange (6) can be partially linearized and presented as  

  ( ) 0a
x a

Q T
x

 


    
, (11) 

where        4 4( ) Bi ( ) ( ) Sk ( ) ( ( ) )a a a a a a aQ T T T T T T T           . The boundary condi-

tions (7) and initial condition (8) yield  

 bx b
    or  Kib

x bx









, (12) 

 
Fo 0

0   ,  (13) 
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where ( )
b

p

T

b t

T

T dT   , ( )T   denotes the temperature expressed through the Kirchhoff’s 

variable and determined for certain  ( )t T  by means of the integral equation (9).  

Application of the Kirchhoff’s variable allows us to linearize the nonlinear heat 

conductivity equation (5) and the second boundary condition (7) completely, whereas the 

convective-radiation heat exchange condition is linearized in a part. Due to the nonlinear 

expression    ( )aQ T  , it is impossible to apply any classical method to solve the 

boundary problem (10)–(13). Therefore, it is necessary to linearize the boundary condition 

(11). In (Nedoseka, 1988; Podstrihach & Kolyano, 1972), the convective heat exchange 

condition has been considered. Therefore, the nonlinear expression ( )T  is simply 

replaced by  . As a result, the nonlinear convective heat exchange condition on   

becomes linear. However, it has been shown in (Kushnir & Popovych, 2009; Popovych, 

1993b; Popovych & Harmatiy, 1996) that this unsubstantiated linearization leads to the 

numerically or physically incorrect results. In our case, when we take into account the 

radiation constituent (which is nonlinear even for a non-thermosensitive material) and 

dependence of the heat transfer coefficient and emittance on the temperature, the 

considered substitution does not provide the complete linearization of the condition (11). 

Instead, the boundary condition (11) can be linearized by means of interpolation of the 

nonlinear expression  ( )aQ T   by special splines with order 0 or 1. For x a , the 

expression  ( )aQ T   is a function of Fo only. Let us select a finite set of points 

Fo ( 1, ;i i n 0 1 20 Fo Fo Fo Fo )n     , which divides the region of time variation into 

1n   intervals. Let us construct the spline (0)(Fo)aS with order 0, whose values coincide 

with the values of expression  (Fo) ( )a a x a
Q Q T 


  at  Fo Foi  and  

 
1

( ) ( ) ( )(0)
1 1

1

(Fo) ( ) (Fo Fo )
n

a a a
a ii i

i

S Q Q Q S





    ;  (14) 

  ( ) ( ) ( ) ( ) ( ) 4 4Bi ( )( ) Sk ( ) ( )a a a a a
a a a a a ai i i i iQ T T T T T T        (15) 

on the every interval of interpolation. Here ( )a
iT  ( 1 , )i n  are the values of temperature  

( ,Fo)T x , which are to be found on the surface x a  at the moments of time Foi  (the 

unknown parameters of spline approximation), ( )S   denotes the asymmetric unit 

Heaviside function (H. Korn & T. Korn, 1977). 

Having presented the nonlinear expression  ( )a x a
Q T 


 by spline (14), the boundary 

condition (11) becomes linear 

 (0)(Fo) 0 a
x a

S
x






 


.  (16) 

Similarly, the first-order spline (0)(Fo)aS , whose values coincide with values of expression 

(Fo)aQ  at the points iFo  and on every segment of decomposition approximates (Fo)aQ  by 
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the linear polynom ( ) ( ) ( )(Fo) Foa a a
i i iP k b  , can be constructed by the abovementioned 

decomposition. This spline can be written as  

 
1

( ) ( ) ( )(1)
1 1

1

(Fo) (Fo) (Fo) (Fo) (Fo Fo )
n

a a a
a ii i

i

S P P P S





    . (17) 

Here the coefficients ( ) ( ),a a
i ik b  of polynom ( )(Fo)a

iP  are calculated by formulae  

 
( ) ( )

( ) ( ) ( ) ( )1
11

1

, Fo
Fo Fo

a a
a a a ai i

ii i i i
i i

Q Q
k b Q k





  


,  (18) 

where  ( )a
iQ  is expressed through ( )a

iT  by means of formula (15). 

If  ( )a x a
Q T 


 is expressed as the first-order spline (17), then boundary condition (11) 

becomes linear  

 (1)(Fo) 0a
x a

S
x






 


. (19) 

Having solved the obtained linear problem (10), (12), (13), (16) or (10), (12), (13), (19) by 

means of the classical methods, the Kirchhoff’s variable is found as a function of x  and Fo . 

Besides the input data of the problem, this variable contains iFo  and unknown values 
( ) ( ,Fo )a

iiT T a : 

 ( ) ( )
1 1( , Fo ,Fo , ,Fo , , , )a a

n nx T T    . (20) 

By substitution   into the expression for ( )T   (for specific dependence ( )t T ), the formula 

for determination of the temperature  

 ( ) ( )
1 1( , Fo ,Fo , ,Fo , , ,a a

n nT f x T T     (21) 

can be obtained at arbitrary point x  and arbitrary moment of time Fo . For determination of 

unknown values ( )a
iT  in the expressions for temperature (21), the collocation method is 

used. Assuming Fo Foi ( 1, )i n  in (21), the system of equation for determination ( )a
iT   

 

( )
1 1 1

( ) ( )
2 1 2 1 2

( ) ( )
1 1

( , Fo , ) ,

( , Fo , Fo , , ) ,

( ,Fo , ,Fo , , , )

a

a a

a a
n n n

T f a T

T f a T T

T f a T T




 

 



 

 (22) 

is obtained. The structure of system (22) makes it possible to determine all unknown values  
( )a
iT , starting from ( )

1
aT . Substitution of values, determined from (22), into the formula (21) 

completes the solution procedure. 

The temperature at given point x  and moment of time can be calculated in accordance to 

the following scheme: 
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a. to divide the time axis by Foi and then to determine the approximation parameters ( )a
iT   

from the system (22); as a result, the value of temperature (21) ( )a
nT  is obtained; 

b. to divide every interval in two; to compute the values of parameters ( )a
iT  for this new 

time-segmentation and then to obtain the values of temperature ( )
1

a
nT  ; 

c. to calculate the difference ( ) ( )
1

a a
nnT T  . If 1n nT T    , where   is the accuracy, then 

the calculation is over. Otherwise, we shall return to the stage b.  
The temperature can be computed with any given accuracy   for arbitrary segmentation of 

the time axis. However, the increasing of number of time-segments decreases the 
convergence of the proposed scheme. An appropriate choice of the initial moment of time 
can be done by means of the estimated ‘a priory’ time-dependence of the temperature on the 

surface x a . We can also use the solution of corresponding boundary value problem for 

the body of the same shape with constant characteristics. Then the initial choice for values 

Foi  can be used as the appropriate one  for the thermosensitive body.  

The method of step-by-step linearization is applicable for determination of the temperature 
fields in thermosensitive plates, half-space, solid and hollow cylinders or spheres, space 
with cylindrical or spherical cavities, on the surfaces of which, the conditions of convective, 
radiation or convective-radiation heat exchange may be given. This method has been 
efficiently used for solving the two-dimensional steady problem in thermosensitive body.  

3. Method of linearizing parameters  

The method of step-by-step linearization makes it possible to determine the solutions to the 
two-dimensional heat conductivity problems in thermosensitive bodies with simple 
nonlinearity, when the nonlinear term in the condition of complex heat exchange for the 
Kirchhoff’s variable depends on one (spatial or time) variable only. In this section, we 
consider an efficient method for solving the steady-state and transient heat conductivity 
problems of arbitrary dimension those describe the propagation of heat in thermosensitive 
bodies with simple nonlinearity under the convective heat exchange with environment.  

Let the body occupies region D with surface S. The surface (whole or a part) is subjected  to 

the convective heat exchange with the environment of temperature pt . From the moment of 

time 0  , the heat sources ( , , , )W x y z   are acting in the body. The temperature in the 

body shall be determined from the following heat conduction equation:  

                div ( )grad ( )t v

t
t t c t W




 


 (23) 

and the boundary  

 t
s

( ) ( ) 0c

t
t t t

n
      

 (24) 

and initial  

   
0 pt t    (25) 
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conditions, where   is the constant heat transfer coefficient; n  is the external normal to 

surface S . 
By making use of the above-introduced presentation for the material characteristics, heat 
sources, and dimensionless variables, the boundary value problem (23)–(25) can be reduced 
to the dimensionless form. After application of the Kirchhoff’s transformation, the following 
boundary value problem for variable    

 divgrad Po ( , , ,Fo)
Fo

q X Y Z
 

 


, (26) 

  Bi ( ) 0c
s

T T
n

      
, (27) 

  
Fo 0

0     (28) 

is obtained, where 0 0 0, ,X x l Y y l Z z l    are dimensionless coordinates; 

0 , ( , , ,Fo)n n l q X Y Z  is the dimensionless function of heat sources. As a result, the initial 

problem is partially linearized, meanwhile the condition (27) remains nonlinear. The latter 

conditions have been obtained from the conditions of convective heat exchange due to 

nonlinear expression  ( )T   on the surface  S . For solving the problem (26)–(28) by using an 

analytical method, it is necessary to linearize this condition. Let us prove the possibility of 

such linearization.  
Consider the simplest case of linear dependence of heat conductivity coefficient on the 
temperature: 

   ( ) ( ) 1 ( )t to t to pt T k T T          ,     (29) 

where k  is a constant. From the equation (9), the formula 

   2( ) ( )
2

p p

k
T T T T      (30) 

follows, where  

   1( ) ( 1 2 1) pT k k T     . (31) 

From the physical standpoint, the square root is chosen to be positive. After substitution of 
the equation  (31) into the boundary condition (27), the last one takes the form  

 1 2 1
Bi 0p c

s

k
T T

n k

     
         

. (32) 

Be decomposing the square root in (32) into the series and restricting this series with two 
terms, the boundary condition  

  Bi ( ) 0c p
s

T T
n

       
 (33) 
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is obtained. The solution of equation (26) with boundary conditions (28), (33) is an 
approximate solution to the boundary value problem (26), (28), (32). To determine the exact 
solution, the equation (26) is to be solved under initial condition (28) and the following 
linear boundary condition  

  Bi (1 ) ( ) 0c p
s

T T
n

         
  (34) 

instead of the nonlinear condition (32), where   is an unknown constant (linearized 

parameter). Note that the boundary condition (34) coincides at 0   with the condition 

(33). Since the problem (26), (28), (34) is linear, the appropriate classical analytical method 
can be used for its solution. In addition to the original parameters of the problem 

( Po,Bi, , ,c pT T  dimensions of the body, coordinates and time), the solution involves the 

unknown linearized parameter  : 

  ( , , ,Fo, )X Y Z   . (35) 

For an arbitrary value of  , the solution (35) meets the equation (26) and the initial 
condition (28). In order the solution (35) to satisfy the nonlinear conditions (32) and (34), the 
parameter   is to be the solution of the equation  

1 2 1
(1 ) 0

s

k

k

  
  

   
  

. 

After some transformations, this equation can be given as 

 
2

2

(1 )s k




 


.     (36) 

This equation holds for every moment of time Fo . After the paramenter   is found, we 

substitute it into (35). In such manner, the expression for Kirchhoff’s variable is obtained. 

The temperature in the body is then calculated by means of the relation (31).  

Note that the boundary condition (34) can be represented as  

  Bi ( ) 0c
s

T
n

       
, (37) 

where Bi Bi(1 ); ( ) (1 )c c pT T T       . This condition can be interpreted as a condition 

of convective heat exchange with certain parameters (the Biot number Bi  and the 

temperature cT  of external environment) depending on the unknown parameter  .  

The equation (36) is nonlinear. It provides analytical solutions only for some cases of steady-
state problems with substantional use of the numerical methods. Therefore, these solutions 
can be regarded as  analytico-numerical solutions.  
Let us consider the non-linear dependence of the heat conductivity coefficient on the 
temperature. For linearization of the boundary condition (27), we shall find the Kirhoff’s 
variable for the case when the surface temperature of the thermosensitive body is equal to 
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the surface temperature of the body with constant characteristics. The latter temperature is 
to be found from the problem: 

 divgrad Po ( , , ,Fo)
Fo

H
H

T
T q X Y Z


 


, (38) 

    Bi ( 0H
H c

s

T
T T

n

     
 , (39) 

  
Fo 0H pT T   , (40) 

where ,H H o HT t t t  is temperature of the body with constant characteristics.  

By subtraction equations of the problem (26)–(28) from corresponding equation of the 

problem (38)–(40) and taking into account that ( ) Hs s
T T  , we obtain: 

 
( )

divgrad( )
Fo

H
H

T
T




 
 


,    (41) 

  
( )

0H

s

T

n

 



, (42) 

   
Fo 0

( )  H pT T   .   (43) 

The boundary value problem (41)-(43) is a problem of heat conductivity in the body with the 

surface S  and uniform initial temperature pT . The heat sources are absent and the 

boundary of the body is thermoinsulated. The evident solution of this problem is 

H pT T  . Consequently, if in the problem (26)–(28) for the Kirchhoff’s variable the surface 

temperature for the thermosensitive body is replaced with the surface temperature for the 

body with constant characteristics (whose thermal diffusivity is equal to the thermal 

diffusivity of thermosensitive body and the heat conductivity coefficient is equal to the 

reference value of the heat conductivity coefficient 0t ), then H pT T   . 

Thus, if the surface temperature ( )
s

T   of the thermosensitive body in the condition (27) is 

equal to the corresponding temperature of the body with constant characteristics, then the 

boundary value problem for the Kirchhoff’s variable   should be solved with the condition 

(33). Then the solution of this problem presents the difference of the temperature in the 

same-shape body with constant characteristics and the initial temperature:  

  H pT T   . (44) 

As it was mentioned above, the substitution of ( )T   for pT   in the case of linear 

dependence of the heat conductivity coefficient on the temperature is equivalent to keeping 
only two terms in the series, into which the square root in expression for the temperature 
through the Kirhoff’s variable has been decomposed. This linearization does not guarantee a 
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sufficient solution approximation. To overcome this difficulty, we consider the boundary 

value problem for the variable   with the linear condition (37) instead of the nonlinear 

condition (27), which involves an additional parameter   . Having solved the obtained 

linear problem, the Kirhoff’s variable   is found as a function of the coordinates and 

parameter  . The parameter   should be chosen in the way to satisfy the nonlinear 
condition (27) with any given accuracy. Thus for determination of the temperature field in 
the body with simple nonlinearity for arbitrary temperature dependence of heat 
conductivity coefficient under convective heat exchange between the surface and 
environment, the corresponding solution of the nonlinear heat conductivity problem can be 
determined by following the proposed algorithm of the method of linearized parameters:  
- to present the problem in dimensionless form; 
- to linearize the problem in part by using integral Kihhoff transformation;  
- to linearize the problem completely by linearizing the nonlinear condition on 

Kirchhoff’s variable   obtained from condition of convective heat exchange due to 

replacement of nonlinear expression ( )T   by (1 ) pT    with unknown parameter 

 ;  

- to solve the obtained linear boundary value problem for variable   by means of an 

appropriate classical method;  

- to satisfy with given accuracy the nonlinear condition for variable   by using the 

parameter  ;  
- to determine the temperature using the obtained Kirchhoff’s variable. 
The main feature of the method of linearizing parameters consists in a possibility to obtain 
the solution of linearized boundary value problem for the Kirchhoff’s variable in a 
thermosensitive body by solving the heat conductivity problem in the body with constant 
characteristics under convective heat exchange. This solution is obtained from (44) by 

setting Bi Bi(1 )    and  ( ) 1c c pT T T      instead of BiHT  and cT , respectively.  

4. The method of linearizing parameters for the steady-state heat conduction 
problems in piecewise-homogeneous thermosensitive bodies  

Determination of the temperature fields in piecewise-homogeneous bodies subjected to 

intensive thermal loadings is an initial stage that precedes the determination of steady-state 

or transient thermal stresses in the mentioned bodies. Let us assume that the elements of 

piecewise-homogeneous body are in the ideal thermal contact and the limiting surface is 

under the condition of complex heat exchange with environment. Mathematical model for 

determination of the temperature fields in such structures leads to the coupled problem for 

a set of nonlinear heat conduction equations with temperature-dependent material 

characteristics in the coupled elements. By making use of the Kirhoff’s integral 

transformation for each element by assuming the thermal conductivity to be constants, the 

problem can be partially linearized. The nonlinearities remain due to the thermal contact 

conditions on the interfaces and the conditions of complex heat exchange on the surfaces. To 

obtain an analytical solution to the coupled problem for the Kirchhoff’s variable, it is 

necessary to linearize this problem. The possible ways of such a linearization and, thus, 

determination of the general solution to the heat conduction problems in piecewise-

homogeneous bodies are considered below in this section.  
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Let us adopt the method of linearizing parameters to solution of the steady-state heat 

conduction problems for coupled bodies of simple shape, for instance, n -layer 

thermosensitive cylindrical pipe. The pipe is of inner and outer radii 0r r  and nr r , 

respectively, with constant temperatures bt  and Ht  on the inner and outer surfaces. The 

layers of different temperature-dependent heat conduction coefficients are in the ideal 

thermal contact. The cylindrical coordinate system , ,r z  is chosen with z -axis coinciding 

with the axis of pipe. The temperature field in this pipe can be determined from the set of 

heat conduction equations  

  ( )1
( ) 0, 1,i i

t i

dtd
r t i n

r dr dr


 
  

 
 , (45) 

with the  boundary conditions 

  
0

1 ,
n

b n Hr r r r
t t t t    , (46) 

  ( ) ( 1) 1
1 1, ( ) ( )i ii i

i i t i t i

dt dt
t t t t

dr dr
   

    , = , 1, 1ir r i n   ,    (47) 

where ( )( )i
t it  denotes the heat conduction coefficient of the layers. We introduce the 

dimensionless values 0 0i iT t t , r r   and ( )( )i
t it  ( ) ( )

0 ( )i i
t it T  , where the constituents 

with the indices “0” are dimensional constants and the asterisked terms are dimensionless 
functions, 0t  is the reference temperature. In the dimensionless form, the problem (45)–(47)  

appears  as  

  ( )1
( ) 0, 1,i i

t i

dTd
T i n

d d


  
 

  
 

 ,  (48) 

   1 1
,

n
b n HT T T T   

   , (49) 

  ( ) ( 1)( ) ( 1) 1
1 10 0, ( ) ( )i ii ii i

i i t i t it t

dT dT
T T T T

d d
   

 
   

   , , 1, 1i i n    . (50) 

Consider the heat conduction coefficients in the form of linear dependence on the 

temperature ( )( )
0( ) (1 )ii

t i i itt k T   , where ik  are constants. By introducing the Kirchhoff’s 

variable 

  ( )

0

( )
iT

i
i t T dT    (51) 

in each layer, the following problem on  Kirchhoff’s variable  

   
1

0, 1,idd
i n

d d




  
 

  
 

, (52) 
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  н1 1
,

n
b n        , (53) 

  
   1 1 1

( ) ( 1) 1
0 0

1 2 1 / 1 2 1 / ,

at , 1, 1
i i i i i i

ii ii i
t t

k k k k

i nd d

d d

 
  

 
 

  

 

    


  
 



,  (54) 

is obtained from the problem (48)-(50). Here  (1)

0

( )
bT

b t T dT   ; н
( )

0

( )

T
n

t T dT  


. 

The initially nonlinear heat conduction problem is partially linearized due to application of 
the Kirchhoff’s variables. However, the conditions for temperature, that reflects the 
temperature equalities of the neighbouring layers, remain nonlinear (the first group of 
conditions (54)). By integrating the set of equations (52) with boundary conditions (53) and 
contact conditions (54), the set of transcendent equation can be obtained for determination 
of constant of integration. This set can be solved numerically. The efficiency of numerical 
methods depends on the appropriate initial approximation. Unfortunately, it is very 
complicated to determine the definition domain for the solution of this set of equations and 
thus to present a constructive algorithm for determination of the initial approximation.  
The possible way around this problem is to decompose the square root in the first 
conditions (54) into series by holding only two terms. Then, instead of mentioned 
conditions, the following approximated conditions are obtained: 

 1 at , 1, 1i i i i n       . (55) 

Application of the conditions (55), instead of exact ones, separates the interfacial conditions. 
This fact allows us to consider the boundary problem (52)–(54) replacing the conditions (54) 
by the following ones:  

 1 1(1 ) (1 )  at , 1, 1i i i i i i n            ,  (56) 

where i  are unknown constants (linearizing parameters). By substitution 

 (1 )i i i     , (57) 

we obtain 

 
1

0idd

d d




  

 
  

 
,  (58) 

 1
1

,
n

b n n  
      

 
  , (59) 

 1
1 1,  at = , 1, 1i i

i i i i i

d d
i n

d d

      
 

 
  

     ,  (60) 

where н н(1 ) ; (1 ) ;b i b n            ( )
0 1i

i it    , 1, 1i n  . 
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It can be shown (Podsdrihach et al., 1984) that the boundary value problem (58)–(60) is 
equivalent to the problem  

 
1

( ) 0
dd

d d


 

  

 
  

 
,  (61) 

 1
1

,
n

b n n  
      

 
  ,      (62) 

where 
1

1 1
1

( ) ( ) ) ( )
n

j j j
j

S      


 


    . After integration of the equation (61), we obtain 

 
1

1 2
11

ln 1 1
ln ( )

( )

n

j j
j jj

C S C
   

   







  
      

    
 .  (63) 

Substitution of (63) into (62) yields 

   н
1

1
11

11

ln 1 1
ln ( )

( )ln 1 1
ln

n
b

j j b
n

j jjn
j

n j jj

S
  

    
    

  

  
 

 



  
      

          
 




,  (64) 

or  

 lni i iA B     ,  (65) 

where 

 н

1
1

11

ln 1 1
ln

n
n

i b j j
n j jj

A


   
  




  



   
      

      
 ; 

1

11

1 1
ln

i

i b i i j
j jj

B A  
 


  



 
   
 
 

 . 

For the Kirchhoff’s variables, we have 

 lni i iA B   , (66) 

where  

 н

1
1

1( )
1 0 ( ) ( 1) ( )

10 0 0

1 11
(1 ) (1 ) ln ln

n
j ji n

i n b n jt n j j
jt t t

A
       

  









                  
 ; 

1
1( )

1 0 ( 1) ( )
1 0 0

1 11
(1 ) ln

1

i
j ji

i b i jt j j
i j t t

B A
 

   
  







   
          

 . 

Besides the initial data, the solution (66) contains n  arbitrary constants i  and satisfies the 

equation (52), boundary conditions (53) and the second group of the contact conditions (54). 
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The linearized parameters i  will be selected to satisfy the first group of the conditions (54). 

By assuming that one of the linearizing parameters i , for instance, is equal to zero, the 

following set of 1n   equations can be obtained  

    1 1 11 2 1 / 1 2 1 / , 1, 1
i i

i i i i i ik k k k i n                (67) 

for determination of the rest 1n   linearizing parameters. The solution should be found in a 

neighborhood of zero. From the set (67), we determine the values of linearization 
parameters and thus the Kirchhoff’s variables. Then the temperature in layers is  

 1( 1 2 1)i i i iT k k    .  (68) 

For example, we consider the two-layer pipe ( 2)n  . The Kirchhoff’s variables for this case 

are expressed as  

  н
1

2
1

1

(1 )
ln

(1 )ln ln

b
bK

K




  
   



 
 

 
, н

н2
2 2

1
1

(1 )
ln

(1 )ln ln

b

K

      


 
 

 
, (69) 

where  (2) (1)
0 0t tK   ; 1  is equal to  zero, and 2  is denoted as  . The value of   shall be 

obtained from the equation  

н
1 1

1 2 1 1

(1 )1
1 2 ln 1

(1 )ln / ln
b

bk K
k K




  
 

   

              
 

 н
н

1
2

2 2 1 1 2

(1 )1
1 2 ln 1

(1 )ln / ln
bk

k K

    
    

              
. (70) 

If the heat conduction coefficients of the layers ( ) ( 1, 2)i
t i   are constants, then the 

temperature in each layer is determined by formula  

 н1 2ln , lnbT NK T T N T      , (71) 

where    н
(2) (1)

1 2( 1) ln ln ,b t tN T T K K          . 

Let the first layer of thickness 11 ( )e e   is made of steel C12 and the second layer of 

thickness 2 2
2( )e e e  is made of steel C8 (Sorokin et al., 1989). Let  700 Cbt   , н 0 Ct   , 

and  0 bt t . The heat conduction coefficients in the temperature range 0...700 C  are given 

in the form of linear relations: (1) 47.5(1 0.37 )t T    [ ( )]W m K , (2)
t   64.5(1 0.49 T)  

[ ( )]W m K . Then 1 0.37k   , (1)
0 47.5t  , 2 0.49k   , (2)

0 64.5t  , 1.36K  , 1bT  , н 0T  , 

0.815b  , н 0  . At reference values, the linearized parameter   (determined from 

equation (70)), is equal to 0.0249 . 
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  

Thermosensitive layers 
Layers with constant 

characteristics 

  0,0249   0 (1) (2)
tc tc   (1) (2)

0 0t t   

T  Ct  T  Ct  T  Ct  T  Ct  

1 1 700 1 700 1 700 1 700 

1,34 0,7945 556,1 0,7924 554,7 0,8369 585,9 0,8314 582,0 

1,69 0,6500 455,0 0,6466 452,6 0,7077 495,4 0,6978 488,5 

2,03 0,5395 377,7 0,5352 374,6 0,6055 423,9 0,5922 414,6 

2,37 0,4506 315,4 0,4455 311,9 0,5193 363,5 0,5031 352,1 

0e   0,3764 263,5 0,3707 259,5 0,4429 310,0 0,4241 296,9 

0e   0,3765 263,6 0,3810 266,7 0,4429 310,0 0,4241 296,9 

3,65 0,2570 179,9 0,2600 182,0 0,3124 218,6 0,2991 209,4 

4,59 0,1701 119,1 0,1720 120,4 0,2109 147,6 0,2019 141,3 

5,52 0,1023 71,6 0,1037 72,4 0,1292 90,4 0,1237 86,6 

6,49 0,0468 32,8 0,0473 33,1 0,0602 42,1 0,0576 40,4 
2e  0 0 0 0 0 0 0 0 

Table 1. Distribution of temperature in a two layer pipe along its radius 

Table 1 presents the temperature values in two-layer pipe versus its radius. In the first four 

columns, the values of dimensionless and real temperature T  and t , respectively, are 

given; the first and second columns present the temperature values, obtained by method of 
linearizing parameters (formulae (68)-(70)); the third and fourth columns present the 
approximate values of the temperature, obtained by holding only two terms in the series 
into which  the square roots in the first group of the conditions (54) were decomposed 

(formulae (68), (69) at 0  ). The maximum difference between the exact and approximate 

values of temperature falls within 1.5%. But the approximate solution has a gap 7.2 C  on 

the interface. This fact shows that the condition of the ideal thermal contact is not satisfied, 
which is physically improper result. In the last four columns, the values of dimensionless 
and real temperature in the pipe with constant thermal characteristics are presented. The 
values in the fifth and sixth columns describe the case when the heat conduction coefficients 

have the mean value in the temperature region 0...700 C  i.e. 
700

(1) (1)

0

1
( ) 38.7

700
tc t t dt    

[ ( )]W m K , (2) 1

700
tc 

700
(2)

0

( ) 48.7t t dt   [ ( )]W m K ; the seventh and eighth columns 

present the maximum values of the heat conduction coefficients in the considered 

temperature range (1) (2)(1) (2)
0 0,t tt t     . Thus, the maximum difference between the values 

of the temperature computed for the mean values of the heat conduction coefficients is 

about 15% ( 48 C)  . If the temperature is computed for the maximum values of the heat 

conduction coefficients, this difference is about 10% ( 37 C)  . 

To simplify the explanation of the linearized parameters method for solving the heat 

conductivity problem in the coupling thermal sensitive bodies, the constant temperatures on 

bounded surfaces of piecewise-homogeneous bodies were considered. If the conditions of 
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convective heat exchange are given, then the final linearization of the obtained nonlinear 

conditions on Kirchhoff’s variables may be fulfilled using the method of linearizing 

parameters.  

The method of linearizing parameters can be successfully used for solution of the transient 
heat conduction problems.  

5. Determination of the temperature fields by means of the step-by-step 
linearization method  

To illustrate the step-by-step linearization method, consider the solution of the centro-

symmetrical transient heat conduction problem. Let us consider the thermosensitive hollow 

sphere of inner radius 1r  and outer radius 2r . The sphere is subjected to the uniform 

temperature distribution pt  and, from the moment of time 0  , to the convective-radiation 

heat exchange trough the surfaces 1r r  and 2r r  with environments of constant 

temperatures 1ct  and 2ct , respectively. The transient temperature field in the sphere shall be 

determined from nonlinear heat conduction equation  

  2
2

1
( ) ( )t v

t t
r t c t

r rr



        

, (72) 

with boundary and initial conditions  

   4 4( ) ( 1) ( )( ) ( )( ) 0
j

j
t j cj j cj

r r

t
t t t t t t t

r
  



        
 ( 1,2)j  ,   (73) 

  
0 pt t   .  (74) 

Let us construct the solution to the problem (72)–(74) for the material with simple nonlinearity 

( ( ) ( ) const)t va t c t  . The temperature-dependent characteristics of the material are given 

as 0( ) ( )t T   , where the values with indices zero are dimensional and the asterisked 

terms are dimensionless functions of the dimensionless temperature 0T t t  ( 0t  denotes the 

reference temperature). Let the thickness of spherical wall 0 2 1r r r   be the characteristic 

dimension, and 0r r  , 2
0Fo a r , ( )

0 0Bi j
j a tr   (Biot number), and ( ) 3

0 0 0Sk j
j a tr t   

(Starc number). Then the problem (72)–(74) takes the dimensionless form  

 
2

2

1
( ) ( )

Fo
t v

T T
T c T 

 
    

    
,  (75) 

  4 4( ) ( 1) Bi ( )( ) Sk ( )( ) 0 ( 1,2)
j

j
t j cj j cj

T
T T T T T T T j

 
  


  



         
, (76) 

 Fo 0 pT T  ,  (77) 
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where 0cj cjT t t . By application of the Kirchhoff transformation (9) to the nonlinear 

problem (75)–(77), the following problem for   

 
2

2

( ) ( )

Fo

 


 



, (78) 

  ( )( 1) ( ) 0 ( 1,2)

j

j jQ T j
 

 
 

 
     

,    (79) 

 
Fo 0

0     (80) 

is obtained, where 

          4( ) 4( ) Bi ( ) ( ( ) ) Sk ( ) ( )j
j j cj j j cjQ T T T T T T T           . (81) 

The heat conduction equation for the Kirchhoff’s variable   is linear, meanwhile the 

conditions of convective-radiation heat exchange are partially linearized with the 

nonlinearities in the expressions  ( ) ( )jQ T  . These expressions depend on the temperature 

which is to be determined on the surfaces j  . The temperature of the sphere ( ,Fo)T   

on each surface j   is continuous and monotonic function of time. Because every 

continuous and monotonic function is an uniform limit of a linear combination of unit 
functions, these functions can be interpolated by means of the splines of order 0 as 

 

1
( ) ( ) ( ) ( ) (j)

1
1

(Fo) ( ) (Fo Fo )
jm

j j j j
i i i i

i

Q Q Q Q S






     , (82) 

   ( ) ( ) ( ) ( ) ( ) 4 4( ) Bi ( )( ) Sk ( )(( ) )j j j j j
j j cj j j cji i i i iQ T T T T T T T       ,     (83) 

where ( ) ( )
1 , ( 2, )j j

p jiT T T i m   are unknown parameters of spline interpolation for the 

temperature which is to be determined on the surfaces j   at 1Fo Fo Fo(j) (j)
i i    and 

Fo
j

(j)
m   , 

0, 0,
( )

1, 0
S







  
 is asymmetric unit function (H. Korn & T. Korn, 1977; 

Podstrihach et al., 1984), Fo(j)
i  are the points of segmentation of the time axis (0;Fo) . After 

substitution of the expression (82) into the boundary conditions (79), the boundary value 
problem (78)–(80) becomes linear. For its solving, the Laplace integral transformation can be 
used (Ditkin & Prudnikov, 1975). As a result, the Laplace transforms of the Kirhoff’s 
variables are determined as   

1 (1)
1

Fo(1) (1) (1)2 2
1 1 1

1

1 ( )
( )

( )
i

m
s

i i
i

s
Q Q Q e

s
 

 







         
 

  
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2 (2 )

1
Fo(2) (2) (2)2 1

2 1 1
1

( )
( )

( )
i

m
s

i i
i

s
Q Q Q e

s










  
        

 ,    (84) 

where 
( )

( ) ( )
j

j j j

sh s
s ch s

s

 
  


    ;     1 2( ) ( 1)

sh s
s s s ch s

s
  

 
   

  
; s is the 

parameter of Laplace transformation; Fo

0

Fose d 


  . 

The inverse Laplace transformation can be found by means of the Vashchenko-

Zakharchenko expansion theorem of and shift theorem (Lykov, 1967). As a result, the 

following expression for Kirchhoff’s variable 

1 1
(1) (1) (1)2

1 2 21 1
1

1
( ,Fo) ( ) ( ,Fo

m

i i
i

Q Q Q   








       


 1 1Fo ) (Fo Fo )( ) ( )

i iS    

 
2 1

(2) (2) (2) (2) (2)2
2 1 11 1

1

( ,Fo) ( ) ( ,Fo Fo ) (Fo Fo )
m

i i i i
i

Q Q Q S  






       


  (85) 

is obtained, where 

 
2( ) Fo2 1 2

1 2 1 2 1

1 1 3 (1 5 )
( ,Fo) 3 Fo ( ) ( 2 )

1 3 2 10(1 3 )
nj

j j j n
n

A e        
   






 
      

  
 ; 

 
2

( ) 1 2
2 2 2 2

1 2 1 2

sin( )2(1 )
cos( )

(1 3 )cos

j nj n
n j j n

nn n n

A
        
      

 
       

;  (86) 

n  are roots of characteristic equation  

 2
1 2(1 )tg      . (87) 

For example, let the heat conduction coefficient be a linear function of the temperature 

( ) 1t T kT   . Then on the basis of formula (9),  

  1 21 (1 ) 2pT k kT k    . (88) 

The determined temperature is a function of coordinate   and time Fo ; it contains 

1 22( )m m  approximation parameters:  1m  values of the temperature  (1)
iT  on the surface 

1   (due to the expressions of (1)
iQ ) and (1)Foi  and  2m  values of the temperature (2)

iT  

on the surface 2   (due to the expressions of (2)
iQ )  and (2)Foi . The collocation method 

has been used to determine the approximation parameters. If j   in (88), the expression 

of the temperature on the surface j   are determined as 
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 1 21 (1 ) 2 ( 1,2 )
j j

pT k kT k j   
 

      
 

. (89) 

If the values (1)Foi  and (2)Foi  are given ( ( )
1Fo Fo j , ( )

2Fo Fo j , etc.) and 

Fo Fo

( )

j
(j)
i

j
iT T

 



  , then 

the set of 1 2m m  algebraic equations will be obtained to determine 1m  values of (1)
iT  and 

2m  values of (2)
iT : 

 

1
(1)

Fo Fo

2
(2)

Fo Fo

(1) 1 2
11

(2) 1 2
21

1 (1 ) 2 ( 1, 1),

1 (1 ) 2 ( 1, 1).

i

i

pi

pi

T k kT k i m

T k kT k i m

 

 



















  
         

   


 
            

 (90) 

After solving this set of equations and substituting the values ( ) ( 1,2 )j
iT j   into (88), the 

expression for the temperature can be obtained. 

For approximation of the nonlinear expressions  ( ) ( )jQ T  , we use the same segmentation 

of the time axis 1 2(m m m  , (1) (2)Fo Foi i  Fo )i  on the sphere surfaces j  . In this case, 

the set of equations for determination of unknown values (1) (2), ( 1, )i iT T i m  takes the 

following form: the first and second equations (obtained from (90) at 1Fo Fo ) contain only 

(1)
2T  and (2)

2T ; the third and fourth equations (obtained from (90) at 2Fo Fo ) contain four 

values (1)
iT  and (2) ( 2 ,3)iT i  , etc.; in the last two equations (obtained from (90) at 

1Fo Fom ) , all 2( 1)m   unknown values (1)
iT  and (2) ( 2, )iT i m  are presented. After 

solving the first and second equations, the values (1)
2T  and (2)

2T  are determined. After 

substitution of these values into the third and fourth equations, the following two unknown 

values can be determined. The same procedure shall be repeated until all ( ) ( 1,2 )j
iT j   are 

determined.  

Consider the transient temperature field in a solid thermosensitive sphere with simple 
nonlinearity under convective-radiation heat exchange between surface and environment 

of constant temperature ct . The solution of such heat conduction problem can be obtained 

from solution of the problem for a hollow sphere. Putting 1 0   and 2 1   in (85) and 

denoting 2Bi Bi , (2)
iiQ Q , 2c cT T , the following expression for the Kirchhoff’s 

variable  

 
1

1 1 1
1

( ,Fo) ( ) ( ,Fo Fo ) (Fo Fo )
m

i i i i
i

Q Q Q S  


 


        (91) 
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can be obtained for the solid sphere, where 
2

2
Fo

3
1

sin3 2
( ,Fo) 3Fo

10 2 cos
nn

n n n

e  
  





      ,  

4 4Bi *( )( )+Sk *( )( ),i i i c i i cQ T T T T T T      1 pT T , and n  are roots of the equation  

  tg  . (92) 

The unknown parameters 
1

Fo Fo

( ,Fo)

i

iT T






 are determined from the equations 

  
1

Fo Fo

1 2
1 1 (1 ) 2 ( 1, 1)

i

i pT k kT k i m









 
        
 

. (93) 

If the Kirchhoff’s variable is obtained, then the temperature in the sphere can be calculated 
by means of the formula (88). 

For the case when Sk 0  and the heat exchange coefficient is independent of the 

temperature ( ( ) 1)T   , then formula (91) yields 

  
1

1
1

Bi ( ) ( ,Fo) ( ,Fo Fo ) (Fo Fo )
m

p c i i i i
i

T T T T S  


 


         
  .  (94) 

The unknown parameters of spline approximation ( 2, )iT i m  are determined from the set 

of equations (93) in the following manner. From the first equation of this set, 2T can be 

found as  

  2
2 0 1

1
2 Bi ( ) (1,Fo ) (1,0)p c pT L L k T T T

k
            

,  (95) 

where 2
01 Bi (1,0); 2p pL T kT     . Then the solutions of second, third, and all the 

following equations can be written as 

2
2

0 1 1
1

1
[ { 2 Bi ( ) (1,Fo ) (

i

i p c i j
j

T L L k T T T
k




 


 
       
 

  

   
1
2

1 1) (1,Fo Fo ) (1,0) ] ( 3, )j i j iT T i m         . (96) 

To linearize the nonlinear boundary condition  

  
1

Bi ( ) 0cT T


 
 

 
    

,     (97) 

the substitution of the nonlinear expression ( )T   by   (Nedoseka, 1988; Podstrihach & 

Kolyano, 1972) can be employed. Then the Kirchhoff’s variable can be given as  
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2Fo

1

sin cos2
1 sin

( sin cos )
nn n n

c n
n n n nn

T e   
  

    






 
  

 
 , (98) 

where n  are roots of the characteristic equation  

   1 Bi tg   . (99) 

Let us provide the numerical implementation of the proposed solution method to determine 

the time-variation of the temperature on the surface 1   of solid sphere exposed to the 

condition of convective heat exchange. We assume ct  = 300ºС (573 K) and this value is also 

chosen to be the reference temperature; the initial temperature is pt  20ºC (293 K); the Biot 

number is Bi 10 . In the expression ( ) (1 )t tot kT    we set to  50,2 W/(mºK) and 

0,018k  . The results of computation are shown in Figure 1.  

 

 

Fig. 1. Dependence of ( )T  on Fo           

 

 

Fig. 2. Dependence of ( )T  on   

In Figure 2, the dependence of the temperature on the radial coordinate at the moment  of 

time Fo 0,1  is shown for some values of the Biot number. The solid lines correspond to 

the solution of the heat conduction problem, obtained by using the step-by-step method, i.e., 
when the Kirchhoff’s variable is computed by the formula (94). The dash-dot line 
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corresponds to the solution of the problem when the boundary condition is linearized by 

changing ( )T   for  . In this case, the Kirchhoff’s variable is calculated by formula (98). The 

dashed line presents the solution of corresponding linear problem when thermal 
characteristics are constant. In the considered case, neglecting the temperature dependence 
in thermal properties leads to the increasing of the temperature values. In the same time, the 
unsubstantiated linearization of boundary condition increases the temperature and leads to 
physically improper results. As it follows from the figures, at some moments of time, the 
temperature on surface of sphere is greater than the temperature of heating environment. 
The authors (Nedoseka, 1988; Podstrihach & Kolyano, 1972) did not give much attention to 
this matter because mainly they considered the temperature fields in thermosensitive bodies 
due to the internal heat sources. In this case increasing of the temperature is unbounded.  

6. Conclusion  

In this chapter, the formulations of non-linear heat conduction problems for the bodies with 

temperature-dependent characteristics (thermosensitive bodies) are given. The efficient 

analytico-numerical methods for solution of the formulated problems are developed. 

Particularly, the step-by-step linearization method is proposed for solution of one-

dimensional transient problems of heat conduction, which describe the temperature fields in 

thermosensitive structure members of simple nonlinearity under complex (convective, 

radiation  or convective-radiation) heat exchange boundary conditions. The coefficient of 

heat exchange and emissivity of the surface, that is under heat exchange with environment, 

are also dependent on the temperature. The method provides: 

- reduction of the heat conduction problem to the corresponding dimensionless 
problem; 

- partial linearization of the obtained problem by means of the Kirchhoff’s transform; 

- complete linearization of the nonlinear condition on the  Kirchhoff’s variable  , that 

has been obtained from the condition of complex heat exchange due to approximation 
of the nonlinear term by specially constructed spline of zero or first order; 

- construction of the solution to the linearized boundary value problem for   by means 

of the appropriate analytical method; 
- determination of the temperature in question by means of the inverse Kirchhoff’s 

transform; 
- determination of the unknown parameters of spline-approximation, those remain in the 

expression for the temperature, by means of the collocation method. 
The method is verified by the solutions of transient heat conduction problems for 

thermosensitive solid and hollow spheres subjected to heating (cooling) due to the heat 

exchange over the limiting surface. This method can be efficiently used fro solution of two-

dimensional steady-state heat conduction problems. 

The efficient method of linearizing parameters is proposed for determination of the 
temperature fields in structure members with simple nonlinearity due to convective heat 
exchange through the limiting surfaces for an arbitrary dependence of the heat conduction 
coefficient on the temperature. The main feature of this method consists in the fact that the 

complete linearization of the nonlinear condition for the Kirchhoff’s variable   (obtained 

form the condition of convective heat exchange) is achieved by substitution of the nonlinear 

www.intechopen.com



 
Heat Conduction Problems of Thermosensitive Solids under Complex Heat Exchange  

 

153 

term ( )T   by (1 ) pT    with unknown parameter  . This parameter can be found by 

satisfaction of the nonlinear condition for   with required accuracy. 

The method of linearizing parameters is adopted to solution of the nonlinear steady-state 
and transient heat conduction problems for contacting thermosensitive bodies of simple 
geometrical shape under conditions of the ideal thermal contact at the interfaces and 
complex heat exchange on the limiting surfaces. Its approbation is provided for the n-layer 
cylindrical pipe under given temperatures on its inner and outer surfaces. It these surfaces 
are subjected to the convective heat exchange, then the complete linearization of the 

obtained nonlinear conditions for the Kirchhoff’s variable   can be done by means of the 

method of linearizing parameters. 
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