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1. Introduction 

In recent years, the synthesis of polymeric nanocomposites has gained much interest in the 
scientific community thanks to their unique capability to combine the properties of the host 
polymer matrices, such as toughness, elasticity, processability, solubility, thermal stability, 
etc, with those of inorganic nanoparticles (NPs), such as hardness, chemical resistance, 
optical and electronic properties. Among a variety of nanofillers, semiconductor and 
metallic NPs are extensively studied and used, because of their unique properties especially 
in the nanoscale. In this work we deal with polymeric nanocomposites incorporating 
various nanofillers, each one of them having extremely attractive properties for 
technological applications. In particular we focus on titanium dioxide (TiO2) NPs due to 
their unique reversible wettability, iron oxide (Fe2O3) NPs due to their superparamagnetic 
nature, gold (Au) NPs due to their enhanced electronic conductivity, and cadmium sulphide 
(CdS) NPs due to their tuned photoemission in the quantum size regime. 
Nanocomposite materials are usually prepared by simple blending of the nanosized 
inorganic components into polymer solutions. Nevertheless, this method quite often leads to 
formation of aggregates or macroscopic phase separation, since the control of the dispersion 
and distribution of the nanofillers within the organic matrices is impossible. To obtain a 
higher compatibility between the filler and the host polymeric material, and achieve 
coatings with high content of inorganic particles, the use of polymerization techniques is 
widely adopted (Fouassier 1995, Decker et al 2005, Lee et al 2006, Wang & Ni 2008). From 
this point of view, several methods can be considered, depending on the type of monomers 
and nanomaterials, such as bulk polymerization, photoinitiated polymerization, emulsion 
polymerization, in situ thermal polymerization, or copolymerization in solution. Among 
them, the use of ultraviolet (UV) light in combination with proper photoinitiators to 
produce polymeric nanocomposite films is one of the most rapid and effective method, the 
main advantage being the creation of well defined patterned structures.  
Patterning of nanocomposites using UV polymerization, the so-called UV photolithography 
is ideal for the  direct incorporation of nanocomposites into specific parts of systems and 
devices. Photolithographically prepared nanocomposite structures can be used for the 
selective deposition of molecules, which have specific affinity to the photopolymerized 
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material, for the creation of molecular sandwiches, for cells deposition, for microfluidic 
devices, sensors, photoemitting parts in devices, etc. Herein, we present two different UV 
light-based lithography techniques for formation of nanocomposite patterns that consist of 
polymers incorporating inorganic nanofillers. The latter are either colloidal NPs produced 
by chemical synthesis, or NPs that are formed directly into the polymer matrices starting 
from an appropriate precursor, using laser light irradiation. 
In particular the photolithography presented in this work follows two approaches:  
1. UV laser photopolymerization: the nanocomposite solutions preexist in the form of 

colloidal NPs mixed with monomers and photocuring agent and laser light beams 
induce the patterned structures. Three systems are demonstrated: PMMA with TiO2 

NPs, PMMA with Fe2O3 NPs , SU-8 with Fe2O3 NPs. In the last two systems we can 
induce further nanopatterning into the patterned polymers structures using an external 
magnetic field to align the nanofillers into nanowires (NWs). 

2. UV laser light-induced formation of NPs into polymers: the starting system is a 
polymeric film incorporating light-sensitive precursors of NPs and laser light 
irradiation induces the formation of NPs in specific locations in the polymer matrix. 
Three systems are demonstrated: Chitosan with Au NPs, TOPAS with CdS NPs, PMMA 
with CdS NPs. 

The patterns of nanocomposites produced with the above mentioned lithography methods 
are categorized according to their properties as follows: patterns with tunable surface 
properties, magnetic patterns, conducting patterns, patterns with tunable emission. Such 
patternable composite materials deal with most of the present technologies, including 
bioengineering and medical instrumentation, packaging, electrical enclosures, sensors, 
actuators and energy. 

2. Lithography using laser photopolymerization 

Lithographic patterning using UV light in combination with monomers and appropriate 
photoinitiators is a very attractive technology due to low energy consumption, room 
temperature operation, rapid curing, spatial control, possibility of curing structures on heat-
sensitive substrates etc. (Andrzejewska 2001). The use of the specific technique for 
lithography of nanocomposites, permits to realize materials with homogeneous dispersion 
of the inorganic phase, but also to simultaneously create patterned surfaces in an easy and 
single step. (Sun et al 2008) 
The photopolymerization technique involves UV/visible light absorption from the 
photoinitiators forming radical species (initiation reaction), which are responsible for the 
initiation of the photopolymerization process due to their addition to the monomer 
molecules (propagation reaction). The chain growth termination occurs upon annihilation of 
the radical centres due to radical-radical recombination (termination reaction). Among 
different light sources, lasers are most widely used when lithography is involved due to 
their unique characteristics that lead to small, highly controlled, sharp and precise patterns. 
In the presented work a pulsed laser was used permitting high energy concentrations in 
very short times, and allowing polymerization to develop to a high extent in the dark 
periods between consecutive pulses (Van Herk 2000). 

2.1 TiO2-based patterned nanocomposites 
In the development of polymeric nanocomposites, semiconductor oxides are extensively 
studied and applied as nanofillers due to their unique electromagnetic, mechanical, 
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chemical and numerous other properties. In particular, among them titanium dioxide (TiO2) 
is possibly the most widely used, thanks to two exceptional properties: the photocatalytic 
activity and the reversible wettability, both activated upon UV irradiation (Fujishima 2000, 
Nakajima 2000, 2001, Wang 1997, 1998, 1999, Sakai, 1998, 2001, 2003). 
In this section we focus on the reversible wettability properties of TiO2 upon excitation with 
UV laser light. Specifically, nanorods (NRs) of TiO2 are used as the basic building blocks of 
photolithographically patterned nanocomposite materials with functional and responsive 
surfaces, which show UV-sensitive wettability. It has been demonstrated that upon UV 
irradiation of TiO2, oxygen vacancies are created on its surface resulting into the conversion 
of Ti4+ into Ti3+ sites. These sites are favourable for dissociative adsorption of atmospheric 
water molecules, leading to the formation of a highly hydroxylated (hence, hydrophilic) 
surface. This procedure is reversible, since upon long term storage (few months) under 
ambient dark conditions, or for an accelerated process, upon thermal treatment, vacuum 
storage or visible irradiation (Wang et al., 1999, Nakajima et al., 2001, Sakai et al., 1998), the 
adsorbed hydroxyl groups can be removed and eventually replaced by ambient oxygen, 
allowing the initial hydrophobicity to be recovered (Caputo et al., 2008). Taking advantage 
of the above described mechanism we present herein how the formed TiO2/polymer 
nanocomposite patterns can serve as paths for the directional movements of water drops 
onto them.  

2.1.1 Photopolymerized patterns of PMMA/TiO2  
Solutions of MMA monomer, TiO2 NRs, and photoinitiator were prepared in toluene to 
obtain concentrations of 94 wt.%, 5 wt.% and 1 wt.%, respectively. The photoinitiator was 
the IRGACURE®1700. It is formed by two distinct molecules, a phosphine oxide derivative 
and a hydroxyl alkyl phenyl ketone, which acts as co-initiator. Upon UV irradiation, 
electrons and hydrogen atoms are transferred from the co-initiator molecules to the 
photoinitiator, generating radicals that initiate the polymerization of the methyl 
methacrylate (MMA) monomers. All the solutions were stirred and left under dark for 
several minutes to equilibrate. Glass and silicon substrates were washed with isopropanol 
and subsequently with acetone and dried with nitrogen. About 200 µL of each solution were 
initially spin coated on both glass and silicon substrates at 1000 rpm for 20 s. Next, about 40 
µL of the same solution were drop casted onto each sample. 
To obtain photopolymerization, the third harmonic of a pulsed Nd:YAG laser (Quanta-Ray 
GCR-190, Spectra Physics, energy density = 10.5 mJ·cm-2, ┣ = 355 nm, pulse duration = 6 ns, 
repetition rate = 10 Hz) was used. In particular, the previously casted samples were 
irradiated through aluminum masks characterized by different patterns of mm-dimensions. 
After the photopolymerization, each sample was washed 3 times with methanol to remove 
unreacted monomer and photoinitiator, and then dried in ambient dark conditions. In 
Figure 1 are demonstrated characteristic patterns created upon UV laser irradiation of the 
drop casted solution through a photomask of two parallel lines in the mm range, 
demonstrating the potentiality of the specific lithography technique. 
A closer look of the surfaces of the photolithographically produced nanocomposite patterns 
shown in Figure 1 was performed using lateral force Atomic Force Microscopy (AFM). The 
obtained AFM images demonstrate that NRs are apparent onto the surface of the 
photopolymerized MMA-TiO2 nanocomposite films. In general, they appear quite 
aggregated, however it is occasionally possible to distinguish also single NRs laying parallel 
to the substrate (Figure 2a). In contrast, the photopolymerized coatings without TiO2 NRs 
appear flat and homogeneous under the AFM (Figure 2b). 
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Fig. 1. Photolithographically created lines of mm-dimensions of PMMA/TiO2 NRs 
nanocomposites. 

 

 

 

Fig. 2. AFM images of (a) photolithographically produced nanocomposite patterns 
demonstrating NRs onto their surface, and of (b) photopolymerized coatings of PMMA 
without TiO2 NRs. 

(b) 

(a) 
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In order to enhance the hydrophilicity of the TiO2 NRs exposed on the surface of the 
photopolymerized nanocomposites, the prepared patterns were irradiated for diverse time 
intervals with a pulsed Nd:YAG laser at 355 nm (energy density = 7 mJ·cm-2, repetition rate 
= 10 Hz, pulse duration ~ 4-6 ns). Increasing irradiation time up to 90 min under the specific 
experimental conditions, increases the hydrophilicity of the nanocomposites’ surfaces 
(Villafiorita Monteleone et al 2010). The complete recovery of the initial wettability of the 
films was achieved by placing them in vacuum at a pressure of 3·10-3 mbar for 48 hours. We 
take advantage of the controlled wettability changes to realize liquid flow paths, irradiating 
adjacent surface areas of the photolithographically produced lines of nanocomposites with 
increasing time, and creating wettability gradients along their surfaces, essential for liquid 
droplet motion. An example is demonstrated in Figure 3, where is shown a X×Y = 6x1 mm2 
laser photopolymerized nanocomposite film, where in order to achieve the drop movement 
along the X-axis, a first area of XxY = 1x1 mm2 was left without irradiation, the next XxY = 
1x1 mm2 area was irradiated for 20 min and two adjacent areas of XxY = 21 mm2 each, were 
irradiated for 40 and 90 min, respectively. The spontaneous water drop movement occurs as 
shown at the right hand side of Figure 3 (Figure 3c) because the following criteria essential 
for the movement are fulfilled: (1) The contact angle hysteresis (Δθh) of the rear area, 
irradiated for less time must be smaller than the difference between the advancing contact 
angles of the two adjacent areas (nominated Δθ in Figure 3). (2) The side of each irradiated 
area along the direction of the movement should be smaller than the diameter of the drop on  
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Fig. 3. (a) Photolithographically created line of dimensions 6×1 mm2, of PMMA/TiO2 NRs 
nanocomposite. (b) Graphical representation of the dimensions of the adjacent irradiated 
areas together with the irradiation times on each area. The pictures of the water drops 
obtained on each area with their water contact angle and hysteresis values and the 
difference between the advancing contact angles of the two adjacent areas are also shown. 
(c) Side view photographs of a water droplet that is moving on the PMMA/TiO2 surface 
with UV-induced gradient hydrophilicity. The hydrophilicity increase is in the direction of 
the drop movement, from left to right. 

(a) 

(b) 

(c) 
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the specific area, so that the front edge of the drop is always in contact with a more 
hydrophilic area than the back edge (Villafiorita Monteleone et al., 2010). This kind of 
samples are very versatile and can be used as described above or incorporated in more 
complicated systems and devices, such as microfluidics, labs on chip etc.  

2.2 γ-Fe2O3-based patterned nanocomposites 
Magnetic particles are useful in different biomedical applications, such as magnetically 
induced hyperthermia of malignant tumors, contrast enhancement agents for magnetic 
resonance imaging (MRI), tissue repair (Gupta et al 2005, Pankhurst et al 2003), and delivery of 
drugs (Voltairas et al 2002) or nucleic acids (Mair et al 2009, Buerli et al 2007), as they can be 
manipulated via external magnetic fields to improve transport in biological systems. They are 
also used in the fabrication of photonic crystals (Ding et al 2009), as nanowire contacts in 
electronic devices (Bangar et al, 2009), and as device components in microfluidics (Kavcic et al 
2009; Fahrni et al 2009). Additionally, there has been growing interest in the use of magnetic 
particles in the fabrication of nanomotors and nanomachines (Ghosh & Fischer, 2009). 
Among all magnetic NPs, iron oxides are possibly the most frequently used, due to their 
high magnetic moment, chemical stability, low toxicity, biocompatibility, easy and 
economical synthetic procedures. Iron oxides exist in many forms in nature, with magnetite 
(Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3) being the most common (Cornell & 
Schwertmann 2003). Magnetite is ferrimagnetic at room temperature (Cornell & 
Schwertmann 2003), and usually particles smaller than ≈6 nm are superparamagnetic at 
room temperature, although their magnetic properties depend strongly on the methods 
used in their synthesis (Kado 2008, Zhao et al 2007). At room temperature, maghemite is 
ferrimagnetic while particles smaller than ≈10 nm are superparamagnetic (Neuberger et al 
2005). Aggregation of ultrafine maghemite particles sometimes leads to their magnetic 
coupling and ordering of their magnetic moment, which is termed superferromagnetism 
(Cornell & Schwertmann 2003). Hematite is paramagnetic at temperatures above 956 K. At 
room temperature, it is weakly ferromagnetic and undergoes a phase transition at 260 K to 
an antiferromagnetic state. The magnetic behavior of hematite depends also on crystallinity, 
particle size and on the extent of cation substitution (Cornell & Schwertmann 2003). 
The magnetic properties of iron oxides have been exploited in a broad range of applications 
including magnetic seals and inks, magnetic recording media, catalysts, ferrofluids, contrast 
agents for magnetic resonance imaging, therapeutic agents for cancer treatment, and 
numerous others (Azhar Uddin et al 2008, Cui et al 2006, dos Santos Coelho et al 2008). 
These applications demand nanomaterials of specific sizes, shapes, surface characteristics, 
and magnetic properties, so the specific type of iron oxide is chosen every time depending 
on the field of use. On the top, iron oxide in polymer matrices, forming functional 
nanocomposites, pave the way to novel plastic devices for gas and vapor sensing, actuation, 
molecular separation, electromagnetic wave absorption, nonlinear optical systems, and 
photovoltaic solar cells (Kaushik et al 2009, Merkel et al 2002, Huo et al 2009, Long 2005). 
Furthermore, the magnetic properties of iron oxide can be used in future generations of 
electronic, magnetic, and photonic devices for information storage or magnetic imaging 
(Weller et al 2000, Wang et al 2004). 
For enhanced performances and occasionally directional, nanocomposite systems require 
high density of oriented anisotropic magnetic nanostructures, like NWs, in polymer 
matrices. Indeed, the realization of arrays of NWs is a new interesting solution to obtain 
novel collective properties, different from those of isolated NPs (Tang and Kotov, 2005). 
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One-dimensional magnetic NWs can be produced by the assembly of isotropic magnetic 
NPs, under external magnetic field (MF). This is an attractive technique for the fabrication of 
NWs, due to its simplicity and at the same time, high effectiveness. In this perspective, 
several studies have recently demonstrated the possibility of producing oriented magnetic 
nanocomposites through the dispersion of magnetic NPs in polymer or prepolymer 
solutions, and subsequent evaporation or polymerization under a weak magnetic field (Park 
et al 2007, Jestin et al 2008, Fragouli & Buonsanti et al 2010, Fragouli & Torre et al 2010). 
Here, we present photolithographically realized patterned nanocomposites of PMMA or SU-
8 polymers which incorporate magnetic NWs, formed starting from spherical iron oxide (γ-
Fe2O3) colloidal NPs. Indeed, applying a homogeneous magnetic field produced by two 
magnets to the nanocomposites solutions, NWs are formed, which are aligned along the 
magnetic field lines. We demonstrate that the photolithography process does not affect the 
NPs alignment, and, more importantly, that it allows the creation of polymeric patterns with 
magnetic properties in specific areas. 

2.2.1 Photopolymerized patterns of PMMA/Fe2O3 
Solutions of methyl methacrylate (MMA) monomer mixed with colloidal γ-Fe2O3 NPs in the 

presence of a photoinitiator IRGACURE®1700 were prepared in chloroform at 

concentrations of 89.5 wt.%, 10 wt.% and 0.5 wt.%, respectively. The Fe2O3 NPs were 

previously prepared in chloroform, by modifying a wet-chemical synthetic approach 

previously reported (Sun et al 2004), in order to obtain hydrophobic-capped Fe2O3 spherical 

particles with a mean diameter of 10 nm. Oleic acid, oleylamine, and hexadecane-1,2-diol 

were used as capping molecules of the produced NPs. All solutions were stirred and left in 

the dark for few minutes to equilibrate. 200 ┤L of each solution were spin-coated at 1000 

rpm for 20 s, and subsequently ~40 ┤L of the same solution were drop-casted onto glass 

substrates. For the alignment of the nanoparticles, the system was subjected to a 

homogeneous magnetic field (~160 mT), produced by two permanent magnets, applied 

parallel to the substrate during the deposition, evaporation and photopolymerization 

processes.  
The patterned PMMA/Fe2O3 nanocomposites were obtained by irradiating all samples 
with the third harmonic of a pulsed Nd:YAG laser (Quanta-Ray GCR 190, Spectra Physics) 
with an energy density of 10.5 mJ·cm-2 (┣=355 nm, pulse duration =4-6 ns, repetition 
rate=10 Hz) for 90 minutes, using aluminum photomasks with different geometries. After 
the photopolymerization, each sample was washed three times with methanol to remove 
unreacted monomer and photoinitiator and then dried under ambient dark conditions for 
2 days to achieve complete solvent evaporation. In Figure 4 are demonstrated 
characteristic patterns created upon irradiation of the spin coated and subsequently drop 
casted MMA/Fe2O3 NPs solution through a photomask of two parallel lines in the mm 
range. 
During the photopolymerization, a homogeneous magnetic field produced by two 

permanent magnets was applied to the samples, at saturated chloroform atmosphere as 

shown in Figure 5. All samples prepared with or without the application of the magnetic 

field were studied under an optical microscope. Figure 6 presents samples with 10 wt. % 

concentration of NPs. The analysis reveals that in the samples created without the 

application of the magnetic field (Figures 6a and 6b), the NPs form aggregates randomly 

distributed in the film. The application of a magnetic field produced by two magnets leads 
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to NPs aligned along the magnetic field lines, forming parallel NWs (Figure 6c and 6d). By 

these two figures is demonstrated that the formation of magnetic NWs when the samples 

are placed under the magnetic field occurs both before and after the photopolymerization 

procedure, with the latter leaving unaffected the geometry of the wires. In particular, Figure 

6d shows that the area of the sample that was covered by the mask (bottom part of the 

picture) is not polymerized and thus, after washing with methanol, the composite is 

removed and no aligned structures are left onto the substrate.  

 

 

Fig. 4. Photolithographically created lines of mm-dimensions of PMMA/γ-Fe2O3 NPs 
nanocomposites. 

 

 

Fig. 5. Schematization of the experimental set-up where a homogeneous magnetic field is 
applied parallel to the samples. 
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Fig. 6. Optical microscopy images of PMMA/Fe2O3 films formed without the application of 
a magnetic field (a) before and (b) after the photopolymerization, and with the application 
of a magnetic field (c) before and (d) after the photopolymerization and washing. In the 
panel (d) is demonstrated the edge of the photopolymerized film after the washing. 

A detailed topographic study of the photolithographically produced patterns with or 
without the application of the magnetic field was conducted using AFM (Figures 7a-7d). 
Figures 7a and 7b show the topography of samples produced in the absence of a magnetic 
field. The nanofillers of these samples do not  show any particular alignment, as expected, 
but rather organize themselves in order to form aggregates of different sizes distributed all 
over the surface, in agreement with the results of the optical microscopy examination. On 
the contrary, the AFM images of the samples realized under the magnetic field produced by 
two magnets show the presence of parallel structures aligned along the direction of the 
external magnetic field (Figures 7c and 7d). In particular, parallel lines with thickness of ~1 
µm and length of tens of microns clearly appear both in the 2D and in the 3D topography 
images. The images also demonstrate the presence of bigger aggregated structures with 
width around 5 µm, which can be attributed to aligned NWs that in some areas of the 
sample get very closely packed, due to the high NPs concentration. It is very likely that the 
NWs formation inside the photopatterned polymer are facilitated by the initial organization 
of the NPs into bigger clusters, as demonstrated already in Figures 7a and 7b. These clusters 
exhibit higher magnetic moments than the single Fe2O3 NPs, resulting in an increased 
response to the external magnetic field that leads eventually to chain formation (Lalatonne 
et al 2004). 
The formation of magnetic NWs inside and on the surface of polymeric patterned structures 
opens up the possibility of various applications of these systems, related to the oriented 
growth and patterning of molecules bound on the NWs, and to the effect of this binding on 
the magnetic properties of the NWs. In particular, specially designed structures can be 
created where various biological molecules such as DNA, proteins, or cells can be bound on 

a b 

c d 

www.intechopen.com



 
Recent Advances in Nanofabrication Techniques and Applications 

 

298 

the NWs. Such structures can be extremely useful in biological applications for the 
formation of biological sensors, and can be also incorporated in molecular recognition 
devices  
 

 

 

Fig. 7. AFM images of PMMA/Fe2O3 films realized with or without a magnetic field. The 
images show the topography (a) and the phase (b) of a sample realized in the absence of a 
magnetic field, and the 2D (c) and 3D (d) topography images of a sample realized under the 
magnetic field of two magnets. In particular, the 2D and 3D topography images of sample 
areas with parallel lines show the existence of aligned structures on the surface of the 
sample. 

2.2.2 Photopolymerized patterns of SU-8/Fe2O3 
SU-8 is a commercial biocompatible epoxy-based negative photoresist that is suitable for the 

microfabrication of high aspect-ratio (>20) structures. When exposed to UV light, its 

molecular chains crosslink causing the polymerization of the material. Here the SU-8 3050 

(Microchem) was used for the fabrication of the SU-8 pillars. Fe2O3 NPs of diameter 20 nm in 

choloroform solution were prepared, by modifying the wet-chemical synthetic approach 

previously reported by Sun et al 2004. Size control was achieved by varying the 

concentration of the precursor and the surfactant-to-precursor molar ratio. 

For the fabrication of SU-8 magnetic pillars the following steps were performed: The 
existing cyclopentanone solvent was evaporated from the SU-8 3050 resin. Subsequently, 
SU-8 was dissolved in chloroform (1:5 wt.) by sonication for 10 min and then stirring. Then, 
the Fe2O3 NPs (2 wt. %) were slowly added and mixed with the SU-8 solution under 
sonication. After obtaining a homogeneous solution, the solvent was slowly evaporated 
under nitrogen flow, until it was obtained a nanocomposite solution viscous enough to form 

a b

c d
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a thick coating. The solution was then spin-coated on a silicon wafer and subsequently left 
under a magnetic field (400 mT) with a vertical direction with respect to the substrate, 
resulting in the formation of wire like magnetic structures. These magnetic wires induce 
magnetic anisotropy so for specific magnetic field orientations the magnetic response is 
higher (Fragouli & Buonsanti et al 2010). After, the sample was irradiated with a UV lamp 
mask aligner for 70 sec with energy of 25 mW. Masks of square shaped pillar patterns were 
used, with 42 µm side and different interpillar distances varying from 14 to 77 µm. The post-
bake was for 1 min at 65° C and for 4 min at 95° C. Finally, the samples were developed with 
SU-8 developer (15min) and rinsed with isopropanol with subsequent drying under 
nitrogen flow. The fabricated nanocomposite pillars formed in this way, had a square side of 
42 µm and 40 µm high as shown in the image recorded with Scanning Electron Microscopy 
(SEM) (Figure 8). 
 

 

Fig. 8. SEM image of the SU-8/iron oxide nanocomposite pillar structures. 

The AFM image of figure 9 demonstrates a part of the surface of a nanocomposite pillar in 
which the NPs are aligned vertically to the substrate. The nanoroughness shown is due to 
the protruding edges of the formed NWs, demonstrating that the diameters of the NWs are 
around 100 nm.  
The magnetic alignment of the iron oxide NPs inside the SU-8 matrix creates a magnetic 
anisotropy that enhances the possibility for the pillar structures to respond to an external 
magnetic field. The responsivity of the magnetic pillars to an external magnetic field was 
checked using water drops placed onto the pillars. In particular, the pillars were inclined in 
order to observe a difference between the right and the left part of the drops and a static 
magnet of maximum field strength 500 mT, was moved towards the sample with a direction 
parallel to it. The test was performed onto magnetic pillars with interpillar distance 14 ┤m. 
The water contact angle on these pillars is about 130°, while the values of the right and the 
left contact angle after the tilting of the sample are shown in table 1. After few minutes it 
was observed a change in the shape of the drop when the magnet was moving towards the 
drop, while it was recovering when the magnet was far from the substrate. This reversible 
difference in the shape of the drop indicates the tendency of the drop to move, which is 
connected with the reversible movement of the magnetic pillars responding to the external 
magnetic field. 
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Fig. 9. AFM topography of the nanocomposite SU-8 mixed with iron oxide NPs, vertically 
aligned under the application of an external magnetic field. 

 

Right Part (°) Left Part (°) Drop Images 

127 130 

 

122 135 

 

Table 1. Contact angle values of the left and right part of the water drop when the magnet is 
away from the substrate (top raw) and when the magnet in coming closer (down raw). At 
the right column are demonstrated the two examined frames. 

3. Lithography using light sensitive precursors of nanofillers 

In situ synthesis of NPs into their matrices is a very powerful lithographic technique 
because the properties of the nanocomposites can be controlled and tailored locally in a 
unique way. In this section we will present the laser-induced formation of NPs directly into 
the polymer matrices following two main strategies. The first one is based on the use of 
chloroauric acid salt, which is a gold (Au) precursor, introduced in transparent polymer 
films. Herein, chitosan (CTO) is used as a matrix, which is a very promising polymer due to 
its biocompatibility. In CTO polymer, Au NPs can be generated by UV irradiation (Miyama 
& Yonezawa 2004). Using photomasks and UV laser beam we obtain the creation of gold 
NPs in precise areas of the polymeric film, turning the insulating polymer into electron 
conducting material. This process allows us to localize and design accurately surface 
patterns and moreover to tune the metallic particle size in the range of nanoscale by varying 
the laser irradiation time and energy. 
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Another strategy that we follow for the in situ creation of nanofillers into the polymer 
matrix is the UV laser irradiation of polymer films containing cadmium thiolate precursors. 
This method results in the spatially selective formation of cadmium sulphide (CdS) 
crystalline NPs in the host matrix, through a macroscopically non-destructive procedure for 
the matrix. Using a pulse by pulse approach, we accomplished the formation of NPs with 
gradually increasing dimensions, and consequently the progressive change of the emission 
characteristics of the formed nanocomposites. The optimized combination of irradiation 
wavelength with polymer matrix gives patterned nanocomposite materials incorporating 
nanocrystals of high quality, ready to be used in various optical applications. 

3.1 Au precursor-based nanocomposite patterns 
The use of polymeric nanocomposite materials is expanding to a huge range of applications 
since they combine the flexibility, easy processability and low cost of the polymers with the 
unique properties of the nanofillers. On the other hand the intrinsic insulating characteristic 
of the polymers limit the possibilities of using polymeric-based systems in devices where 
electronic conductivity is desired, like sensors, miniaturized electronic chips, etc. In order to 
overcome this limitation, the use of metallic NPs that exhibit very high electronic 
conductivity as nanofillers is proved to be a successive strategy (Gelves 2006, 2011, Huang et 
al 2009).  
Our strategy is based on the use of the Au precursor, chloroauric acid salt (HAuCl4), 
introduced in a transparent polymer film by immersion, and the generation of Au particles 
in specific areas by means of laser irradiation. The lithographically produced nanocomposite 
areas have tailored properties, dependent on the density and size of the produced Au NPs. 
The possibility to produce Au-polymeric nanocomposite materials with enhanced electrical 
properties, in combination with the spatial control of the specific property by introducing in 
situ the nanofillers in the desired areas increases enormously the potentiality of such 
systems in a wide variety of applications. 

3.1.1 Spatially controlled in situ formation of Au NPs in chitosan 
Chitosan (CTO) is a natural biodegradable and biocompatible polysaccharide polymer 
derived from chitin, a linear chain of acetylglucosamine groups, extracted from crustaceans 
shells and the cell walls of many fungi. CTO is fiberlike and is obtained by the deacetylation 
process of the natural chitin, a process that gives rise to amine groups which can be used for 
further functionalization (Yi et al 2005, Luther et al 2005, Su et al 2005, Zhou et al 2006, 
Zangmeister et al 2006). CTO is becoming widely used due to its potential polysaccharide 
resource and properties as non-toxicity, excellent processability, adsorption properties, 
hydrogel behavior, electrospinning, etc (Guibal 2005, Nirmala et al 2011). Its chemical 
structure is illustrated in figure 10. 
CTO has a hydrogel nature resulting in the tendency to absorb ambient moisture or liquids. 
In this work, the process was optimized and used to introduce gold precursor in CTO 
polymer thin films. By controlling the immersion time of the polymer film in gold precursor 
solution, the absorption of gold precursors is highly controlled. The CTO used in this work 
was purchased from Sigma Aldrich with a degree of deacetylation about 80%. Various 
concentrations of CTO polymer solutions (0.5%, 1% and 2% wt.) are prepared in acetic acid. 
CTO polymeric films on glass substrates are obtained by drop-casting or spin-coating. The 
use of high CTO polymer concentration allows the formation of CTO hydrogel films able to 
absorb gold precursor crystals behaving as a “gold precursor reservoir”. The gold precursor 
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used is a chloroauric acid salt (Mw (HAuCl4)=339.5g/mol) and is dissolved in distilled 
water by providing two solutions (0.01M and 0.02M). Irradiation of the salt embedded in 
CTO with UV light induces photoreduction of metallic ions (AuCl4-) into metal atoms (Duff 
et al 1993), clusters, aggregated metal clusters and eventually gold NPs, as described in 
equation 1. The Au NPs were obtained by irradiating the samples with the third harmonic of 
a pulsed Nd:YAG laser (┣=355 nm, pulse duration =4-6 ns, repetition rate=10 Hz, Quanta-
Ray GCR 190, Spectra Physics) with fluence in the range of 0.5 to 5.0 J·cm-2 through 
photomasks. The results of the lithographic production of Au NPs at adjacent areas of a 
representative sample irradiated with increasing irradiation times is shown in Figure 11. 
 

 

Fig. 10. Chemical structure of chitosan.  

RNH3+AuCl4 - → Au0 + RNH3+Cl- + 3Cl 
Au0 → Aun (cluster) → Aup (particles) 

(1) 

 

 

Fig. 11. Lithographic production of Au NPs at adjacent areas (dark spots) of a CTO film 
incorporating Au precursor, irradiated with increasing times. 

For the fluence range used in this work the irradiation time needed for the creation of the 
NPs is very short, in the range of few seconds, and after 2-3 minutes of irradiation the 
Au/CTO films appear destroyed. The generation of Au NPs at the surface of the CTO-Au 
polymeric film in function of the irradiation time is illustrated in the AFM images of Figure 
12, for a laser fluence of 1 J cm-2. In particular, Fig. 12a illustrates a non-irradiated area with 
a very smooth surface. Fig. 12b demonstrates an area irradiated for 30 sec. At this stage, the 
photolysis reaction results in the formation of few Au NPs with low density and sub-micron 
size. In Fig. 12c is demonstrated the surface of an area after its irradiation for 75 sec. In this 
figure the Au NPs appear much denser and a clear reduction of their size is also 
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demonstrated. The size of the smallest Au NPs that appear onto the surface of the sample is 
around 20 nm. Under these experimental conditions, the distribution of Au NPs becomes 
almost homogeneous after 90 sec and they form a sort of continuous film on the surface of 
the CTO film. It can also be noted that the form of the NPs seems to change from undefined 
geometrical structures to spherical shapes after prolonged irradiation.  
 

   
 

Fig. 12. Evolution of the formation of the Au NPs onto the CTO surface upon increasing 
irradiation time: (a) non-irradiated area, (b) area irradiated for 30 sec, (c) area irradiated for 
75 sec. The density of the NPs increases and their size decreases with the irradiation time. 

In the literature (Miyama & Yonezawa 2004) is mentioned that the growth of Au NPs occurs 
by aggregation of the photolytically formed Au atoms and clusters (equation 1). 
Nevertheless, the aggregation mechanism is not confirmed by the AFM images presented in 
figure 12, where is demonstrated that increasing irradiation time causes the decrease and 
not the increase of the size of the formed particles. The mechanism occurring in our case 
seems to be closer to the one reported on the formation of metal NPs by laser ablation in 
water solutions, where the reduced size of the NPs with increasing irradiation time is 
explained by their fragmentation due to self-absorption of laser pulses (Mafune´ et al 2000, 
Shukla & Seal 1999, Videla et al 2010, Kadossov & Burghaus 2010, Kabashin & Meunier 
2003). Indeed, the Scanning Electron Microscopy (SEM) images obtained on the same 
sample irradiated at two different areas for very few seconds (≈5) and 30 sec, respectively, 
using fluence of 1 J cm-2, demonstrate that the first particles that appear onto the CTO 
surface are quite big (in the micrometer scale) and then they fragment into smaller ones 
(Figure 13). A closer look into the NPs clearly demonstrates that some of them are already 
fragmented into smaller pieces. Due to the irradiation conditions used in our experiments 
the aggregation of Au atoms and clusters into small particles seems to occur already in the 
very first seconds of the procedure and then the fragmentation mechanism becomes 
predominant. It is also interesting to mention that the fragmentation mechanism as 
described in literature is linked with an increase of local temperature due to the absorption 
of the laser photons by the Au NPs, which may increase the mobility of the latter towards 
the surface of the CTO polymeric films. 
Finally, in figure 14 is demonstrated the intensity of the electronic current that is conducted 

through a CTO/Au NPs sample as a function of the laser irradiation time, for a laser fluence 

of ~5 J·cm-2. It is clear that the density increase of the formed Au NPs and the 

interconnection between them, previously demonstrated in figures 12 and 13, has an effect 

on the electrons mobility into the samples. Indeed, the current passing through the samples 

increases almost linearly with the laser irradiation time. The enhancement of the electrical 

a b c 
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conductivity in specific areas of nanocomposites by laser induced lithography, can be used 

for a wide range of applications such as implantable gas sensors, liquid sensors for robotics 

and nanocircuits. 

 

 

Fig. 13. SEM images showing the fragmentation of the Au NPs with increasing irradiation 
time: (a) area irradiated for 5 sec, (b) area irradiated for 30 sec. The density of the NPs 
increases and their size decreases with the irradiation time. 

 

 

Fig. 14. Evolution of the current intensity in function of the irradiation time for laser fluence 
~5 J·cm-2. 

3.2 CdS precursor-based nanocomposite patterns 
Semiconductor nanocrystals (NCs) embedded into polymeric matrices can be exploited in 
several technological applications, taking advantage of the unique photophysical 
characteristics of the former due to the quantum confinement effect. In particular, the size-
dependent optical properties of the NCs, such as, high emission quantum yields, narrow 
emission bands, and tunable emission/absorption spectra, have been the topic of many 
recent research works (Xia et al 2008, Medintz et al, 2005, Bruchez et al 1998, Michalet et al 
2005). On the top, the careful selection of the polymer matrices can lead to highly 
processable nanocomposite materials with increased stability. 

a b 
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For different applications, the lithographically patterned formation of well-dispersed NCs 
into polymers is highly requested, since it provides spatially selective tailoring of specific 
properties of the nanocomposites. Indeed, on one hand a good dispersion of the NCs 
optimize their quantum size effect, meaning the control of their emission properties. On the 
other hand, the localization of the NCs in specific sites of the polymer provides the 
possibility of the direct incorporation of the nanocomposites in various advanced 
technological devices, such as sensors, biological chips, photoemission devices, etc. In this 
respect our lithography approach involves the localized in-situ formation of NCs inside 
polymer matrices by UV laser irradiation of polymer-precursor films. We focus our study on 
the in situ localized formation of NCs of one very promising II–VI semiconductor, the CdS, 
by the use of pulsed UV laser irradiation of a polymer film incorporating the photosensitive 
metal sulphide precursor. 

3.2.1 Spatially controlled in situ formation of CdS NCs in polymers 
Cadmium bis-dodecanthiolate Cd(SC12H25)2, (C12), is a photosensitive metal precursor that 
was mixed with the polymer poly-methylmethacrylate (PMMA) or TOPAS®, a 
thermoplastic cyclo-olefin copolymer consisting of ethylene and norbonene units, 
transparent in the visible, in order to produce the CdS NCs after laser irradiation. In 
particular, 20 wt.% of the metal thiolate precursors was mixed with 80 wt. % of polymer, 
and then diluted in toluene. The solutions, after being sonicated for 30 min, were cast in 
Petri capsules. The polymer-precursor films formed after the evaporation of toluene had 
thickness ∼200 ┤m. 
For the in situ formation of the NCs in the polymer matrix, the films were irradiated through 
photomasks of different shapes with pulses of Nd:YAG laser (Quanta-Ray PRO-290-30, 
Spectra Physics) operating at the fourth harmonic, (wavelength 266 nm, pulse duration 8 ns, 
and repetition rate 2 Hz). The wavelength 266 nm was chosen since the metal precursor 
exhibits at it enhanced absorption, as demonstrate in figure 15. Both TOPAS and PMMA 
polymers have intriguing physical properties for a number of applications, taking 
advantage at the same time of the in situ photoinduced CdS nanocomposite micropatterns 
with accurate control of the NCs size upon UV irradiation. 
 

  

Fig. 15. Normalized absorption spectra of the precursor C12 mixed with the polymers (a), 
and of the pure TOPAS and PMMA (b). 

a b 
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Upon laser irradiation through photomasks the CdS NCs are localized exclusively in the 
irradiated area, making possible the lithographic patterning of the samples. A characteristic 
micro pattern of 3 lines is illustrated in figure 16. For the specific pattern the lithographic 
technique that we used was not involving photomasks but it was done by focusing the laser 
beam on the C12-TOPAS sample, which was fixed onto a motorized stage moving at 
constant velocity. The spot size of the beam was ∼0.2 × 0.1 mm2, and the speed of the motor 
about 0.2 mm·s−1. The lines are fairly clear and their width (240 ┤m) is constant along the 
irradiation path. The total number of pulses in each spot area is about 100 and is enough to 
form CdS NCs, as demonstrated by their emission spectra shown in figure 16. The bright 
areas correspond to CdS NCs in the bulk region, since the spectrum has the characteristic 
emission peak at 506 nm, while the dark areas, not being irradiated, have no fluorescence 
emission in the studied spectral region. 
 

 

Fig. 16. Fluorescence image of a patterned sample of cadmium thiolate precursor-TOPAS 
polymer excited with a 405 nm diode laser after irradiation at 266 nm. The narrow 
fluorescence spectra of the formed CdS NCs are also shown. 

The formed CdS NCs following an increasing number of laser pulses are characterized by 
spatially resolved photoluminescence measurements using a confocal microscope. Indeed, 
in figure 18 are presented the fluorescence spectra from selected areas of the films irradiated 
with various laser pulses at a laser fluence of 25 mJ·cm−2. After 6 pulses the emission peak of 
the formed NCs is close to ┣ = 440 nm. After successive laser pulses the emission is shifted 
towards higher wavelengths with the peak reaching 506 nm above 40 laser pulses, which 
coincides with the emission of the bulk CdS material. It is clearly demonstrated that the 
luminescence of the samples changes dramatically after the first irradiation pulses, while an 
increase of the incident pulses causes a red shift to the emission, which is attributed to the 
increasing dimensions of the CdS NCs. Therefore, the UV irradiation of metal precursor-
TOPAS polymer films results in the formation of CdS NCs, with dimensions extending from 
the quantum size effect range to the bulk, depending on the number of the incident laser 
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pulses. This, in combination with the spatial control of the formation of these NCs thanks to 
the presented lithographic technique opens the way for the incorporation of such systems in 
complex multicomponent devides. 
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Fig. 17. The change of the fluorescence spectra of C12-TOPAS film with an increasing 
number of incident laser pulses. 

The lithographic formation and size tuning of CdS NCs with increasing UV irradiation time 
of metal precursors occurs also in PMMA, in the same way as in TOPAS. However, intense 
deteriorations (broadening) are observed in the emission spectra of the NCs formed in 
PMMA compared to TOPAS upon increasing number of pulses. Figure 18 shows the 
fluorescence image of a C12-PMMA film irradiated with 80 laser pulses of fluence F=20 
mJ·cm-2, at ┣=266 nm, and the corresponding emission taken from various areas of the film 
using a confocal microscope. The emission spectra show the existence of few CdS NCs 
emitting at the bulk region (NCs diameter > 7 nm) with an emission peak close to 500 nm 
and FWHM ~32 nm (Figure 18b), while many areas exhibit a very broad emission with the 
peak around 550 nm (Figure 18b, blue line), representative of the trap states emission 
formed on the surface of the NCs. Indeed, the quality of the semiconductor NCs is generally 
studied by their emission characteristics verifying that the broader the emission spectra the 
higher the number of the trap states on their surfaces (Athanassiou et al 2007, Fragouli et al 
2009, 2010, Wang et al 2004, Antoun et al 2007, Wu et al 2000, Khanna et al 2007). After 
irradiation with the same number of laser pulses but increased laser fluence (F=50 mJ·cm-2, 
80 pulses) the characteristic emission of the NCs in PMMA matrix is no more evident in the 
irradiated area, while the trap state emission is dominant (Figure 18c). Therefore, when 
PMMA matrix is used the laser irradiation at 266 nm results in the formation of NCs with 
trap states on their surface, an evidence that becomes clearer as the incident fluence 
increases. The comparison between the emission spectra of the CdS NCs formed in the 
TOPAS and in the PMMA matrix shows that they are very narrow and characteristic of CdS 
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in the first case while they are broad and red shifted in the second case. This finding 
demonstrates that the trap states on the NCs surfaces formed with laser lithography, and 
thus, the optical quality of the NCs strongly depends on the surrounding matrix.  
 

 

Fig. 18. (a) Confocal microscopy fluorescence image of the C12-PMMA film after irradiation 
at 266 nm with 80 incident pulses and fluence F=20 mJ·cm-2. (b) Emission spectra of selected 
areas of the image; each curve corresponds to the marked area of (a) with the same colour 
and number. (c) Emission spectra of selected areas of the C12-PMMA film after irradiation at 
266 nm with 80 incident pulses and higher fluence F=50 mJ·cm-2. 

4. Conclusion  

In this work are demonstrated two different lithography techniques based on the use of 

pulsed UV laser light for the creation of well defined polymeric nanocomposite structures. 

The presented techniques open up new ways for nanocomposite film patterning with well 

dispersed and occasionally size controlled NCs. The first technique is the UV laser 

photopolymerization lithography, where UV laser pulses are used for the polymerization 

and patterning of nanocomposite solutions of preformed colloidal NPs mixed with 

monomers and photoinitiators. In the second lithography technique UV laser pulses induce 

the in situ formation of NPs in specific locations in the polymer matrices, starting from 

polymeric film incorporating light-sensitive precursors of NPs. Using both techniques we 

present patterned structures of various nanocomposite systems, such as PMMA with TiO2 

NPs, PMMA and SU-8 with Fe2O3 NPs aligned into NWs under external magnetic field, 

CTO with Au NPs, TOPAS and PMMA with size tuned CdS NPs. The formed 

nanocomposite structures can exhibit controlled and enhanced surface, optical, 

electronically conducting and magnetic properties, in an easy and fast way, promising for 
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the development of nanodevices used in biotechnology, optoelectronics, microfluidics and 

other advanced technological areas.  
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