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1. Introduction 

In an inverse heat conduction problem (IHCP), the boundary conditions, initial conditions, 
or thermo-physical properties of material are not fully specified, and they are determined 
from measured internal temperature profiles. The challenge is that the effect of changes in 
boundary conditions are normally damped or lagged, i.e. the varying magnitude of the 
interior temperature profile lags behind the changes in boundary conditions and is generally 
of lesser magnitude. Therefore, such a problem would be a typically ill-posed and would 
normally be sensitive to the measurement errors. Also, in the uniqueness and stability of the 
solution are not generally guaranteed (Beck et al., 1985; Alifanov, 1995; Ozisik, 2000).  
Inverse heat conduction problems, like most of the inverse problems encountered in science 
and engineering may be reformulated as an optimization problem. Therefore, many 
available techniques of solving the optimization problems are available as methods of 
solving the IHCPs. However, the corresponding objective function of the inverse problems 
can be highly nonlinear or non-monotonic, may have a very complex form, or in many 
practical applications, its analytical expression may be unknown. The objective function 
usually involves the squared difference between measured and estimated unknown 
variables. If Y and T are the vectors of the measured and estimated temperatures, then the 
objective function will be in the form of 

 U = [Y – T]T [Y – T]  (1) 

However, normally there is need for another term, called “regularization” in order to 

eliminate the oscillations in the results and make the solution more stable. The effect of this 

term and the strategy of choosing it will be discussed in details in the subsequent chapters. 

The above equation is only valid, if the measured temperatures and the associated errors 

have the following statistical characteristics (Beck & Arnold, 1977): 

 The errors are additive, i.e. 

   Yi = Ti + εi (2) 

where εi is the random error associated with the ith measurement. 

 The temperature errors have zero mean. 

 The errors have constant variance. 
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 The errors associated with different measurements are uncorrelated. 

 The measurement errors have a normal (Gaussian) distribution. 

 The statistical parameters describing the errors, such as their variance, are known. 

 Measured temperatures are the only variables that contain measurement errors. 
Measured time, positions, dimensions, and all other quantities are all accurately known. 

 There is no more prior information regarding the quantities to be estimated. If such 
information is available, it should be utilized to improve the estimates. 

While classical methods, such as the least square regularization method (Beck et al., 1985; 

Beck et al., 1996), the sequential function specification method (Alifanov, 1995; Beck et al., 

1996; Blanc et al., 1998), the space marching method (Al-Khalidy, 1998), conjugate gradient 

method (Abou khachfe & Jarny, 2001; Huang & Wang, 1999), steepest descent method 

(Huang et al., 2003), and the model reduction algorithm (Battaglia, 2002; Girault et al., 2003) 

are vastly studied in the literature, and applied to the problems in thermal engineering 

(Bass, 1980; Osman, 1190; Kumagai et al., 1995; Louahia-Gualous et al., 2003; Kim & Oh, 

2001; Pietrzyk & Lenard, 1990; Alifanov et al., 2004; Gadala & Xu, 2006), there are still some 

unsolved problems: 

 The solution often shows some kinds of overshoot and undershoot, which may result in 
non-physical answers. 

 Very high heat flux peak values such as those experienced in jet impingement cooling 
are normally damped and considerably underestimated. 

 Results are very sensitive to the quality of input. Measurement errors are intrinsic in 
laboratory experiments, so we need a more robust approach in solving the inverse 
problem. 

 The time step size that can be used with these methods is bounded from below, and 
cannot be less than a specific limit (Beck et al., 1985). This causes temporal resolutions that 
are not sufficient for some real world applications, where changes happen very fast. 

More recent optimization techniques may be used in the solution of the IHCPs to aid in 
stability, solution time, and to help in achieving global minimum solutions. Some of these 
techniques are briefly reviewed in the following section:  

Genetic algorithm 

This technique has been widely adopted to solve inverse problems (Raudensky et al., 1995; 

Silieti et al., 2005; Karr et al., 2000). Genetic algorithms (GAs) belong to the family of 

computational techniques originally inspired by the living nature. They perform random 

search optimization algorithms to find the global optimum to a given problem. The main 

advantage of GAs may not necessarily be their computational efficiency, but their 

robustness, i.e. the search process may take much longer than the conventional gradient-

based algorithms, but the resulting solution is usually the global optimum. Also, they can 

converge to the solution when other classical methods become unstable or diverge. 

However, this process can be time consuming since it needs to search through a large tree of 

possible solutions. Luckily, they are inherently parallel algorithms, and can be easily 

implemented on parallel structures.  

Neural networks 

Artificial neural networks can be successfully applied in the solution of inverse heat 
conduction problems (Krejsa et al., 1999; Shiguemori et al., 2004; Lecoeuche et al., 2006). 
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They are capable of dealing with significant non-linearities and are known to be effective in 
damping the measurement errors. 

Self-learning finite elements 

This methodology combines neural network with a nonlinear finite element program in an 
algorithm which uses very basic conductivity measurements to produce a constitutive 
model of the material under study. Through manipulating a series of neural network 
embedded finite element analyses, an accurate constitutive model for a highly nonlinear 
material can be evolved (Aquino & Brigham, 2006; Roudbari, 2006). It is also shown to 
exhibit a great stability when dealing with noisy data. 

Maximum entropy method 

This method seeks the solution that maximizes the entropy functional under given 
temperature measurements. It converts the inverse problem to a non-linear constrained 
optimization problem. The constraint is the statistical consistency between the measured 
and estimated temperatures. It can guarantee the uniqueness of the solution. When there is 
no error in the measurements, maximum entropy method can find a solution with no 
deterministic error (Kim & Lee, 2002). 

Proper orthogonal decomposition 

Here, the idea is to expand the direct problem solution into a sequence of orthonormal basis 
vectors, describing the most essential features of spatial and temporal variation of the 
temperature field. This can result in the filtration of the noise in the field under study 
(Ostrowski et al., 2007). 

Particle Swarm Optimization (PSO) 

This is a population based stochastic optimization technique, inspired by social behavior of 

bird flocking or fish schooling. Like GA, the system is initialized with a population of 

random solutions and searches for optima by updating generations. However, unlike GA, 

PSO has no evolution operators such as crossover and mutation. In PSO, the potential 

solutions, called particles, fly through the problem space by following the current optimum 

particles. Compared to GA, the advantages of PSO are the ease of implementation and that 

there are few parameters to adjust. Some researchers showed that it requires less 

computational expense when compared to GA for the same level of accuracy in finding the 

global minimum (Hassan et al., 2005).  

In this chapter, in addition to the classical function specification method, we will study the 

genetic algorithm, neural network, and particle swarm optimization techniques in more 

details. We will investigate their strengths and weaknesses, and try to modify them in order 

to increase their efficiency and effectiveness in solving inverse heat conduction problems. 

2. Function specification methods 

As mentioned above, in order to stabilize the solution to the ill-posed IHCP, it is very 
common to include more variables in the objective function. A common choice in inverse 
heat transfer problems is to use a scalar quantity based on the boundary heat fluxes, with a 
weighting parameter α, which is normally called the regularization parameter. The 
regularization term can be linked to the values of heat flux, or their first or second 
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derivatives, with respect to time or space. Previous research (Gadala & Xu, 2006) has shown 
that using the heat flux values (zeroth-order regularization) is the most suitable choice. The 
objective function then will be 
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where i
mT and c

iT  are the vectors of expected (measured) and calculated temperatures at the 

ith time step, respectively, each having J spatial components; α is the regularization 

coefficient; and qi is the boundary heat flux. It is important to notice that in the inverse 

analysis, the number of spatial components is equal in the measured and calculated 

temperature vectors; i.e. the spatial resolution of the recovered boundary heat flux vector is 

determined by the number of embedded thermocouples. 

Due to the fact that inverse problems are generally ill-posed, the solution may not be unique 

and would be in general sensitive to measurement errors. To decrease such sensitivity and 

improve the simulation, a number of future time steps (nFTS) are utilized in the analysis of 

each time step. This means that in addition to the measured temperature at the present time 

step Ti, the measured temperatures at future time steps, FTSniii TTT
 ,....,, 21

, are also used 

to approximate the heat flux qi. In this process, a temporary assumption would be usually 

considered for the values of FTSniii qqq
 ,....,, 21

. The simplest and the most widely used one 

is to assume
iki

qq 
 for FTSnk 1 , which is also used in our work. In this chapter, a 

combined function specification-regularization method is used, which utilizes both concepts 

of regularization, and future time steps (Beck & Murio, 1986). 

Mathematically we may express k

cT , the temperature at the kth time step and at location c  as 

an implicit function of the heat flux history and initial temperature: 
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The values with a ‘*’ superscript in the above may be considered as initial guess values. 

The first derivative of temperature     with respect to heat flux qi is called the sensitivity 

matrix: 
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The optimal solution for Eq. (3) may be obtained by setting 0/  qF , which results in the 

following set of equations (note that q /F  should be calculated with respect to each 

component qi, with i=1, 2N): 
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where 
*j

q is the initial guess of heat fluxes, Tci*  is the calculated temperature vector with 

the initial guess values.  
Recalling equations (6) and (7), equation (8) may be rearranged and written in the following 
form: 
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where X is the total sensitivity matrix for multi-dimensional problem and has the following 
form: 
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and 
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By solving Eq. (9), the heat flux update will be calculated and added to the initial guess. In 

this chapter, a fully sequential approach with function specification is used. First, the newly 

calculated
n1q is used for all time steps in the computation window after the first iteration, 

i.e., constant function specification is used for this computation window. Then, the 

computation window moves one time step at the next sequence after obtaining a convergent 

solution in the current sequence.  

One important consideration in calculating the sensitivity values is the nonlinearity. The 

whole sensitivity matrix is independent of the heat flux only if the thermal properties of the 

material are not changing with temperature. For most materials, the thermophysical 

properties are temperature dependent. In such case, all properties should be updated at the 

beginning of each time step, which is time consuming especially for large size models. 

Moreover, such changes in properties would not be very large and would not significantly 

change the magnitude of the sensitivity coefficients. Also, updating the material properties 

at the beginning of each time step would be based on the temperatures Tk* obtained from 

the initially given values of heat flux q*, which is essentially an approximation. So, we may 
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update the sensitivity matrix every M steps (in our numerical experiments, M=10). The 

results obtained under this assumption were very close to those obtained by updating the 

values at each step, so the assumption is justified. 

To obtain an appropriate level of regularization, the number of future time steps (or more 
accurately, the size of look-ahead time window, i.e. the product of the number of future time 
steps and time step size) and the value of the regularization parameter must be chosen with 
respect to the errors involved in the temperature readings. The residual principle (Alifanov, 
1995; Woodbury & Thakur, 1996) has been used to determine these parameters based on the 
accuracy of thermocouples in the relative temperature range. 

3. Genetic algorithm 

Genetic algorithm is probably the most popular stochastic optimization method. It is also 
widely used in many heat transfer applications, including inverse heat transfer analysis 
(Gosselin et al., 2009). Figure 1 shows a flowchart of the basic GA. GA starts its search from 
a randomly generated population. This population evolves over successive generations 
(iterations) by applying three major operations. The first operation is “Selection”, which 
mimics the principle of “Survival of the Fittest” in nature. It finds the members of the 
population with the best performance, and assigns them to generate the new members for 
future generations. This is basically a sort procedure based on the obtained values of the 
objective function. The number of elite members that are chosen to be the parents of the next 
generation is also an important parameter. Usually, a small fraction of the less fit solutions 
are also included in the selection, to increase the global capability of the search, and prevent 
a premature convergence. The second operator is called “Reproduction” or “Crossover”, 
which imitates mating and reproduction in biological populations. It propagates the good 
features of the parent generation into the offspring population. In numerical applications, 
this can be done in several ways. One way is to have each part of the array come from one 
parent. This is normally used in binary encoded algorithms. Another method that is more 
popular in real encoded algorithms is to use a weighted average of the parents to produce 
the children. The latter approach is used in this chapter. The last operator is “Mutation”, 
which allows for global search of the best features, by applying random changes in random 
members of the generation. This operation is crucial in avoiding the local minima traps. 
More details about the genetic algorithm may be found in (Davis, 1991; Goldberg, 1989). 
Among the many variations of GAs, in this study, we use a real encoded GA with roulette 
selection, intermediate crossover, and uniform high-rate mutation (Davis, 1991). The 
crossover probability is 0.2, and the probability of adjustment mutation is 0.9. These settings 
were found to be the most effective based on our experience with this problem. A mutation 
rate of 0.9 may seem higher than normal. This is because we start the process with a random 
initial guess, which needs a higher global search capability. However, if smarter initial 
guesses are utilized, a lower rate of mutation may be more effective. Genes in the present 
application of GA consist of arrays of real numbers, with each number representing the 
value of the heat flux at a certain time step, or a spatial location. 

4. Particle Swarm Optimization 

We start by giving a description of the basic concepts of the algorithm. Then a brief 
description of the three variations of the PSO algorithm that are used in this study is given. 
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Finally we investigate some modifications in PSO algorithm to make it a more robust and 
efficient solver for the inverse heat conduction problem. 
 

t = 1 

(First generation) 

Randomly initialize 

the first population (Pt=1) 

 Evaluate objective function 

for population members f(Pt) 

Sort the population based on 

the objective function value 

Select the top elite members 

for reproduction (Et) 

Stopping criteria 

reached? 

Crossover (weighted 

average) of Et members; 

create offsprings (Ot) 

t = t + 1 

(Next generation) 

Apply random mutations on 

some of offsprings (O´t)  

Pt = O´t-1 
(New population) 

No

Solution = Top 

ranking member 

of Pt 

Yes

 

Fig. 1. Flowchart of a General Implementation of Genetic Algorithm (GA). 

4.1 Basic concepts 
Particle swarm optimization (PSO) is a high-performance stochastical search algorithm that 
can also be used to solve inverse problems. The method is based on the social behavior of 
species in nature, e.g., a swarm of birds or a school of fish (Eberhart & Kennedy, 1995). 
In the basic PSO algorithm, if a member of the swarm finds a desirable position, it will 
influence the traveling path of the rest of the swarm members. Every member searches in its 
vicinity, and not only learns from its own experience (obtained in the previous iterations), 
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but also benefits from the experiences of the other members of the swarm, especially from 
the experience of the best performer. The original PSO algorithm includes the following 
components (Clerc, 2006):  

 Particle Position Vector x: For each particle, this vector stores its current location in the 

search domain. These are the values for which the value of the objective function is 

calculated, and the optimization problem is solved. 

 Particle Velocity Vector v: For every particle, this vector determines the magnitude and 

direction of change in the position of that particle in the next iteration. This is the factor 

that causes the particles to move around the search space. 

 Best Solution of a Particle p: For each particle, this is the position that has produced the 

lowest value of the objective function (the best solution with the lowest error in our 

case). So if f is the objective function that is supposed to be minimized; i is the index for 

each particle, and m is the iteration counter, then: 

   
0

arg minm s
i i

s m

p f x
 

   (12) 

 Best Global Solution g: This is the best single position found by all particles of the swarm, 
i.e., the single p point that produces the lowest value for the objective function, among 
all the swarm members. In other words, if n is the swarm size, then: 

   
0 ,1

arg minm s
k

s m k n

g f x
   

  (13) 

The number of particles in the swarm (n) needs to be specified at the beginning. Fewer 

particles in the swarm results in lower computational effort in each iteration, but possibly 

higher number of iterations is required to find the global optimum. On the other hand, a 

larger population will have a higher computational expense in each iteration, but is 

expected to require less iterations to reach the global optimum point. Earlier studies have 

shown that a smaller population is normally preferred (Alrasheed et al., 2008; Karray & de 

Silva, 2004). This was also observed in our study; however, its effect seems to be 

insignificant.  

The steps involved in the basic PSO algorithm are detailed below (Clerc, 2006): 
1. Randomly initialize the positions and velocities for all of the particles in the swarm. 
2. Evaluate the fitness of each swarm member (objective function value at each position 

point). 
3. At iteration m, the velocity of the particle i, is updated as: 

    1
0 1 1 2 2

m m m m m m
i i i i iv c v c r p x c r g x       (14) 

where m
ix and m

iv are the position and velocity of particle i at the m-th iteration, respectively; 

m
ip and mg are the best positions found up to now by this particle (local memory) and by the 

whole swarm (global memory) so far in the iterations, respectively; c0 is called the inertia 
coefficient or the self-confidence parameter and is usually between zero and one; c1 and c2 
are the acceleration coefficients that pull the particles toward the local and global best 
positions; and r1 and r2 are random vectors in the range of (0,1). The ratio between these 
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three parameters controls the effect of the previous velocities and the trade-off between the 
global and local exploration capabilities.  
1. Update the position of each particle using the updated velocity and assuming unit time: 

 1 1m m m
i i ix x v    (15) 

2. Repeat (2) – (4) until a convergence criterion (an acceptable fitness value or a certain 
maximum number of iterations) is satisfied. 

There are some considerations that must be taken into account when updating velocity of 

particles (step 3 of the above algorithm). First, we need a value for the maximum velocity. A 

rule of thumb requires that, for a given dimension, the maximum velocity, ,maxiv , should be 

equal to one-half the range of possible values for the search space. For example, if the search 

space for a specific dimension is the interval [0, 100], we will take a maximum velocity of 50 

for this dimension. If the velocity obtained from Equation (14) is higher than ,maxiv , then we 

will substitute the maximum velocity instead of 1m
iv  . The reason for having this maximum 

allowable velocity is to prevent the swarm from “explosion” (divergence). Another popular 

way of preventing divergence is a technique called “constriction”, which dynamically scales 

the velocity update (Clerc, 2006). The first method was used in a previous research by the 

authors (Vakili & Gadala, 2009). However, further investigation showed that a better 

performance is obtained when combining the constriction technique with limiting the 

maximum velocity. In this chapter, the velocity updates are done using constriction and can 

be written as: 

     1
1 1 2 2

m m m m m m
i i i i iv K v c r p x c r g x              (16) 

where K is the constriction factor, and is calculated as (Clerc, 2006): 

  
2

2

2 4
K

  


  
 (17) 

where φ = c1 + c2. Here, following the recommendations in (Clerc, 2006), the initial values for 
c1 and c2 are set to 2.8 and 1.3, respectively. These values will be modified in subsequent 
iterations, as discussed below.  
As mentioned above, the relation between the self-confidence parameter, c0, and the 
acceleration coefficients, c1 and c2, determines the trade-off between the local and global 
search capabilities. When using the constriction concept, the constriction factor is 
responsible for this balance. As we progress in time through iterations, we get closer to the 
best value. Thus, a reduction in the value of the self-confidence parameter will limit the 
global exploration, and a more localized search will be performed. In this study, if the value 
of the best objective function is not changed in a certain number of iterations (10 iterations in 
our case), the value of K is multiplied by a number less than one (0.95 for our problems) to 

reduce it (i.e. 0.95new oldK K ). These numbers are mainly based on the authors’ experience, 

and the performance is not very sensitive to their exact values. Some other researchers have 
used a linearly decreasing function to make the search more localized after the few initial 
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iterations (Alrasheed et al., 2008). These techniques are called “dynamic adaptation”, and are 
very popular in the recent implementations of PSO (Fan & Chang, 2007). 
Also, in updating the positions, one can impose a lower and an upper limit for the values, 
usually based on the physics of the problem. If the position values fall outside this range, 
several treatments are possible. In this study, we set the value to the limit that has been 
passed by the particle. Other ideas include substituting that particle with a randomly chosen 
other particle in the swarm, or penalizing this solution by increasing the value of the 
objective function. 
Figure 2 shows a flowchart of the whole process. Figure 3 gives a visual representation of 
the basic velocity and position update equations. 

4.2 Variations 

Unfortunately, the basic PSO algorithm may get trapped in a local minimum, which can result 
in a slow convergence rate, or even premature convergence, especially for complex problems 
with many local optima. Therefore, several variants of PSO have been developed to improve 
the performance of the basic algorithm (Kennedy et al., 2001). Some variants try to add a 
chaotic acceleration factor to the position update equation, in order to prevent the algorithm 
from being trapped in local minima (Alrasheed et al., 2007). Others try to modify the velocity 
update equation to achieve this goal. One of these variants is called the Repulsive Particle 
Swarm Optimization (RPSO), and is based on the idea that repulsion between the particles can 
be effective in improving the global search capabilities and finding the global minimum 
(Urfalioglu, 2004; Lee et al., 2008). The velocity update equation for RPSO is 

    1
0 1 1 2 2 3 3

m m m m m m
i i i i j i rv c v c r p x c r p x c r v        (18) 

where m
jp is the best position of a randomly chosen other particle among the swarm, c3 is an 

acceleration coefficient, r3 is a random vector in the range of (0,1), and rv is a random 

velocity component. Here c2 is -1.43, and c3 is 0.5. These values are based on 

recommendations in (Clerc, 2006). The newly introduced third term on the right-hand side 

of Eq. 18., with always a negative coefficient ( 2c ), causes a repulsion between the particle 

and the best position of a randomly chosen other particle. Its role is to prevent the 

population from being trapped in a local minimum. The fourth term generates noise in the 

particle’s velocity in order to take the exploration to new areas in the search space. 
Once again, we are gradually decreasing the weight of the self-confidence parameter. Note 
that the third term on the right-hand side of Eq. (1), i.e., the tendency toward the global best 
position, is not included in a repulsive particle swarm algorithm in most of the literature.  
The repulsive particle swarm optimization technique does not benefit from the global best 
position found. A modification to RPSO that also uses the tendency towards the best global 
point is called the “Complete Repulsive Particle Swarm Optimization” or CRPSO (Vakili & 
Gadala, 2009). The velocity update equation for CPRSO will be: 

      1
0 1 1 2 2 3 3 4 4

m m m m m m m m
i i i i i j i rv c v c r p x c r g x c r p x c r v          (19) 

In CRPSO, by having both an attraction toward the particle’s best performance, and a 
repulsion from the best performance of a random particle, we are trying to create a balance 
between the local and global search operations. 
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Fig. 2. Flowchart of the basic particle swarm optimization procedure. 
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Fig. 3. Velocity and position updates in the basic particle swarm optimization algorithm. 

Both RPSO and CRPSO were previously tested in solving inverse heat conduction problems 
by the authors (Vakili & Gadala, 2009). It was found that CRPSO shows better performance 
than the basic and repulsive PSO algorithms. In handling the noisy data, however, RPSO 
was the most efficient variation, followed closely by CRPSO. It was concluded then that the 
CRPSO variation is the suitable choice for IHCPs. Also, in (Vakili & Gadala, 2011), several 
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modifications were done on the formulation of inverse heat conduction problem as an 
optimization problem, as well as on the implementation of the PSO algorithm.  

5. Artificial Neural Networks 

Artificial Neural Networks (ANN) are motivated by the efficiency of brain in performing 
computations. These networks are made of a large number of processing units (neurons) 
that are interconnected through weighted connections, similar to synapses in brain. In order 
for the network to perform the expected tasks, it should first go through a “learning” 
process. There are two main categories of learning: supervised, or unsupervised. In 
supervised learning, the network learning is achieved by practicing on pre-designed 
training sets, while in unsupervised learning, the network is presented with a set of 
patterns, and learns to group these patterns into certain categories. The supervised learning 
is useful in function fitting and prediction, while unsupervised learning is more applicable 
to pattern recognition and data clustering. Since the learning process in our application is a 
supervised one, we focus on this type of learning process. 
While there are several major classes of neural networks, in this chapter, we have studied 
only two of them, which are introduced in this section. 

5.1 Feedforward Multilayer Perceptrons (FMLP) 

In a feedforward network, the nodes are arranged in layers, starting from the input layer, 
and ending with the output layer. In between these two layers, a set of layers called hidden 
layers, are present, with the nodes in each layer connected to the ones in the next layer 
through some unidirectional paths. See Fig. 4 for a presentation of the topology. It is 
common to have different number of elements in the input and output vectors. These 
vectors can occur either concurrently (order is not important), or sequentially (order is 
important). In inverse heat conduction applications, normally the order of elements is 
important, so sequential vectors are used. 
 

 

Fig. 4. A feedforward network topology. 

5.2 Radial Basis Function Networks (RBFN) 
The basic RBFN includes only an input layer, a single hidden layer, and an output layer. See 
Fig. 5 for a visual representation. The form of the radial basis function can be generally given by 

   i
i i

i

f r


 
  

 

x v
x  (20) 
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in which x is the input vector, and vi is the vector denoting the center of the receptive field 
unit fi with σi as its unit width parameter. The most popular form of this function is the 
Gaussian kernel function, given as 

  
2

2
exp

2

i
i

i

f


  
 
 
 

x v
x  (21) 

These networks normally require more neurons than the feedforward networks, but they 
can be designed and trained much faster. However, in order to have a good performance, 
the training set should be available in the beginning of the process.  
 

 

Fig. 5. An RBF network topology. 

5.3 Implementation in inverse heat conduction problem 
In order to use the artificial neural networks in the inverse heat conduction problem, we first 
started with a direct heat conduction finite element code, and applied several sets of heat 
fluxes in the boundary. The resulting temperatures in locations inside the domain, which 
correspond to the thermocouple locations in the experiments, were obtained. The neural 

network was then trained using the internal temperature history as an input, and the 

corresponding applied heat flux as the target. The assumption was that this way, the neural 

network should be able to act as an inverse analysis tool, and given a set of measured 

thermocouple readings, be able to reproduce the heat fluxes.  
The obtained results, however, were far from satisfactory. It seemed that the relationship 
between the actual values of temperatures and heat fluxes is a complicated one, which is 
very hard for the neural networks to understand and simulate, at least when using a 
reasonably small number of layers. Thus, we decided to reformulate the problem, and use 
the change in the temperature in each time step as the input. In this formulation, neural 
networks performed much better, and a good quality was achieved in the solution in a 
reasonable amount of time.  
Further investigations showed that if the time step size is varying, we can use a derivative of 
temperature with respect to the heat flux as the input, i.e. divide the temperature change by 
the time step size. The results were again satisfactory, however, more bookkeeping is 
needed, which complicates the implementation and makes the algorithm more prone to 
coding errors. This practice is not normally recommended, unless it can result in a 
considerable reduction in the solution time. 
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6. Test cases 

A block containing nine thermocouples is modeled for each pass of water jet cooling of a 
steel strip. The length of the block is 114.3 mm (9 sections of each 12.7 mm). The width and 
thickness are 12.7 mm and 6.65 mm, respectively. To model the thermocouple hole, a 
cylinder of radius 0.5 mm and height of 5.65 mm is taken out of the block. Isoparametric 
eight-node brick elements are used to discretize the domain. Fig. 6(a) shows the whole 
domain, and Fig. 6(b) is a close-up view of one of the TC holes. 
 

 
(a) 

 

 
 

(b) 

Fig. 6. (a) The whole block consisting of nine thermocouple zones; (b) A close-up view of the 
TC hole from bottom. 

 

(a) 
 

(b) 

Fig. 7. Time history of cooling on a run-out table; (a) Surface heat fluxes; (b) Internal 
temperatures. 

The boundary condition on the top surface is prescribed heat flux which is chosen to 
resemble the one in water cooling of steel strips. Figure 7(a) shows the applied heat fluxes 
on top of one of the thermocouple locations for the whole cooling process, while Figure 7(b) 
shows the history of the temperature drop at the corresponding thermocouple location. 
Figure 8(a) shows a close-up of the applied heat flux at five of the nine thermocouple 
locations. It is very similar to the actual heat flux values on a run-out table with two rows of 
staggered circular jets, impinging on the third and seventh locations (Vakili & Gadala, 2010). 
Figure 8(b) is a close-up view of the temperature history at five of the nine thermocouple 
locations inside the plate, obtained from direct finite element simulation. The other 

boundaries are assumed to be adiabatic. The density, ρ, is 7850 3kg m , Cp is 475 kgKJ , and 

the thermal conductivity, k, is first assumed to be constant and equal to 40 W/m.°C and later 
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changed to be depending on temperature, as will be discussed in section 7.4. These are the 
physical properties of the steel strips that are used in our controlled cooling experiment. 
Results are obtained at the top of the cylindrical hole, which is the assumed position of a 
thermocouple. Inverse analysis is conducted to obtain the transient heat flux profile at the 
top surface of the plate. 
 

 

Fig. 8. (a) The applied heat flux on the top surface; (b) The thermocouple readings used for 
inverse analysis. 

7. Results and discussion 

As the first step in our study of these techniques, we investigate their capability in solving a 

general inverse heat conduction problem. We start by applying the artificial neural networks 

to the inverse heat conduction problem. This is different from GA and PSO, since those 

methods perform a stochastical search and are similar in many aspects, while the artificial 

neural networks are more like a correlation between the inputs and outputs. Fig. 9 shows 

the result of the application of the radial basis function neural networks for the whole 

history of the heat fluxes on the runout table. Temperatures start at 700 ºC and go down to 

176 ºC. The heat flux vs. time profile is plotted in Fig. 9. As can be seen from this figure, 

neural networks are generally capable of dealing with the whole range of the cooling 

history. 

However, this method has limitations, as observed in Fig. 9, and in more details in Fig. 10. 

The latter figure shows a close-up view of each of the 17 peaks of heat flux that happen 

during the cooling process on the run-out table, i.e. the peaks in Fig. 9. The circles are the 

expected heat flux, and the plusses are the result of NNs. The top left sub-figure is the first 

peak heat flux in time, and then it moves to the right, and then to the next row. Note that 

each even sub-figure (2nd, 4th, and so on) is a very smaller peak which is associated with the 

second row of jets. These peaks are not very obvious in Fig. 9, due to the scaling. Going 

through the subfigures of heat fluxes, it is apparent that the success or failure of NNs is not 

that much related to the temperature range, or the magnitude of heat fluxes, but on the 

actual shape of the heat flux profile. If the heat flux has a clear thin peak and two tails before 

and after the peak, the NN is doing a good job. However, the existence of other details in the 
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heat flux profile reduces the quality of the NN predictions. Also, considering the ill-posed 

nature of the problem, and all the complications that are involved, we can generally say that 

in most cases (about 75% of the cases) it does a decent job. Of course, there is the possibility 

of slightly improving the results by trying to modify the performance parameters of the NN, 

but overall we can say that NNs are more useful in getting a general picture of the solution, 

rather than producing a very accurate and detailed answer to the IHCP.  
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Fig. 9. Time History of Heat Fluxes in a Typical Run-Out Table Application; Expected 
Results (Squares) vs. the RBF Network Results (Line). 

 

 

Fig. 10. Individual Heat Flux Peaks vs. Time from a Typical Run-Out Table Application; 
Expected Results (Circles) vs. the RBF Network Results (Pluses) 
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On the other hand, GA and PSO algorithms show reasonably good predictions of the details 
of the missing boundary conditions. Notice that we still need to have some form of 
regularization for these methods to work properly. The figures for the results of GA and 
PSO are not presented here for the sake of brevity, but can be found in (Vakili & Gadala, 
2009). They will be used, however, for comparisons in the next sections. 

7.1 Time step size 

One of the main problems of the classical approaches, such as the sequential function 

specification method studied in this chapter, is their instability when small time steps are 

used. Unlike direct problems where the stability requirement gives the upper limit of the 

time step size, in inverse problems the time step is bounded from below. Fig. 11(a)(Vakili & 

Gadala, 2009) shows the oscillation in the results obtained by the function specification 

method and a time step size of 0.01 (s), which corresponds to the onset of instability. For 

time steps smaller than this, the whole process diverges. PSO, GA, and NNs successfully 

produce, however, the results for the same time step size as presented in Fig. 11(b) for PSO. 

Note that the oscillations here are not due to the instability caused by the time step size, and 

can be improved by performing more iterations. It is, however, important to mention that 

the time requirements for these techniques are much higher than those of the classical 

function specification approaches.  

7.2 Efficiency 

In this section, we compare the solution time required for GA, the three variations of PSO, 

and feed forward and radial basis function neural networks. We assume that there is no 

noise in the solution, and we compare the time that is required to get to certain accuracy in 

the heat flux predictions. Table 1 compares the solution time for different inverse analysis 

algorithms. The fastest solution technique is the gradient-based function specification 

method. The stochastical methods such as GA and PSO variants suffer a high computational 

cost. RBF neural networks perform much faster than GA and PSO, but they are still slower 

than the gradient-based methods, such as function specification. 

 
 

 
(a) 

 
(b) 

Fig. 11. Heat flux vs. time: (a) classical approach, (b) PSO (Vakili & Gadala, 2009). 
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Function Specification 

Method 
GA PSO RPSO CRPSO FMLP RBFN 

Solution Time (s) 1406 8430 6189 5907 6136 7321 2316 

Table 1. Comparison of the solution time for different inverse analysis algorithms. 

A more detailed comparison between the efficiency of GA and PSO variations can be found 
in (Vakili & Gadala, 2009). 

7.3 Noisy domain solution 

To investigate the behavior of different inverse algorithm variations in dealing with noise in 
the data, a known boundary condition is first applied to the direct problem. The 
temperature at some internal point(s) will be calculated and stored. Then random errors are 
imposed onto the calculated exact internal temperatures with the following equation: 

 m exactT T r    (22) 

where Tm is the virtual internal temperature that is used in the inverse calculations instead 
of the exact temperature, Texact; r is a normally distributed random variable with zero mean 
and unit standard deviation; and σ is the standard deviation. Virtual errors of 0.1% and 1% 
of the temperature magnitude are investigated here.  
We start by studying the effectiveness of the neural networks in handling noisy domains. 
Generally, the stability of the neural networks is on the same order as other inverse 
methods. It may be possible to tune the parameters to make it a little bit more stable, but 
generally it does not look promising in terms of noise resistance, since such modifications 
exist for almost all other methods. Fig. 12 - Fig. 13 show the results of the RBF network 
 

 

Fig. 12. Individual heat flux peaks vs. time from a typical run-out tale application; Expected 
results (blue circles) vs. the RBF network results (red pluses); Artificial noise added: c = ±0.1%. 
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(red pluses) versus the expected results (blue circles) for individual heat flux peaks during 
the cooling history of the plate. The amount of added noise in these figures is ±0.1%and 
±1%, respectively.  
There are several ways to make an inverse algorithm more stable when dealing with noisy 

data. For example, (Gadala & Xu, 2006) have shown that increasing the number of “future 

time steps” in their sequential function specification algorithm resulted in greater stability. 

They have also demonstrated that increasing the regularization parameter, α, improves the 

ability of the algorithm to handle noisy data. However, the latter approach was shown to 

greatly increase the required number of iterations, and in many cases the solution may 

diverge. In this work, we first examine the effect of the regularization parameter, and then 

investigate an approach unique to the PSO method, to improve the effectiveness of the 

inverse algorithm in dealing with noise. 

Fig. 14 shows the effect of varying the regularization parameter value on the reconstructed 

heat flux, using the basic particle swarm optimization technique. Stable and accurate results 

are obtained for a range of values of α = 10-12 to 10-10. These results are very close to those 

reported in (Gadala & Xu, 2006), i.e., the proper values of α are very similar for the 

sequential specification approach and PSO. 

 

 

 

 

 
 

Fig. 13. Individual heat flux peaks vs. time from a typical run-out tale application; 
Expected results (blue circles) vs. the RBF network results (red pluses); Artificial noise 
added: c = ±1%. 
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Another factor that can affect the performance of a PSO inverse approach in dealing with 
noisy data is the value of the self-confidence parameter, c0, or the ratio between this 
parameter and the acceleration coefficients. The acceleration coefficients are set to the 
default value of 1.42. The initial value of the self-confidence parameter, c0, is changed from 
the default value of 0.7. The results are shown below. 
 

 

 

 
(a) 

 
(b) 

 

 

Fig. 14. Effect of Regularization Parameter; a: α = 10-12; b: α = 10-10 

 

 

 

 
(a) 

 
(b) 

 

 

Fig. 15. Effect of Self-Confidence Parameter; (a) c0=0.5; (b) c0=1.2 

www.intechopen.com



 
Assessment of Various Methods in Solving Inverse Heat Conduction Problems 

 

57 

As can be seen in Fig. 15 (for α = 10-10), increasing the value of the self-confidence 

parameter results in better handling of the noisy data. This trend was observed for values 

up to approximately 1.3, after which the results become worse, and diverge. One possible 

explanation is that increasing the ratio of the self-confidence parameter with respect to the 

acceleration coefficients results in a more global search in the domain, and therefore 

increases the capability of the method to escape from the local minima caused by the 

noise, and find values closer to the global minimum. This effect was observed to be 

weaker in highly noisy domains. However, in the presence of a moderate amount of noise, 

increasing the self-confidence ratio results in more effectiveness. As can be seen in Table 2, 

the best effectiveness is normally obtained by RPSO, closely followed by CRPSO. 

Considering the higher efficiency of CRPSO, it is still recommended for the inverse heat 

conduction analysis. 

 
C0 0.7 0.8 0.95 1.1 1.2 

PSO 
RPSO 
CRPSO

8.105e+4 7.532e+4 7.079e+4 6.823e+4 6.257e+4 

7.577e+4 7.064e+4 6.685e+4 6.346e+4 5.816e+4 

7.611e+4 6.739e+4 6.117e+4 5.999e+4 5.822e+4 

Table 2. Effect of the Self-Confidence Parameter on the L2 Norm of Error in the Solution 

Table 3 shows the value of L2 norm of error in the solution, for ±1% added noise, and for 

different algorithms. It can be seen that the RBF neural networks perform better than the 

function specification method, and somewhere between the genetic algorithm and PSO 

variants. The most noise resistant algorithms are PSO variants, and the least stable 

algorithm is the gradient-based function specification method.  

 

 
Function Specification 

Method 
GA PSO RPSO CRPSO FMLP RBFN 

L2 Norm of 
Error 

9.14e4 6.61e4 5.24e4 4.82e4 5.02e4 8.91e4 5.91e4 

Table 3. The L2 Norm of Error in the Solution in a Noisy Domain for Different Algorithms 

7.4 Effect of non-linearity 

In many applications of inverse heat conduction, the thermophysical properties change 

with temperature. This results in nonlinearity of the problem. In other words, a same drop 

in the temperature values can be caused by different values of heat flux. So, a neural 

network that is trained with the relationship between the temperature change values and 

heat flux magnitudes may not be correctly capable of recognizing this nonlinear pattern, 

and as a result the performance will suffer. To investigate this effect, two kinds of 

expressions are used for thermal conductivity in this study. In one, we assume a constant 

thermal conductivity of  W/m.°C, while in the other a temperature-dependent expression 

is used: 

 Tk  03849.0571.60  W/m.°C (23) 

As expected, the nonlinearity will weaken the performance of both feedforward and radial 

basis function neural networks. The effect is seen as the training of the network stalls after a 
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number of epochs. In order to deal with this, increasing the number of hidden layers, 

increasing the number of neurons in each layer, and choosing different types of transfer 

function were investigated. However, none of these methods showed a significant 

improvement in the behavior of the network. The other methods of solving the inverse 

problem are much less sensitive to the effect of nonlinearity. Table 4 compares the error in 

the solution for both the linear and nonlinear cases, if the same numbers of iterations, 

generations, and epochs are used for different methods of solving the inverse heat 

conduction. As it can be seen, the neural networks methods perform very poorly in the 

nonlinear cases, while the other methods, either gradient based or stochastical, are immune 

to the problems caused by nonlinearity. Basically, neural networks, at least in the form that 

is used in this chapter, see nonlinearity as a kind of noise. It should be noted that neural 

networks can be useful in making rough estimates of the answer, or combined with some 

other techniques employed as an inverse solver for nonlinear cases (Aquino & Brigham, 

2006), but on their own, are not a suitable choice for an accurate prediction of the boundary 

conditions in a nonlinear inverse heat conduction problem. 

 

 
Function Specification 

Method 
GA PSO RPSO CRPSO FMLP RBFN 

Linear 1.81e2 7.62e2 3.85e2 3.42e2 3.17e2 9.90e2 5.35e2 
Nonlinear 2.14e2 7.71e2 4.46e2 5.12e2 4.26e2 3.57e4 2.76e4 

Table 4. The L2 norm of error in the solution in an exact domain for different algorithms. 

8. Conclusion 

In this chapter, we introduced a gradient-based inverse solver to obtain the missing 

boundary conditions based on the readings of internal thermocouples. The results show that 

the method is very sensitive to measurement errors, and becomes unstable when small time 

steps are used. Then, we tried to find algorithms that are capable of solving the inverse heat 

conduction problem without the shortcomings of the gradient-based methods.  

The artificial neural networks are capable of capturing the whole thermal history on the run-

out table, but are not very effective in restoring the detailed behavior of the boundary 

conditions. Also, they behave poorly in nonlinear cases and where the boundary condition 

profile is different.  

GA and PSO are more effective in finding a detailed representation of the time-varying 

boundary conditions, as well as in nonlinear cases. However, their convergence takes 

longer. A variation of the basic PSO, called CRPSO, showed the best performance among the 

three versions. The effectiveness of PSO was also studied in the presence of noise. PSO 

proved to be effective in handling noisy data, especially when its performance parameters 

were tuned. The proper choice of the regularization parameter helped PSO deal with noisy 

data, similar to the way it helps the classical function specification approaches. An increase 

in the self-confidence parameter was also found to be effective, as it increased the global 

search capabilities of the algorithm. RPSO was the most effective variation in dealing with 

noise, closely followed by CRPSO. The latter variation is recommended for inverse heat 

conduction problems, as it combines the efficiency and effectiveness required by these 

problems. 
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