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1. Introduction

Consider the heat conduction in a nonhomogeneous insulated rod of a unit length, with the
ends kept at zero temperature at all times. Our main interest is in the identification and
identifiability of the discontinuous conductivity (thermal diffusivity) coefficient a(x), 0 ≤
x ≤ 1. The identification problem consists of finding a conductivity a(x) in an admissible set
K for which the temperature u(x, t) fits given observations in a prescribed sense.
Under a wide range of conditions one can establish the continuity of the objective function
J(a) representing the best fit to the observations. Then the existence of the best fit to data
conductivity follows if the admissible set K is compact in the appropriate topology. However,
such an approach usually does not guarantee the uniqueness of the found conductivity a(x).
Establishing such a uniqueness is referred to as the identifiability problem. For an extensive
survey of heat conduction, including inverse heat conduction problems see (Beck et al., 1985;
Cannon, 1984; Ramm, 2005)
From physical considerations the conductivity coefficients a(x) are assumed to be in

Aad = {a ∈ L∞(0, 1) : 0 < ν ≤ a(x) ≤ µ}. (1)

The temperature u(a) = u(x, t; a) inside the rod satisfies

ut − (a(x)ux)x = f (x, t), Q = (0, 1)× (0, T),
u(0, t) = q1(t), u(1, t) = q2(t), t ∈ (0, T),
u(x, 0) = g(x), x ∈ (0, 1),

(2)

where g ∈ H = L2(0, 1), q1, q2 ∈ C1[0, ∞). Suppose that one is given an observation z(t) =
u(p, t; a) of the heat conduction process (2) for t1 < t < t2 at some observation point 0 < p <

1. From the series solution for (2) and the uniqueness of the Dirichlet series expansion (see
Section 5), one can, in principle, recover all the eigenvalues of the associated Sturm-Lioville
problem. If one also knows the eigenvalues for the heat conduction process with the same
coefficient a and different boundary conditions, then classical results of Gelfand and Levitan
(Gelfand & Levitan, 1955) show that the conductivity a(x) can be uniquely identified from the
knowledge of the two spectral sequences.
Alternatively, the conductivity is identifiable if the entire spectral function is known (i.e. the
eigenvalues and the values of the derivatives of the normalized eigenfunctions at x = 0).
However, such results have little practical value, since the observation data z(t) always
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contain some noise, and therefore one cannot hope to adequately identify more than just a
few first eigenvalues of the problem.
A different approach is taken in (Duchateau, 1995; Kitamura & Nakagiri, 1977; Nakagiri, 1993;
Orlov & Bentsman, 2000; Pierce, 1979). These works show that one can identify a constant
conductivity a in (2) from the measurement z(t) taken at one point p ∈ (0, 1). These works
also discuss problems more general than (2), including problems with a broad range of
boundary conditions, non-zero forcing functions, as well as elliptic and hyperbolic problems.
In (Elayyan & Isakov, 1997; Kohn & Vogelius, 1985) and references therein identifiability
results are obtained for elliptic and parabolic equations with discontinuous parameters in a
multidimensional setting. A typical assumption there is that one knows the normal derivative
of the solution at the boundary of the region for every Dirichlet boundary input. For more
recent work see (Benabdallah et al., 2007; Demir & Hasanov, 2008; Isakov, 2006).
In our work we examine piecewise constant conductivities a(x), x ∈ [0, 1]. Suppose that the
conductivity a is known to have sufficiently separated points of discontinuity. More precisely,
let a ∈ PC(σ) defined in Section 2. Let u(x, t; a) be the solution of (2). The eigenfunctions and
the eigenvalues for (2) are defined from the associated Sturm-Liouville problem (5).
In our approach the identifiability is achieved in two steps:

First, given finitely many equidistant observation points {pm}M−1
m=1 on interval (0, 1) (as

specified in Theorem 5.5), we extract the first eigenvalue λ1(a) and a constant nonzero
multiple of the first eigenfunction Gm(a) = C(a)ψ1(pm ; a) from the observations zm(t; a) =
u(pm, t; a). This defines the M-tuple

G(a) = (λ1(a), G1(a), · · · , GM−1(a)) ∈ R
M. (3)

Second, the Marching Algorithm (see Theorem 5.5) identifies the conductivity a from G(a).
We start by recalling some basic properties of the eigenvalues and the eigenfunctions for (2) in
Section 2. Our main identifiability result is Theorem 5.5. It is discussed in Section 5. The
continuity properties of the solution map a → G(a) are established in Section 4, and the

continuity of the identification map G−1(a) is proved in Section 8. Computational algorithms
for the identification of a(x) from noisy data are presented in Section 10.
This exposition outlines main results obtained in (Gutman & Ha, 2007; 2009). In
(Gutman & Ha, 2007) the case of distributed measurements is considered as well.

2. Properties of the eigenvalues and the eigenfunctions

The admissible set Aad is too wide to obtain the desired identifiability results, so we restrict it
as follows.

Definition 2.1. (i) a ∈ PSN if function a is piecewise smooth, that is there exists a finite
sequence of points 0 = x0 < x1 < · · · < xN−1 < xN = 1 such that both a(x) and
a′(x) are continuous on every open subinterval (xi−1, xi), i = 1, · · · , N and both can be
continuously extended to the closed intervals [xi−1, xi ], i = 1, · · · , N. For definiteness,
we assume that a and a′ are continuous from the right, i.e. a(x) = a(x+) and a′(x) =
a′(x+) for all x ∈ [0, 1). Also let a(1) = a(1−).

(ii) Define PS = ∪∞
N=1PSN .

(iii) Define PC ⊂ PS as the class of piecewise constant conductivities, and PCN = PC ∩
PSN . Any a ∈ PCN has the form a(x) = ai for x ∈ [xi−1, xi), i = 1, 2, · · · , N.

(iv) Let σ > 0. Define

PC(σ) = {a ∈ PC : xi − xi−1 ≥ σ, i = 1, 2, · · · , N},
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Identifiability of Piecewise Constant Conductivity 3

where x1, x2, · · · , xN−1 are the discontinuity points of a, and x0 = 0, xN = 1.

Note that a ∈ PC(σ) attains at most N = [[1/σ]] distinct values ai, 0 < ν ≤ ai ≤ µ.
For a ∈ PSN the governing system (2) is given by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ut − (a(x)ux)x = f (x, t), x 
= xi, t ∈ (0, T),
u(0, t) = q1(t), u(1, t) = q2(t), t ∈ (0, T),
u(xi+, t) = u(xi−, t), t ∈ (0, T),
a(xi+)ux(xi+, t) = a(xi−)ux(xi−, t), t ∈ (0, T),
u(x, 0) = g(x), x ∈ (0, 1).

(4)

The associated Sturm-Liouville problem for (4) is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a(x)ψ(x)′)′ = −λψ(x), x 
= xi,
ψ(0) = ψ(1) = 0,
ψ(xi+) = ψ(xi−),
a(xi+)ψx(xi+) = a(xi−)ψx(xi−).

(5)

For convenience we collect basic properties of the eigenvalues and the eigenfunctions of (5).
Additional details can be found in (Birkhoff & Rota, 1978; Evans, 2010; Gutman & Ha, 2007).

Theorem 2.2. Let a ∈ PS . Then

(i) The associated Sturm-Liouville problem (5) has infinitely many eigenvalues

0 < λ1 < λ2 < · · · → ∞.

The eigenvalues {λk}∞
k=1 and the corresponding orthonormal set of eigenfunctions {ψk}∞

k=1
satisfy

λk =
∫ 1

0
a(x)[ψ′

k(x)]
2dx, (6)

λk = inf

{
∫ 1

0 a(x)[ψ′(x)]2dx
∫ 1

0 [ψ(x)]
2dx

: ψ⊥span{ψ1, . . . , ψk−1} ⊂ H1
0(0, 1)

}

. (7)

The normalized eigenfunctions {ψk}∞
k=1 form a basis in L2(0, 1). Eigenfunctions {ψk/

√
λk}∞

k=1
form an orthonormal basis in

Va = {ψ ∈ H1
0(0, 1) :

∫ 1

0
a(x)[ψ′(x)]2dx < ∞}.

(ii) Each eigenvalue is simple. For each eigenvalue λk there exists a unique continuous, piecewise
smooth normalized eigenfunction ψk(x) such that ψ′

k(0+) > 0, and the function a(x)ψ′
k(x) is

continuous on [0, 1].

(iii) Eigenvalues {λk}∞
k=1 satisfy Courant min-max principle

λk = min
Vk

max

{
∫ 1

0 a(x)[ψ′(x)]2dx
∫ 1

0 [ψ(x)]
2dx

: ψ ∈ Vk

}

,

where Vk varies over all subspaces of H1
0(0, 1) of finite dimension k.

65Identifiability of Piecewise Constant Conductivity
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(iv) Eigenvalues {λk}∞
k=1 satisfy the inequality

νπ2k2 ≤ λk ≤ µπ2k2.

(v) First eigenfunction ψ1 satisfies ψ1(x) > 0 for any x ∈ (0, 1).

(vi) First eigenfunction ψ1 has a unique point of maximum q ∈ (0, 1) : ψ1(x) < ψ1(q) for any
x 
= q.

Proof. (i) See (Evans, 2010).

(ii) On any subinterval (xi, xi+1) the coefficient a(x) has a bounded continuous derivative.
Therefore, on any such interval the initial value problem (a(x)v′(x))′ + λv = 0, v(xi) =
A, v′(xi) = B has a unique solution. Suppose that two eigenfunctions w1(x) and
w2(x) correspond to the same eigenvalue λk. Then they both satisfy the condition
w1(0) = w2(0) = 0. Therefore their Wronskian is equal to zero at x = 0. Consequently,
the Wronskian is zero throughout the interval (x0, x1), and the solutions are linearly
dependent there. Thus w2(x) = Cw1(x) on (x0, x1), w2(x1−) = Cw1(x1−) and
w′

2(x1−) = Cw′
1(x1−). The linear matching conditions imply that w2(x1+) = Cw1(x1+)

and w′
2(x1+) = Cw′

1(x1+). The uniqueness of solutions implies that w2(x) = Cw1(x)
on (x1, x2), etc. Thus w2(x) = Cw1(x) on (0, 1) and each eigenvalue λk is simple.
In particular λ1 is a simple eigenvalue. The uniqueness and the matching conditions
also imply that any solution of (a(x)v′(x))′ + λv = 0, v(0) = 0, v′(0) = 0 must
be identically equal to zero on the entire interval (0, 1). Thus no eigenfunction ψk(x)
satisfies ψ′

k(0) = 0. Assuming that the eigenfunction ψk is normalized in L2(0, 1) it
leaves us with the choice of its sign for ψ′

k(0). Letting ψ′
k(0) > 0 makes the eigenfunction

unique.

(iii) See (Evans, 2010).

(iv) Suppose a(x) ≤ b(x) for x ∈ [0, 1]. The min-max principle implies λk(a) ≤ λk(b). Since
the eigenvalues of (7) with a(x) = 1 are π2k2 the required inequality follows.

(v) Recall that ψ1(x) is a continuous function on [0, 1]. Suppose that there exists p ∈ (0, 1)
such that ψ1(p) = 0. Let wl(x) = ψ1(x) for 0 ≤ x < p, and wl(x) = 0 for p ≤ x ≤ 1.
Let wr(x) = ψ1(x) − wl(x), x ∈ [0, 1]. Then wl , wr are continuous, and, moreover,
wl , wr ∈ H1

0(0, 1). Also

∫ 1

0
wl(x)wr(x)dx = 0, and

∫ 1

0
a(x)w′

l(x)w
′
r(x)dx = 0.

Suppose that wl is not an eigenfunction for λ1. Then

∫ 1

0
a(x)[w′

l(x)]
2dx > λ1

∫ 1

0
[wl(x)]

2dx.

Since
∫ 1

0
a(x)[w′

r(x)]
2dx ≥ λ1

∫ 1

0
[wr(x)]

2dx

we have

λ1 =

∫ 1
0 a(x)[ψ′

1(x)]
2dx

∫ 1
0 [ψ1(x)]2dx

=

∫ 1
0 a(x)([w′

l(x)]
2 + [w′

r(x)]
2)dx

∫ 1
0 ([wl(x)]2 + [wr(x)]2)dx

>

66 Heat Conduction – Basic Research
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∫ 1
0 (λ1[wl(x)]

2 + λ1[wr(x)]2)dx
∫ 1

0 ([wl(x)]
2 + [wr(x)]2)dx

= λ1.

This contradiction implies that wl (and wr) must be an eigenfunction for λ1. However,
wl(x) = 0 for p ≤ x ≤ 1, and as in (ii) it implies that wl(x) = 0 for all x ∈ [0, 1] which is
impossible. Since ψ′

1(0) > 0 the conclusion is that ψ1(x) > 0 for x ∈ (0, 1).

(vi) From part (ii), any eigenfunction ψk is continuous and satisfies

(a(x)ψ′
k(x))

′ = −λkψk(x)

for x 
= xi . Also function a(x)ψ′
k(x) is continuous on [0, 1] because of the matching

conditions at the points of discontinuity xi, i = 1, 2, · · · , N − 1 of a. The integration
gives

a(x)ψ′
k(x) = a(p)ψ′

k(p)− λk

∫ x

p
ψk(s)ds,

for any x, p ∈ (0, 1).

Let p ∈ (0, 1) be a point of maximum of ψk. If p 
= xi then ψ′
k(p) = 0. If p = xi ,

then ψ′
k(xi−) ≥ 0 and ψ′

k(xi+) ≤ 0. Therefore limx→p a(x)ψ′
k(x) = 0, and ψ′

k(p+) =
ψ′

k(p−) = 0 since a(x) ≥ ν > 0. In any case for such point p we have

a(x)ψ′
k(x) = −λk

∫ x

p
ψk(s)ds, x ∈ (0, 1). (8)

Since ψ1(x) > 0, a(x) > 0 on (0, 1) equation (8) implies that ψ′
1(x) > 0 for any 0 ≤ x < p

and ψ′
1(x) < 0 for any p < x ≤ 1. Since the derivative of ψ1 is zero at any point of

maximum, we have to conclude that such a maximum p is unique.

3. Representation of solutions

First, we derive the solution of (4) with f = q1 = q2 = 0. Then we consider the general case.

Theorem 3.1. (i) Let g ∈ H = L2(0, 1). For any fixed t > 0 the solution u(x, t) of

ut − (a(x)ux)x = 0, Q = (0, 1)× (0, T),
u(0, t) = 0, u(1, t) = 0, t ∈ (0, T),
u(x, 0) = g(x), x ∈ (0, 1)

(9)

is given by

u(x, t; a) =
∞

∑
k=1

〈g, ψk〉e−λktψk(x),

and the series converges uniformly and absolutely on [0, 1].

(ii) For any p ∈ (0, 1) function
z(t) = u(p, t; a), t > 0

is real analytic on (0, ∞).

Proof. (i) Note that the eigenvalues and the eigenfunctions satisfy

ν‖ψ′
k‖2 ≤

∫ 1

0
a(x)[ψ′

k(x)]
2dx = λk‖ψk‖2 = λk.

67Identifiability of Piecewise Constant Conductivity
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Thus

‖ψ′
k‖ ≤

√
λk√
ν

,

and

|ψk(x)| ≤
∫ x

0
|ψ′

k(s)|ds ≤ ‖ψ′
k‖ ≤

√
λk√
ν

.

Bessel’s inequality implies that the sequence of Fourier coefficients 〈g, ψk〉 is bounded.
Therefore, denoting by C various constants and using the fact that the function s →√

se−σs is bounded on [0, ∞) for any σ > 0 one gets

|〈g, ψk〉e−λktψk(x)| ≤ C

√
λk√
ν

e−
λkt

2 e−
λkt

2 ≤ Ce−
λkt

2 .

From (iv) of Theorem 2.2 λk ≥ νπ2k2. Thus

∞

∑
k=1

|〈g, ψk〉e−λktψk(x)| ≤ C
∞

∑
k=1

e−
νπ2k2 t

2 ≤ C
∞

∑
k=1

(

e−
νπ2t

2

)k

< ∞.

By Weierstrass M-test the series converges absolutely and uniformly on [0, 1].

(ii) Let t0 > 0 and p ∈ (0, 1). From (i), the series ∑
∞
k=1〈g, ψk〉e−λkt0 ψk(p) converges

absolutely. Therefore ∑
∞
k=1〈g, ψk〉e−λksψk(p) is analytic in the part of the complex plane

{s ∈ C : Re s > t0}, and the result follows.

Next we establish a representation formula for the solutions u(x, t; a) of (4) under more general
conditions. Suppose that u(x, t; a) is a strong solution of (4), i.e. the equation and the initial
condition in (4) are satisfied in H = L2(0, 1). Let

Φ(x, t; a) =
q2(t)− q1(t)
∫ 1

0
1

a(s)
ds

∫ x

0

1

a(s)
ds + q1(t). (10)

Then v(x, t; a) = u(x, t; a)− Φ(x, t; a) is a strong solution of

⎧

⎪

⎪

⎨

⎪

⎪

⎩

vt − (avx)x = −Φt + f , 0 < x < 1, 0 < t < T,
v(0, t) = 0, 0 < t < T,
v(1, t) = 0, 0 < t < T,
v(x, 0) = g(x)− Φ(x, 0), 0 < x < 1.

(11)

Accordingly, the weak solution u of (4) is defined by u(x, t; a) = v(x, t; a) + Φ(x, t; a) where
v is the weak solution of (11). For the existence and the uniqueness of the weak solutions for
such evolution equations see (Evans, 2010; Lions, 1971).

Let V = H1
0(0, 1) and X = C[0, 1].

Theorem 3.2. Suppose that T > 0, a ∈ PS , g ∈ H, q1, q2 ∈ C1[0, T] and f (x, t) = h(x)r(t)
where h ∈ H and r ∈ C[0, T]. Then

(i) There exists a unique weak solution u ∈ C((0, T]; X) of (4).

68 Heat Conduction – Basic Research
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(ii) Let {λk, ψk}∞
k=1 be the eigenvalues and the eigenfunctions of (5). Let gk = 〈g, ψk〉, φk(t) =

〈Φ(·, t), ψk〉 and fk(t) = 〈 f (·, t), ψk〉 for k = 1, 2, · · · . Then the solution u(x, t; a), t > 0 of
(4) is given by

u(x, t; a) = Φ(x, t; a) +
∞

∑
k=1

Bk(t; a)ψk(x), (12)

where

Bk(t; a) = e−λkt(gk − φk(0; a)) +
∫ t

0
e−λk(t−τ)( fk(τ)− φ′

k(τ; a))dτ (13)

for k = 1, 2, · · · .

(iii) For each t > 0 and a ∈ PS the series in (12) converges in X. Moreover, this convergence is
uniform with respect to t in 0 < t0 ≤ t ≤ T and a ∈ PS .

Proof. Under the conditions specified in the Theorem the existence and the uniqueness of
the weak solution v ∈ C([0, T]; H) ∩ L2([0, T]; V) of (11) is established in (Evans, 2010; Lions,
1971). By the definition u = v+Φ. Thus the existence and the uniqueness of the weak solution
u of (4) is established as well.
Let {ψk}∞

k=1 be the orthonormal basis of eigenfunctions in H corresponding to the
conductivity a ∈ PS . Let Bk(t) = 〈v(·, t), ψk〉. To simplify the notation the dependency of
Bk on a is suppressed. Then v = ∑

∞
k=1 Bk(t)ψk in H for any t ≥ 0, and

B′
k(t) + λkBk(t) = −φ′

k(t) + fk(t), Bk(0) = gk − φk(0).

Therefore Bk(t) has the representation stated in (13).
Let 0 < t0 < T. Our goal is to show that v defined by v = ∑

∞
k=1 Bk(t)ψk is in C([t0, T]; X). For

this purpose we establish that this series converges in X = C[0, 1] uniformly with respect to
t ∈ [t0, T] and a ∈ Aad.
Note that V is continuously embedded in X. Furthermore, since 0 < ν ≤ a(x) ≤ µ the original

norm in V is equivalent to the norm ‖ · ‖Va
defined by ‖w‖2

Va
=
∫ 1

0 a|w′|2dx. Thus it is enough
to prove the uniform convergence of the series for v in Va. The uniformity follows from the
fact that the convergence estimates below do not depend on a particular t ∈ [t0, T] or a ∈ Aad.
By the definition of the eigenfunctions ψk one has 〈aψ′

k, ψ′
j〉 = λk〈ψk, ψj〉 for all k and j.

Thus the eigenfunctions are orthogonal in Va. In fact, {ψk/
√

λk}∞
k=1 is an orthonormal basis

in Va, see (Evans, 2010). Therefore the series ∑
∞
k=1 Bk(t)ψk converges in Va if and only if

∑
∞
k=1 λk|Bk(t)|2 = ‖v(·, t; a)‖2

Va
< ∞ for any t > 0. This convergence follows from the fact that

the function s → √
se−σs is bounded on [0, ∞) for any σ > 0, see (Gutman & Ha, 2009).

4. Continuity of the solution map

In this section we establish the continuous dependence of the eigenvalues λk, eigenfunctions
ψk and the solution u of (4) on the conductivities a ∈ PS ⊂ Aad, when Aad is equipped with

the L1(0, 1) topology. For smooth a see (Courant & Hilbert, 1989).

Theorem 4.1. Let a ∈ PS , PS ⊂ Aad be equipped with the L1(0, 1) topology, and {λk(a)}∞
k=1

be the eigenvalues of the associated Sturm-Liouville system (5). Then the mapping a → λk(a) is
continuous for every k = 1, 2, · · · .

Proof. Let a, â ∈ PS , {λk, ψk}∞
k=1 be the eigenvalues and the eigenfunctions corresponding to

a, and {λ̂k, ψ̂k}∞
k=1 be the eigenvalues and the eigenfunctions corresponding to â. According

69Identifiability of Piecewise Constant Conductivity
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to Theorem 2.2 the eigenfunctions form a complete orthonormal set in H. Since
∫ 1

0 aψ′
jψ

′dx =

λj

∫ 1
0 ψjψdx for any ψ ∈ H1

0(0, 1) we have
∫ 1

0 aψ′
iψ

′
jdx = 0 for i 
= j.

Let Wk = span{ψj}k
j=1. Then Wk is a k-dimensional subspace of H1

0(0, 1), and any ψ ∈ Wk has

the form ψ(x) = ∑
k
j=1 αjψj(x), αj ∈ R. From the min-max principle (Theorem 2.2(iii))

λ̂k ≤ max
ψ∈Wk

∫ 1
0 â(x)[ψ′(x)]2dx
∫ 1

0 [ψ(x)]
2dx

.

Note that

max
ψ∈Wk

∫ 1
0 a(x)[ψ′(x)]2dx
∫ 1

0 [ψ(x)]
2dx

= max

⎧

⎨

⎩

∑
k
j=1 α2

j λj

∑
k
j=1 α2

j

: αj ∈ R, j = 1, 2, · · · , k

⎫

⎬

⎭

= λk.

Therefore

λ̂k ≤ max
ψ∈Wk

∫ 1
0 a(x)[ψ′(x)]2dx
∫ 1

0 [ψ(x)]
2dx

+ max
ψ∈Wk

∫ 1
0 (â(x)− a(x))[ψ′(x)]2dx

∫ 1
0 [ψ(x)]

2dx

≤ λk + ‖a − â‖L1 max
αj

‖∑
k
j=1 αjψ

′
j‖2

∞

∑
k
j=1 α2

j

,

where ‖ · ‖∞ is the norm in L∞(0, 1). Estimates from Theorem 3.1 and the Cauchy-Schwarz
inequality give

| ∑
k
j=1 αjψ

′
j(x)|2

∑
k
j=1 α2

j

≤
∑

k
j=1 α2

j ∑
k
j=1 |ψ′

j(x)|2

∑
k
j=1 α2

j

≤ λ2
kk

ν2
≤ (µπ2k2)2k

ν2
= C(k).

Therefore
|λk − λ̂k| ≤ C(k)‖a − â‖L1

and the desired continuity is established.

The following theorem is established in (Gutman & Ha, 2007).

Theorem 4.2. Let a ∈ PS , PS ⊂ Aad be equipped with the L1(0, 1) topology, and {ψk(x; a)}∞
k=1

be the unique normalized eigenfunctions of the associated Sturm-Liouville system (5) satisfying the
condition ψ′

k(0+; a) > 0. Then the mapping a → ψk(a) from PS into X = C[0, 1] is continuous for
every k = 1, 2, · · · .

Theorem 4.3. Let a ∈ PS ⊂ Aad equipped with the L1(0, 1) topology, and u(a) be the solution of
the heat conduction process (4), under the conditions of Theorem 3.2. Then the mapping a → u(a)
from PS into C([0, T]; X) is continuous.

Proof. According to Theorem 3.2 the solution u(x, t; a) is given by u(x, t; a) = v(x, t; a) +
Φ(x, t; a), where v(x, t; a) = ∑

∞
k=1 Bk(t; a)ψk(x) with the coefficients Bk(t; a) given by (13).

Let

vN(x, t; a) =
N

∑
k=1

Bk(t; a)ψk(x).
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By Theorems 4.1 and 4.2 the eigenvalues and the eigenfunctions are continuously dependent
on the conductivity a. Therefore, according to (13), the coefficients Bk(t, a) are continuous
as functions of a from PS into C([0, T]; X). This implies that a → vN(a) is continuous. By
Theorem 3.2 the convergence vN → v is uniform on Aad as N → ∞ and the result follows.

5. Identifiability of piecewise constant conductivities from finitely many

observations

Series of the form ∑
∞
k=1 C

k
e−λkt are known as Dirichlet series. The following lemma shows

that a Dirichlet series representation of a function is unique. Additional results on Dirichlet
series can be found in Chapter 9 of (Saks & Zygmund, 1965).

Lemma 5.1. Let µk > 0, k = 1, 2, . . . be a strictly increasing sequence, and 0 ≤ T1 < T2 ≤ ∞.
Suppose that either

(i) ∑
∞
k=1 |Ck

| < ∞,

or

(ii) γ > 0, µk ≥ γk2, k = 1, 2, . . . , and supk |Ck| < ∞.

Then
∞

∑
k=1

C
k
e−µkt = 0 for all t ∈ (T1, T2)

implies C
k
= 0 for k = 1, 2, . . . .

Proof. In both cases the series ∑
∞
k=1 C

k
e−µkz converges uniformly in Re z > 0 region of the

complex plane, implying that it is an analytic function there. Thus

∞

∑
k=1

C
k
e−µkt = 0 for all t > 0.

Suppose that some coefficients Ck are nonzero. Without loss of generality we can assume
C1 
= 0. Then

0 = eµ1t
∞

∑
k=1

C
k
e−µkt = C1 +

∞

∑
k=2

C
k
e(µ1−µk)t → C1, t → ∞,

which is a contradiction.

Remark. According to Theorem 3.1 for each fixed p ∈ (0, 1) the solution z(t) = u(p, t; a) of (4)
is given by a Dirichlet series. The series coefficients Ck = 〈g, vk〉vk(p) are square summable,
therefore they form a bounded sequence. The growth condition for the eigenvalues stated in
(iv) of Theorem 2.2 shows that Lemma 5.1(ii) is applicable to the solution z(t).
Functions a ∈ PCN have the form a(x) = ai for x ∈ [xi−1, xi), i = 1, 2, · · · , N. Assuming
f = q1 = q2 = 0, in this case the governing system (4) is

ut − aiuxx = 0, x ∈ (xi−1, xi), t ∈ (0, T),
u(0, t) = u(1, t) = 0, t ∈ (0, T),
u(xi+, t) = u(xi−, t), t ∈ (0, T),
ai+1ux(xi+, t) = aiux(xi−, t), t ∈ (0, T),
u(x, 0) = g(x), x ∈ (0, 1),

(14)
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where g ∈ L2(0, 1) and i = 1, 2, · · · , N − 1. The associated Sturm-Liouville problem is

aiψ
′′(x) = −λψ(x), x ∈ (xi−1, xi),

ψ(0) = ψ(1) = 0,
ψ(xi+) = ψ(xi−),
ai+1ψ′(xi+) = aiψ

′(xi−)

(15)

for i = 1, 2, · · · , N − 1.
The central part of the identification method is the Marching Algorithm contained in Theorem
5.5. Recall that it uses only the M-tuple G(a), see (3). That is we need only the first eigenvalue
λ1 and a nonzero multiple of the first eigenfunction ψ1 of (15) for the identification of the
conductivity a(x).
Suppose that p∗ ∈ (xi−1, xi). Then ψ1 can be expressed on (xi−1, xi) as

ψ1(x) = A cos

(
√

λ1

ai
(x − p∗) + γ

)

, −π

2
< γ <

π

2

with A > 0. The range for γ in the above representation follows from the fact that ψ1(p∗) =
A cos γ > 0 by Theorem 2.2(5).
The identifiability of piecewise constant conductivities is based on the following three
Lemmas, see (Gutman & Ha, 2007).

Lemma 5.2. Suppose that δ > 0. Assume Q1, Q3 ≥ 0, Q2 > 0 and 0 < Q1 + Q3 < 2Q2. Let

Γ =
{

(A, ω, γ) : A > 0, 0 < ω <
π

2δ
, −π

2
< γ <

π

2

}

.

Then the system of equations

A cos(ωδ − γ) = Q1, A cos γ = Q2, A cos(ωδ + γ) = Q3

has a unique solution (A, ω, γ) ∈ Γ given by

ω =
1

δ
arccos

Q1 + Q3

2Q2
, γ = arctan

(

Q1 − Q3

2Q2 sin ωδ

)

,

A =
Q2

cos γ
.

Lemma 5.3. Suppose that δ > 0, 0 < p ≤ x1 < p + δ < 1, 0 < ω1, ω2 < π/2δ.
Let w(x), v(x), x ∈ [p, p + δ] be such that

w(x) = A1 cos ω1x + B1 sin ω1x,

v(x) = A2 cos ω2x + B2 sin ω2x.

Suppose that

v(x1) = w(x1), ω2
1v′(x1) = ω2

2w′(x1),

v′(x1) > 0, v(x1) > 0.

Then

(i) Conditions v(p + δ) = w(p + δ), v′(p + δ) ≥ 0 and ω1 ≤ ω2 imply ω1 = ω2.
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(ii) Conditions v(p + δ) = w(p + δ), w′(p + δ) ≥ 0 and ω1 ≥ ω2 imply ω1 = ω2.

Lemma 5.4. Let δ > 0, 0 < η ≤ 2δ, ω1 
= ω2 with 0 < ω1δ, ω2δ < π/2. Also let A, B > 0,
0 ≤ p < p + η ≤ 1 and

w(x) = A cos[ω1(x − p) + γ1],

v(x) = B cos[ω2(x − p − η) + γ2]

with |γ1|, |γ2| < π/2. Then system

w(q) = v(q), (16)

ω2
2w′(q) = ω2

1v′(q), (17)

w(q) > 0, v(q) > 0 (18)

admits at most one solution q on [p, p + η]. This unique solution q can be computed as follows:
If γ1 ≥ 0 then

q = p +
1

ω 1

⎡

⎣arctan

⎛

⎝ω1

√

√

√

√

∣

∣

∣

∣

∣

B2 − A2

A2ω2
2 − B2ω2

1

∣

∣

∣

∣

∣

⎞

⎠− γ1

⎤

⎦ . (19)

If γ2 ≤ 0 then

q = p + η +
1

ω 2

⎡

⎣− arctan

⎛

⎝ω2

√

√

√

√

∣

∣

∣

∣

∣

B2 − A2

A2ω2
2 − B2ω2

1

∣

∣

∣

∣

∣

⎞

⎠− γ2

⎤

⎦ . (20)

Otherwise compute q1 and q2 according to formulas (19) and (20) and discard the one that does not
satisfy the conditions of the Lemma.

By the definition of a ∈ PC there exist N ∈ N and a finite sequence 0 = x0 < x1 < · · · <
xN−1 < xN = 1 such that a is a constant on each subinterval (xn−1, xn), n = 1, · · · , N. Let
σ > 0. The following Theorem is our main result.

Theorem 5.5. Given σ > 0 let an integer M be such that

M ≥ 3

σ
and M > 2

√

µ

ν
.

Suppose that the initial data g(x) > 0, 0 < x < 1 and the observations zm(t) = u(pm, t; a), pm =
m/M for m = 1, 2, · · · , M − 1 and 0 ≤ T1 < t < T2 of the heat conduction process (14) are given.
Then the conductivity a ∈ Aad is identifiable in the class of piecewise constant functions PC(σ).

Proof. The identification proceeds in two steps. In step I the M-tuple G(a) is extracted from
the observations zm(t). In step II the Marching Algorithm identifies a(x).
Step I. Data extraction.
By Theorem 3.1 we get

zm(t) =
∞

∑
k=1

gke−λktψk(pm), m = 1, 2, · · · , M − 1, (21)

where gk = 〈g, ψk〉 for k = 1, 2, · · · . By Theorem 2.2(5) ψ1(x) > 0 on interval (0, 1). Since g
is positive on (0, 1) we conclude that g1ψ1(pm) > 0. Since zm(t) is represented by a Dirichlet
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series, Lemma 5.1 assures that all nonzero coefficients (and the first term, in particular) are
defined uniquely.
An algorithm for determining the first eigenvalue λ1, and the coefficient g1ψ1(pm) from (21)
is given in Section 10. Repeating this process for every m one gets the values of

Gm = g1ψ1(pm) > 0, pm = m/M (22)

for m = 1, 2, · · · , M − 1. This determines the M-tuple G(a), see (3). Because of the zero
boundary conditions we let G0 = GM = 0.
Step II. Marching Algorithm.
The algorithm marches from the left end x = 0 to a certain observation point pl−1 ∈ (0, 1) and
identifies the values an and the discontinuity points xn of the conductivity a on [0, pl−1]. Then
the algorithm marches from the right end point x = 1 to the left until it reaches the observation
point pl+1 ∈ (0, 1) identifying the values and the discontinuity points of a on [pl+1, 1]. Finally,
the values of a and its discontinuity are identified on the interval [pl−1, pl+1].
The overall goal of the algorithm is to determine the number N − 1 of the discontinuities
of a on [0, 1], the discontinuity points xn , n = 1, 2, · · · , N − 1 and the values an of a on
[xn−1, xn], n = 1, 2, · · · , N (x0 = 0, xN = 1). As a part of the process the algorithm determines
certain functions Hn(x) defined on intervals [xn−1, xn ], n = 1, 2, · · · N. The resulting function
H(x) defined on [0, 1] is a multiple of the first eigenfunction v1 over the entire interval [0, 1].
An illustration of the Marching Algorithm is given in Figure 1.

0.2 0.4 0.6 0.8 1.0

x

0.5

1.0

1.5

2.0

v

Fig. 1. Conductivity identification by the Marching Algorithm. The dots are a multiple of the
first eigenfunction at the observation points pm. The algorithm identifies the values of the
conductivity a and its discontinuity points

(i) Find l, 0 < l < M such that Gl = max{Gm : m = 1, 2, · · · , M − 1} and Gm < Gl for any
0 ≤ m < l.

(ii) Let i = 1, m = 0.

(iii) Use Lemma 5.2 to find Ai, ωi and γi from the system

⎧

⎨

⎩

Ai cos(ωiδ − γi) = Gm,
Ai cos γi = Gm+1,
Ai cos(ωiδ + γi) = Gm+2.

(23)
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Let
Hi(x) = Ai cos(ωi(x − pm+1) + γi).

(iv) If m + 3 ≥ l then go to step (vii). If Hi(pm+3) 
= Gm+3, or Hi(pm+3) = Gm+3 and
H′

i (pm+3) ≤ 0 then a has a discontinuity xi on interval [pm+2, pm+3). Proceed to the next
step (v).

If Hi(pm+3) = Gm+3 and H′
i (pm+3) > 0 then let m := m + 1 and repeat this step (iv).

(v) Use Lemma 5.2 to find Ai+1, ωi+1 and γi+1 from the system

⎧

⎨

⎩

Ai+1 cos(ωi+1δ − γi+1) = Gm+3,
Ai+1 cos γi+1 = Gm+4,
Ai+1 cos(ωi+1δ + γi+1) = Gm+5.

(24)

Let
Hi+1(x) = Ai+1 cos(ωi+1(x − pm+4) + γi+1).

(vi) Use formulas in Lemma 5.4 to find the unique discontinuity point xi ∈ [pm+2, pm+3).
The parameters and functions used in Lemma 5.4 are defined as follows. Let p =
pm+2, η = δ. To avoid a confusion we are going to use the notation Ω1, Ω2, Γ1, Γ2

for the corresponding parameters ω1, ω2, γ1, γ2 required in Lemma 5.4. Let Ω1 =
ωi, Ω2 = ωi+1. For w(x) use function Hi(x) recentered at p = pm+2, i.e. rewrite Hi(x)
in the form

w(x) = Hi(x) = A cos(Ω1(x − pm+2) + Γ1), |Γ1| < π/2.

For v(x) use function Hi+1 recentered at p + η = pm+3, i.e.

v(x) = Hi+1(x) = B cos(Ω2(x − pm+3) + Γ2), |Γ2| < π/2.

Let i := i + 1, m := m + 3. If m < l then return to step (iv). If m ≥ l then go to the next
step (vii).

(vii) Do steps (ii)-(vi) in the reverse direction of x, advancing from x = 1 to x = pl+1.
Identify the values and the discontinuity points of a on [pl+1, 1], as well as determine
the corresponding functions Hi(x).

(viii) Using the notation introduced in (vi) let Hj(x) be the previously determined function

H on interval [pl−2, pl−1]. Recenter it at p = pl−1, i.e. w(x) = Hj(x) =

A cos(Ω1(x − pl−1) + Γ1). Let Hj+1(x) be the previously determined function H on

interval [pl+1, pl+2]. Recenter it at pl+1: v(x) = Hj+1(x) = B cos(Ω2(x − pl+1) + Γ2). If
Ω1 = Ω2 then stop, otherwise use Lemma 5.4 with η = 2δ, and the above parameters to
find the discontinuity xj ∈ [pl−1, pl+1]. Stop.

The justification of the Marching Algorithm is given in (Gutman & Ha, 2007).

6. Identifiability of piecewise constant conductivity with one discontinuity

The Marching Algorithm of Theorem 5.5 requires measurements of the system at possibly
large number of observation points. Our next Theorem shows that if a piecewise constant
conductivity a is known to have just one point of discontinuity x1, and its values a1 and
a2 are known beforehand, then the discontinuity point x1 can be determined from just one
measurement of the heat conduction process.
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Theorem 6.1. Let p ∈ (0, 1) be an observation point, g(x) > 0 on (0, 1), and the observation zp(t) =
u(xp, t; a), t ∈ (T1, T2) of the heat conduction process (14) be given. Suppose that the conductivity
a ∈ Aad is piecewise constant and has only one (unknown) point of discontinuity x1 ∈ (0, 1). Given
positive values a1 
= a2 such that a(x) = a1 for 0 ≤ x < x1 and a(x) = a2 for x1 ≤ x < 1 the point
of discontinuity x1 is constructively identifiable.

Proof. Arguing as in the previous Theorem

zp(t) =
∞

∑
k=1

gke−λktψk(p), 0 ≤ T1 < t < T2,

where gk = 〈g, ψk〉 for k = 1, 2, · · · . Since g1ψ1(p) > 0 the uniqueness of the Dirichlet series
representation implies that one can uniquely determine the first eigenvalue λ1 and the value
of Gp = g1ψ1(p).
Without loss of generality one can assume that a1 > a2. In this case we show that the first
eigenvalue λ1 is strictly increasing as a function of the discontinuity point x1 ∈ [0, 1]. Indeed,
suppose that

0 ≤ xa
1 < xb

1 ≤ 1,

that is

a(x) =

{

a
1
, 0 < x < xa

1
a2 , xa

1 < x < 1
and b(x) =

{

a
1
, 0 < x < xb

1
a2 , xb

1 < x < 1
.

By Theorem 2.2(i)

λb
1 =

∫ 1
0 b(x)[ψ′

1,b(x)]
2dx

∫ 1
0 [ψ1,b(x)]2dx

>

∫ 1
0 a(x)[ψ′

1,b(x)]
2dx

∫ 1
0 [ψ1,b(x)]2dx

≥ inf
ψ∈H1

0(0,1)

∫ 1
0 a(x)[ψ′(x)]2dx
∫ 1

0 [ψ(x)]
2dx

= λa
1

provided that the derivative ψ′
1,b(x) of the first eigenfunction ψ1,b(x) is not identically zero

on (xa
1, xb

1). But, from (b(x)ψ′
1,b(x))

′ = −λb
1ψ1,b(x), the assumption ψ′

1,b(x) = 0 on (xa
1, xb

1)

implies ψ1,b(x) = 0 on (xa
1, xb

1). However, this is impossible, since ψ1,b(x) > 0 on (0, 1).
Thus there exists a unique conductivity of the type sought in the Theorem for which its first
eigenvalue is equal to λ1, i.e. a is identifiable.
Now the unique discontinuity point x1 of a can be determined as follows. Let

ω1 =

√

λ1

a1
, ω2 =

√

λ1

a2
.

Then the first eigenfunction ψ1 is given by

ψ1(x) =

{

A sin ω1x, 0 < x < x1,
B sin ω2(1 − x), x1 < x < 1

(25)

for some A, B > 0. The matching conditions at x1 give

A sin ω1x1 = B sin ω2(1 − x1) and
A

ω1
cos ω1x1 =

B

ω2
cos ω2(1 − x1).
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Since ψ1(x1) > 0 we have 0 < ω1x1 < π and 0 < ω2(1 − x1) < π. Therefore x1 satisfies

1

ω1
cot ω1x =

1

ω2
cot ω2(1 − x).

The existence and the uniqueness of the solution x1 of the above nonlinear equation follows
from the monotonicity and the continuity of the cotangent functions. Practically, the value of
x1 can be found by a numerical method.

7. Identifiability with non-zero boundary conditions

Let a ∈ PS , and u(x, t; a) be the unique solution of the heat conduction process (4). Next
Theorem describes some conditions under which the identifiability for (4) is possible.

Theorem 7.1. Given σ > 0 let an integer M be such that

M ≥ 3

σ
and M > 2

√

µ

ν
.

Suppose that the observations zm(t; a) = u(pm, t; a) for pm = m/M, m = 1, 2, · · · , M − 1 and
t > 0 of the heat conduction process (4) are given. Then the conductivity a ∈ Aad is identifiable in the
class of piecewise constant functions PC(σ) in each one of the following four cases.

(i) f = 0, q1 = 0, q2 = 0, g > 0, g ∈ L2(0, 1).

(ii) g = 0, q1 = 0, q2 = 0, f (x, t) = h(x)r(t) 
= 0, h > 0, h ∈ L2(0, 1), r ∈ C[0, ∞).

(iii) g = 0, f = 0, q2 = 0, q1 
= 0, q1(0) = 0, q1 ∈ C1[0, ∞).

(iv) g = 0, f = 0, q1 = 0, q2 
= 0, q2(0) = 0, q2 ∈ C1[0, ∞).

Proof. Case (i) is considered in Theorem 5.5. In case (ii) of the Theorem let

ym(t) =
∞

∑
k=1

〈h, ψk〉ψk(pm)e
−λkt. (26)

Then ym(t) is the solution of (4) with g = h, f = 0 and zero boundary conditions, observed
at pm ∈ (0, 1). It is shown in Theorem 3.2 that such a solution is a continuous function for
t > 0. Furthermore, using the estimate |ψk(x)| ≤

√
λk/

√
ν established in Theorem 3.1, and

the Cauchy-Schwarz inequality we get

∫ ∞

0
|ym(t)|dt ≤

∞

∑
k=1

1

λ k
|hk||ψk(pm)| ≤

1√
ν

∞

∑
k=1

|hk|√
λk

≤ C‖h‖ < ∞. (27)

Therefore ym(t) ∈ L1[0, ∞).
Returning to the observation zm(t), Theorem 3.2 shows that it is given by

zm(t) = u(pm, t) =
∫ t

0

[

∞

∑
k=1

〈h, ψk〉ψk(pm)e
−λk(t−τ)

]

r(τ) dτ.

That is

zm(t) =
∫ t

0
ym(t − τ)r(τ) dτ.
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Since ym(t) ∈ L1[0, ∞) and r(t) is continuous and bounded on [0, ∞), Titchmarsh Theorem
(Titchmarsh, 1962), Theorem 152, Chap. XI, p. 325, implies that this Volterra integral equation
is uniquely solvable for ym(t).
Since h > 0 is assumed to be in L2(0, 1), one has C(a) = 〈h, ψ1(a)〉 
= 0. The uniqueness of the
Dirichlet series representation (26) and rest of the argument is the same as in the proof of case
(i).
In case (iii) of the Theorem function Φ(x, t; a) has the form Φ(x, t; a) = q1(t)ξ(x; a), where

ξ(x; a) = 1 − 1
∫ 1

0
1

a(s)
ds

∫ x

0

1

a(s)
ds.

Note that ξ(x; a) is bounded, continuous and strictly positive on (0, 1). Thus ξ ∈ L2(0, 1). Let
ξk = 〈ξ(x; a), ψk(x; a)〉 for k = 1, 2, .... Then φk(t; a) = q1(t)ξk, φk(0; a) = 0 and φ′

k(t; a) =
q′1(t)ξk.
Let

ym(t) = −
∞

∑
k=1

ξkψk(pm)e
−λkt. (28)

Arguing as in case (ii), we conclude that ym(t) is continuous on [0, ∞) and ym(t) ∈ L1[0, ∞).
Also, by Theorem 3.2

zm(t) = u(pm, t) = −
∫ t

0

[

∞

∑
k=1

ξkψk(pm)e
−λk(t−τ)

]

q′1(τ) dτ.

That is

zm(t) =
∫ t

0
ym(t − τ)q′1(τ) dτ.

Since ym(t) ∈ L1[0, ∞) and q′1(t) is continuous and bounded on [0, ∞), Titchmarsh Theorem
(Titchmarsh, 1962), Theorem 152, Chap. XI, p. 325, implies that this Volterra integral equation
is uniquely solvable for ym(t).
Since ξ1 > 0 and ψ1(pm) > 0, the uniqueness of the Dirichlet series representation (28)
implies that the M-tuple G(a) is recoverable from the observations zm(t). In this case C(a) =
〈ξ(x; a), ψ1(x; a)〉. Finally, the Marching Algorithm identifies the unknown conductivity a.
Case (iv) of the Theorem is treated in the same way as case (iii).

8. Continuity of the identification map

The Marching Algorithm establishes the identifiability of the conductivity a ∈ PC(σ) from

the data G(a). In other words, the inverse mapping G−1 is well defined on G(PC(σ)). To

prove our main result that the identifiability map G−1 is continuous, first we show that the

set PC(σ) ⊂ Aad is compact in L1(0, 1). A proof of this result can be found in (Gutman & Ha,
2009).

Theorem 8.1. Let Aad be equipped with the L1(0, 1) topology. Let N ∈ N and σ > 0. Then

(i) Set PCN ⊂ Aad is compact.

(ii) Set PC(σ) ⊂ Aad is compact.

Theorem 8.2. Let Aad be equipped with the L1(0, 1) topology, and the data map G : PC(σ) → RM

be defined as in (3). Then the identifiability map G−1 : G(PC(σ)) → PC(σ) is continuous.
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Proof. Theorem 7.1 shows that in every case specified there the data map a → G(a) is defined
everywhere on PC(σ) and that the conductivity a is identifiable from G(a), i.e. G is invertible

on G(PC(σ)). By Theorem 8.1 the set PC(σ) is compact in L1(0, 1). Thus the Theorem would
be established if the injective map a → G(a) were shown to be continuous.
Recall that G(a) = (λ1(a), G1(a), · · · , GM−1(a)) ∈ RM. The continuity of a → λ1(a) was
established in Theorem 4.1. In every case of Theorem 7.1 the data Gm has the form Gm(a) =
C(a)ψ1(pm; a), where pm are the observation points. By Theorem 4.2 the mapping a → ψ1(·; a)
is continuous from PC(σ) ⊂ L1(0, 1) into C[0, 1]. Thus the evaluation maps a → ψ1(pm ; a) ∈
R are continuous for every pm ∈ [0, 1].
To see that a → C(a) is continuous we have to examine it separately for each case of Theorem
7.1. In case (i) C(a) = 〈g, ψ1(a)〉, where g ∈ L2(0, 1) is a fixed initial condition. The continuity
of the inner product and of a → ψ1(·; a) imply the continuity of C(a). In case (ii) C(a) =
〈h, ψ1(a)〉 for an h ∈ L2(0, 1) and the continuity of C(a) follows. In cases (iii) and (iv) the
continuity of C(a) is established similarly.

9. Identifiability with a known heat flux

Let Π be the set of piecewise constant functions on [0, 1] with finitely many discontinuity
points,

Π = {a(x) : 0 < ν ≤ a(x) ≤ µ, a(x) = aj, x ∈ [xj−1, xj), j = 1, 2, ..., n} (29)

with x0 = 0 and xn = 1.
Consider the following heat conduction problem in an inhomogeneous bar of the unit length
with a conductivity a ∈ Π:

⎧

⎨

⎩

ut = (a(x)ux)x, (x, t) ∈ Q = (0, 1)× (0, ∞),
u(0, t) = g(t), u(1, t) = 0, t ∈ (0, ∞),
u(x, 0) = 0, x ∈ (0, 1).

(30)

Suppose that the extra data f (t) = a(0)ux(0, t) 
≡ 0, i.e., the heat flux through the left end of
the bar, is known.
The inverse problem (IP) for (29)-(30) is:
IP: Given f (t) and g(t) for all t > 0, find a(x).
In this Section we establish the identifiability for the IP. Additional details including a fast
computational algorithm can be found in (Gutman & Ramm, 2010) and (Hoang & Ramm,
2009).
The main idea of the proof is to apply a "layer peeling" argument. Suppose that two
conductivities a, b ∈ Π satisfy (30) with the same data f (t) and g(t) for t > 0. Let both a and
b have no discontinuities on an interval [0, y], 0 < y ≤ 1. Then we can show that a(x) = b(x)
for x ∈ [0, y]. A repeated application of this argument shows that a = b on the entire interval
[0, 1]. See (Hoang & Ramm, 2009) for further refinements of this result, in particular for the
data f , g available only on a finite interval (0, T).
The main tool for the uniqueness proof is Property C (completeness of the products
of solutions for (30)). We will use the following Property C result established in
(Hoang & Ramm, 2009).

Theorem 9.1. Let PC[0, 1] be the set of piecewise-constant functions on [0, 1]. Let q1, q2 ∈ PC[0, 1]
be two positive functions. Suppose that ψ1(x, k) and ψ2(x, k) satisfy

− ψ′′
j (x, k) + k2q2

j (x)ψj(x, k) = 0, ψj(1, k) = 1, ψ′
j(1, k) = 0, j = 1, 2. (31)
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Then the set of products {ψ1(x, k)ψ2(x, k)}k>0 is dense in PC[0, 1]. That is, if h ∈ PC[0, 1] and

∫ 1

0
h(x)ψ1(x, k)ψ2(x, k)dx = 0 (32)

for any k > 0, then h = 0.

Theorem 9.2. Problem IP has at most one solution a ∈ Π.

Proof. Following Hoang & Ramm (2009), problem (30) is restated in terms of the Laplace
transform

v(x, s; a) = (Lu)(x, s; a) =
∫ ∞

0
u(x, t; a)e−stdt, s > 0.

Let G(s) = L(g(t)) and F(s) = L( f (t)). Thus (30) with the extra condition a(0)ux(0, t) = f (t)
becomes

(a(x)v′)′ − sv = 0, 0 < x < 1,

v(0, s; a) = G(s), a(0)v′(0, s; a) = F(s), (33)

v(1, s; a) = 0.

Let

k =
√

s, ψ(x, k) = a(x)v′(x, s; a), and q(x) =

√

1

a(x)
.

Then, using k2v(x, s; a) = ψ′(x, k), system (33) is rewritten as

− ψ′′(x, k) + k2q2(x)ψ(x, k) = 0, 0 < x < 1, (34)

ψ(0, k) = F(k2), ψ′(0, k) = k2G(k2), ψ′(1, k) = 0.

Let ψ1(x, k) and ψ2(x, k) be the solutions of (34) for two positive piecewise-constant functions
q1(x) and q2(x) correspondingly. That is,

− ψ′′
1 (x, k) + k2q2

1(x)ψ1(x, k) = 0, 0 < x < 1, (35)

ψ1(0, k) = F(k2), ψ′
1(0, k) = k2G(k2), ψ′

1(1, k) = 0,

and

− ψ′′
2 (x, k) + k2q2

2(x)ψ2(x, k) = 0, 0 < x < 1, (36)

ψ2(0, k) = F(k2), ψ′
2(0, k) = k2G(k2), ψ′

2(1, k) = 0.

Multiply equation (35) by ψ2(x, k) and integrate it over [0, 1]. Then use an integration by parts
and the boundary conditions in (35) and (36) to obtain

k2
∫ 1

0
q2

1ψ1ψ2dx = ψ′
1ψ2|10 −

∫ 1

0
ψ′

1ψ′
2dx = −k2G(k2)F(k2)−

∫ 1

0
ψ′

1ψ′
2dx. (37)

Similarly,

k2
∫ 1

0
q2

2ψ1ψ2dx = −k2G(k2)F(k2)−
∫ 1

0
ψ′

1ψ′
2dx. (38)
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Subtracting (38) from (37) gives

∫ 1

0
(q2

1 − q2
2)ψ1ψ2dx = 0

for any k > 0.
Given nonzero F and G, consider (35) as an initial value problem for ψ1 at x = 0. Its solution
ψ1(x, k) must satisfy ψ1(1, k) 
= 0, because of the condition ψ′

1(1, k) = 0. The same goes
for ψ2(x, k). Now we can conclude that the set of products {ψ1(x, k)ψ2(x, k)}k>0 is dense in
PC[0, 1] by Theorem 9.1. Therefore q1 = q2. Thus (34) has a unique solution q ∈ PC[0, 1].
Consequently (33) has a unique solution a ∈ Π, and the Theorem is proved.

10. Computational algorithms

The main objective of this research is the development of a theoretical framework for the
parameter identifiability described in previous sections. Nevertheless, from a practical
perspective it is desirable to develop an algorithm for such an identifiability incorporating
the new insights gained in the theoretical part. The main new element of it is the separation
of the identification process into the following two parts. First, the observation data is
used to recover the M-tuple G(a), i.e. the first eigenvalue of (5), and a multiple of the first
eigenfunction at the observation points pm, see (3). In the second step this input is used to
recover the conductivity distribution. We emphasize that only one (first) eigenvalue and the
eigenfunction are needed for the identification. For other methods for inverse heat conduction
problems see (Beck et al., 1985) and the references therein.
Before considering noise contaminated observation data zm(t), let us assume that zm(t) are
known precisely on an interval I = (t0, T), t0 ≥ 0. In case (i) of Theorem 7.1 the observations
are given by the Dirichlet series

zm(t) =
∞

∑
k=1

〈g, ψk〉e−λktψk(pm). (39)

We have not implemented yet other cases of Theorem 7.1.
In principle, functions zm(t) are analytic for t > 0. Therefore they can be uniquely extended
to (0, ∞) from I. Then the first eigenvalue λ1 and the data sequence {Gm =< g, ψ1 >

ψ1(pm)}M−1
m=1 can be recovered from the Dirichlet series (39) representing zm(t) by

λ1 = − 1

h
lim
t→∞

ln
zm(t + h)

zm(t)
, Gm = lim

t→∞
eλ1tzm(t), (40)

where h > 0.
The second step of the algorithm, i.e. the identification of the conductivity a is accomplished
by the Marching Algorithm. Numerical experiments show that it provides the perfect
identification only if G(a) is known precisely. However, even for noiseless data zm(t), the
numerical identification of G(a) from the Dirichlet series (39) representing zm(t) can only be
accomplished with a significant error. This numerical evidence is presented in (Gutman & Ha,
2009).
Hence a different algorithm is needed for the practically important case of noise contaminated
data. It should also take into account the severe ill-posedness of the identification of data from
Dirichlet series, see (Acton, 1990). Our numerical experiments confirm that even the second
eigenvalue of the associated Sturm-Liouville problem cannot be reliably identified even for
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noiseless data. It is the distinct advantage of the proposed algorithm that it uses only the
first eigenvalue λ1 for the conductivity identification. In what follows LMA refers to the
Levenberg-Marquardt algorithm for the nonlinear least squares minimization, and BA to the
Brent algorithm for a single variable nonlinear minimization, see (Press et al., 1992) for details.
First, consider a simple regression type algorithm for the identification of the M-tuple G(a).
In step 1, for each observation data zm(t) we find λ and c to best fit zm(t) in the objective

function Ψ(λ, c; m) defined by (41). In step 2 the obtained eigenvalues λ(m) are averaged over
the middle third of the observation points, since such data would presumably be less affected
by noise. The result of the averaging is the sought eigenvalue λ1. In step 3, the averaged
eigenvalue λ1 is kept fixed, and the functions Ψ(λ1, c; m) are minimized in variable c only.
The resulting values Gm form the M-tuple G(a).

Regression Algorithm for λ1 identification.

Let the data consist of the observations zm(tj), j = 1, 2, . . . J, m = 1, 2, . . . , M − 1.

(i) Let λ, c ∈ R and

Ψ(λ, c; m) =
J

∑
j=1

(ce−λtj − zm(tj))
2. (41)

Let
Ψ(λ, cm(λ); m) = min

c∈R

Ψ(λ, c; m).

Note that such a minimizer cm(λ) can be found directly by

cm(λ) =
∑

J
j=1 zm(j)e−λtj

∑
J
j=1 e−2λtj

.

For each m = 1, . . . , M − 1 apply BA to find a λ(m) such that

Ψ(λ(m), cm(λ
(m)); m) = min

λ∈R

Ψ(λ, cm(λ); m).

(ii) Let k = card{[[M/3]], . . . , [[2M/3]]} and

λ1 =
1

k

[[2M/3]]

∑
m=[[M/3]]

λ
(m)
1 .

(iii) Keep λ1 fixed. For each m = 1, . . . , M − 1 find Gm = cm(λ1) such that

Ψ(λ1, Gm; m) = min
c∈R

Ψ(λ1, c; m).

(iv) Let G(a) = {λ1, G1, . . . , GM−1}.

One may assume that fitting the data zm(t) using two exponents as in (43) could result in
a better estimate for the eigenvalue λ1. To examine this assumption let us consider a more
complicated algorithm which we call the LMA Algorithm for λ1 identification. This algorithm
proceeds as follows (see details below).

82 Heat Conduction – Basic Research

www.intechopen.com



Identifiability of Piecewise Constant Conductivity 21

(i). This step is the same as step (i) in the regression algorithm above, i.e. we minimize the

functions Ψ(λ, c; m) in both λ and c for m = 1, . . . , M − 1. Call the minimizers by µ(m) and

cm(µ(m)) respectively.
(ii). Apply the LMA to minimize Φ(µ, ν, c, b; m) defined in (43). Use the initial guess

µ(m), 4µ(m), cm(λ), 0 for the variables µ, ν, c, b correspondingly. Call the results of these

minimizations for the variable µ by λ
(m)
1 . The initial value 4µ(m) for the second eigenvalue

is used because of Theorem 2.2(iii). A direct application of the LMA without the initial values
obtained in Step (i) did not produce consistent results. Now the data zm(t) is approximated

by the first two terms of the Dirichlet series (39). Thus, for each m there is an estimate λ
(m)
1 for

the first eigenvalue λ1.

(iii). Let λ1 be an average of the computed values λ
(m)
1 . We used the middle third of the indices

m since the maximum of our initial data g(x) was attained in the middle of the interval [0, 1].
Hence these observations were relatively less affected by the noise.
(iv-v). Repeat the minimizations of Steps (i) and (ii), but keep λ1 frozen. Let Gm be the values
of the coefficients c that minimize Φ(λ1, ν, c, b; m). This is the best fit to the data zm(t) by the
first two terms of the Dirichlet series (39) with the fixed first eigenvalue λ1. By now the first
part of the identification algorithm is completed, since we have recovered the first eigenvalue
λ1 and a multiple Gm of the first eigenfunction ψ1(pm), m = 1, 2, . . . , M − 1.

LMA Algorithm for λ1 identification.

Let the data consist of the observations zm(tj), j = 1, 2, . . . J, m = 1, 2, . . . , M − 1.

(i) Let λ, c ∈ R and

Ψ(λ, c; m) =
J

∑
j=1

(ce−λtj − zm(tj))
2. (42)

Let
Ψ(λ, cm(λ); m) = min

c∈R

Ψ(λ, c; m).

Note that such a minimizer cm(λ) can be found directly by

cm(λ) =
∑

J
j=1 zm(j)e−λtj

∑
J
j=1 e−2λtj

.

For each m = 1, ..., M − 1 apply BA to find a µ(m) such that

Ψ(µ(m), cm(µ
(m)); m) = min

λ∈R

Ψ(λ, cm(λ); m).

(ii) Let

Φ(µ, ν, c, b; m) =
J

∑
j=1

(ce−µtj + be−νtj − zm(tj))
2. (43)

Apply the LMA to minimize Φ(µ, ν, c, b; m) using the initial guess

µ(m), 4µ(m), cm(µ(m)), 0 for the variables µ, ν, c, b correspondingly. Let

Φ(λ
(m)
1 , νm , cm, bm; m) = min

µ,ν,c,b
Φ(µ, ν, c, b; m).
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(iii) Let k = card{[[M/3]], . . . , [[2M/3]]} and

λ1 =
1

k

[[2M/3]]

∑
m=[[M/3]]

λ
(m)
1 .

(iv) Find cm(λ1), m = 1, 2, . . . , M (as in Step 1) such that

Ψ(λ1, cm(λ1); m) = min
c∈R

Ψ(λ1, c; m).

(v) Apply the LMA to minimize Φ(λ1, ν, c, b; m) in variables ν, c, b using the initial guess
4λ1, cm(λ1), 0 for the variables ν, c, b correspondingly. Let

Φ(λ1, νm, Gm, bm; m) = min
ν,c,b

Φ(λ1, ν, c, b; m).

(vi) Let G(a) = {λ1, G1, . . . , GM−1}.

The second part of the algorithm identifies the conductivity ā from the M-tuple G(a). As
we have already mentioned the Marching Algorithm provides a perfect identification for
noiseless data, otherwise one has to find ā by a nonlinear minimization.

Identification of piecewise constant conductivity.

The data is the M-tuple G(a) = {λ1, G1, . . . , GM−1}.

(i) Fix N > 0. Form the objective function Π(a) by

Π(a) = min
c∈R

M

∑
m=1

(cGm − ψ1(pm; a))2, (44)

for the conductivities a ∈ AN ⊂ Aad having at most N − 1 discontinuity points on the
interval [0, 1].

(ii) Use Powell’s minimization method in K = 2N − 1 variables (N − 1 discontinuity points
and N conductivity values) to find

Π(ā) = min
a∈AN

Π(a).

The minimizer ā is the sought conductivity.

The function ψ1(pm; a) in step (i) of the above algorithm is the first normalized eigenfunction
of the Sturm-Liouville problem (5) corresponding to the conductivity a ∈ AN . Powell’s
minimization method, a shooting method for the computation of the eigenvalues and the
eigenfunctions, and numerical experiments are presented in (Gutman & Ha, 2009).

11. Conclusions

While in most parameter estimation problems one can hope only to achieve the best fit to
data solution, sometimes it can be shown that such an identification is unique. In such case
it is said that the sought parameter is identifiable within a certain class. In our recent work
(Gutman & Ha, 2007; 2009) we have shown that piecewise constant conductivities a ∈ PC(σ)
are identifiable from observations zm(t; a) of the heat conduction process (2) taken at finitely
many points pm.
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Let G(a) = {λ1(a), G1(a), · · · , GM−1(a)}, where he values Gm(a) are a constant nonzero
multiple of the first eigenfunction ψ1(a). In principle, if G(a) is known, then the identification
of the conductivity a can be accomplished by the Marching Algorithm. Theorem 7.1 shows
under what conditions the M-tuple G(a) can be extracted from the observations zm(t), thus
assuring the identifiability of a.
It is shown in Theorem 8.2 that the Marching Algorithm not only provides the unique
identification of the conductivity a, but that the identification is also continuous (stable). This
result is based on the continuity of eigenvalues, eigenfunctions, and the solutions with respect

to the L1(0, 1) topology in the set of admissible parameters Aad, see Section 4.
Numerical experiments show that, because of the ill-posedness of the identification of
eigenvalues from a Dirichlet series representation, one can only identify G(a) with some
error. Thus the Marching Algorithm would not be practically useful. In Section 10 we
presented algorithms for the identification of conductivities from noise contaminated data.
Its main novel point is, in agreement with the theoretical developments, the separation of the
identification process into two separate parts. In part one the first eigenvalue and a multiple
of the first eigenfunction are extracted from the observations. In the second part a general
minimization method is used to find a conductivity which corresponds to the recovered
eigenfunction.
The first eigenvalue and the eigenfunction in part one of the algorithm are found from the
Dirichlet series representation of the solution of the heat conduction process. The numerical
experiments in (Gutman & Ha, 2009) confirm that even for noiseless data the second
eigenvalue cannot be reliably found. These experiments showed that in our tests a simple
regression type algorithm identified λ1 better than a more complex Levenberg-Marquardt
algorithm. The last part of the algorithm employs Powell’s nonlinear minimization method
because it does not require numerical computation of the gradient of the objective function.
The numerical experiments show that the conductivity identification was achieved with a
15-18% relative error for various noise levels in the observations.
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