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Advanced Humanoid Robot Based on the 
Evolutionary Inductive Self-organizing Network 
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Department of Electrical Engineering, Korea University, 

1, 5-ka, Anam-dong, Seongbuk-ku, Seoul 136-701, 
Korea.

1. Introduction 

The bipedal structure is one of the most versatile ones for the employment of walking robots. 
The biped robot has almost the same mechanisms as a human and is suitable for moving in an 
environment which contains stairs, obstacle etc, where a human lives. However, the dynamics 
involved are highly nonlinear, complex and unstable. So it is difficult to generate human-like 
walking motion. To realize human-shaped and human-like walking robots, we call this as 
humanoid robot, many researches on the biped walking robots have been reported [1-4]. In 
contrast to industrial robot manipulators, the interaction between the walking robots and the 
ground is complex. The concept of the zero moment point (ZMP) [2] is known to give good 
results in order to control this interaction. As an important criterion for the stability of the 
walk, the trajectory of the ZMP beneath the robot foot during the walk is investigated [1-7]. 
Through the ZMP, we can synthesize the walking patterns of humanoid robot and 
demonstrate walking motion with real robots. Thus ZMP is indispensable to ensure dynamic 
stability for a biped robot. The ZMP represents the point at which the ground reaction force is 
applied. The location of the ZMP can be obtained computationally using a model of the robot. 
But it is possible that there is a large error between the actual ZMP and the calculated one, due 
to the deviations of the physical parameters between the mathematical model and the real 
machine. Thus, actual ZMP should be measured to realize stable walking with a control 
method that makes use of it. 
In this chapter, actual ZMP data throughout the whole walking phase are obtained from the 
practical humanoid robot. And evolutionary inductive self-organizing network [8-9] is 
applied. So we obtained natural walking motions on the flat floor, some slopes, and uneven 
floor.

2. Evolutionary Inductive Self-organizing Network 

In this Section we will depict the evolutionary inductive self-organizing network (EISON) to 
be applied to the practical humanoid robot. Firstly the algorithm and its structure are shown 
and evaluation to show the usefulness of the method will be followed. 

Source: Humanoid Robots, New Developments, Book edited by: Armando Carlos de Pina Filho
ISBN 978-3-902613-02-8, pp.582, I-Tech, Vienna, Austria, June 2007
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2.1 Algorithm and structure 

The EISON has an architecture similar to feed-forward neural networks whose neurons are 
replaced by polynomial nodes. The output of the each node in EISON structure is obtained 
using several types of high-order polynomial such as linear, quadratic, and modified 
quadratic of input variables. These polynomials are called as partial descriptions (PDs). The 
PDs in each layer can be designed by evolutionary algorithm. The framework of the design 
procedure of the EISON [8-9] comes as a sequence of the following steps. 

[Step 1] Determine input candidates of a system to be targeted. 
[Step 2] Form training and testing data. 
[Step 3] Design partial descriptions and structure evolutionally. 
[Step 4] Check the stopping criterion. 
[Step 5] Determine new input variables for the next layer. 

In the following, a more in-depth discussion on the design procedures, step 1~step 5, is provided. 

Step 1: Determine input candidates of a system to be targeted

We define the input variables such as 1 2, ,i i Nix x x related to output variables iy , where N and 

i are the number of entire input variables and input-output data set, respectively. 

Step 2: Form training and testing data.

The input - output data set is separated into training ( trn ) data set and testing ( ten ) data set. 

Obviously we have tr ten n n= + . The training data set is used to construct a EISON model. 

And the testing data set is used to evaluate the constructed EISON model. 

Step 3: Design partial descriptions(PD) and structure evolutionally.
When we design the EISON, the most important consideration is the representation strategy, 
that is, how to encode the key factors of the PDs, order of the polynomial, the number of 
input variables, and the optimum input variables, into the chromosome. We employ a 
binary coding for the available design specifications. We code the order and the inputs of 
each node in the EISON as a finite-length string. Our chromosomes are made of three sub-
chromosomes. The first one is consisted of 2 bits for the order of polynomial (PD), the 
second one is consisted of 3 bits for the number of inputs of PD, and the last one is consisted 
of N bits which are equal to the number of entire input candidates in the current layer. 
These input candidates are the node outputs of the previous layer. The representation of 
binary chromosomes is illustrated in Fig. 1. 

Bits in the 1st

sub-chromosome 
Order of polynomial(PD) 

00 Type 1 – Linear 

01

10
Type 2 – Quadratic 

11 Type 3 – Modified quadratic 

Table 1. Relationship between bits in the 1st sub-chromosome and order of PD. 

The 1st sub-chromosome is made of 2 bits. It represents several types of order of PD. The 
relationship between bits in the 1st sub-chromosome and the order of PD is shown in Table 
1. Thus, each node can exploit a different order of the polynomial. 
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Fig. 1. Structure of binary chromosome for a PD 

The 3rd sub-chromosome has N bits, which are concatenated a bit of 0’s and 1’s coding. The 
input candidate is represented by a 1 bit if it is chosen as input variable to the PD and by a 0 
bit it is not chosen. This way solves the problem of which input variables to be chosen. 
If many input candidates are chosen for model design, the modeling is computationally 
complex, and normally requires a lot of time to achieve good results. In addition, it causes 
improper results and poor generalization ability. Good approximation performance does 
not necessarily guarantee good generalization capability. To overcome this drawback, we 
introduce the 2nd sub-chromosome into the chromosome. The 2nd sub-chromosome is 
consisted of 3 bits and represents the number of input variables to be selected. The number 
based on the 2nd sub-chromosome is shown in the Table 2. 

Bits in the 2nd sub-
chromosome 

Number of inputs to PD 

000 1 

001 2 

010 2 

011 3 

100 3 

101 4 

110 4 

111 5 

Table 2. Relationship between bits in the 2nd sub-chromosome and number of inputs to PD. 

Input variables for each node are selected among entire input candidates as many as the 
number represented in the 2nd sub-chromosome. Designer must determine the maximum 
number in consideration of the characteristic of system, design specification, and some 
prior knowledge of model. With this method we can solve the problems such as the 
conflict between overfitting and generalization and the requirement of a lot of computing 
time. 
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The relationship between chromosome and information on PD is shown in Fig. 2. The PD 
corresponding to the chromosome in Fig. 2 is described briefly as Fig. 3. 
Fig. 2 shows an example of PD. The various pieces of required information are obtained 
its chromosome. The 1st sub-chromosome shows that the polynomial order is Type 2 
(quadratic form). The 2nd sub-chromosome shows two input variables to this node. The 
3rd sub-chromosome tells that x1 and x6 are selected as input variables. The node with PD 

corresponding to Fig. 2 is shown in Fig. 3. Thus, the output of this PD, ŷ can be expressed 

as (1). 
2 2

1 6 0 1 1 2 6 3 1 4 6 5 1 6
ˆ ( , )y f x x c c x c x c x c x c x x= = + + + + +

  (1) 
where coefficients c0, c1, …, c5 are evaluated using the training data set by means of the 
standard least square estimation (LSE). Therefore, the polynomial function of PD is formed 
automatically according to the information of sub-chromosomes. 

Fig. 2. Example of PD whose various pieces of required information are obtained from its 
chromosome. 

Fig. 3. Node with PD corresponding to chromosome in Fig. 2. 

Step 4: Check the stopping criterion.
The EISON algorithm terminates when the 3rd layer is reached. 

Step 5: Determine new input variables for the next layer.
If the stopping criterion is not satisfied, the next layer is constructed by repeating step 3 
through step 4. 
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YES

NO

Start

Results: chromosomes which have

good fitness value are selected for the

new input variables of the next layer

Generation of initial population:

the parameters are encoded into a

chromosome

Termination condition

Evaluation: each chromosome is

evaluated and has its fitness value

End: one chromosome (PD)

characterized by the best

performance is selected as the output

when the 3rd layer is reached

A`: 0 0 0 0 0 0 0 0 0 1 1 A`:  0 0 0 1 0 0 0 0 0 1 1

before mutation after mutation

A:  0 0 0 0 0 0 0 1 1 1 1

B:  1 1 0 0 0 1 1 0 0 1 1

A`:  0 0 0 0 0 0 0 0 0 1 1

B`:  1 1 0 0 0 1 1 1 1 1 1

before crossover after crossover

The fitness values of the new chromosomes

are improved trough generations with

genetic operators

---: mutation site

---: crossover site

A:  0 0 0 0 0 0 0 1 1 1 1 B:  1 1 0 0 0 1 1 0 0 1 1

Reproduction: roulette wheel

One-point crossover

Invert mutation

Fig. 4. Block diagram of the design procedure of EISON. 

The overall design procedure of EISON is shown in Fig. 4. At the beginning of the process, 
the initial populations comprise a set of chromosomes that are scattered all over the search 
space. The populations are all randomly initialized. Thus, the use of heuristic knowledge is 
minimized. The assignment of the fitness in evolutionary algorithm serves as guidance to 
lead the search toward the optimal solution. Fitness function with several specific cases for 
modeling will be explained later. After each of the chromosomes is evaluated and associated 
with a fitness, the current population undergoes the reproduction process to create the next 
generation of population. The roulette-wheel selection scheme is used to determine the 
members of the new generation of population. After the new group of population is built, 
the mating pool is formed and the crossover is carried out. The crossover proceeds in three 
steps. First, two newly reproduced strings are selected from the mating pool produced by 
reproduction. Second, a position (one point) along the two strings is selected uniformly at 
random. The third step is to exchange all characters following the crossing site. We use one-
point crossover operator with a crossover probability of Pc (0.85). This is then followed by 
the mutation operation. The mutation is the occasional alteration of a value at a particular 
bit position (we flip the states of a bit from 0 to 1 or vice versa). The mutation serves as an 
insurance policy which would recover the loss of a particular piece of information (any 
simple bit). The mutation rate used is fixed at 0.05 (Pm). Generally, after these three 
operations, the overall fitness of the population improves. Each of the population generated 
then goes through a series of evaluation, reproduction, crossover, and mutation, and the 
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procedure is repeated until a termination condition is reached. After the evolution process, 
the final generation of population consists of highly fit bits that provide optimal solutions. 
After the termination condition is satisfied, one chromosome (PD) with the best 
performance in the final generation of population is selected as the output PD. All 
remaining other chromosomes are discarded and all the nodes that do not have influence on 
this output PD in the previous layers are also removed. By doing this, the EISON model is 
obtained.

2.2 Fitness function for EISON 

The important thing to be considered for the evolutionary algorithm is the determination of 
the fitness function. The genotype representation encodes the problem into a string while 
the fitness function measures the performance of the model. It is quite important for 
evolving systems to find a good fitness measurement. To construct models with significant 
approximation and generalization ability, we introduce the error function such as 

(1 )E PI EPIθ θ= × + − ×   (2) 

where [0,1]θ ∈ is a weighting factor for PI and EPI, which denote the values of the 

performance index for the training data and testing data, respectively, as expressed in (5). 
Then the fitness value is determined as follows: 

1

1
F

E
=

+
  (3) 

Maximizing F is identical to minimizing E. The choice of θ  establishes a certain tradeoff 

between the approximation and generalization ability of the EISON. 

2.3 Evaluation of the EISON 

We show the performance of our EISON for well known nonlinear system to see the 
applicability. In addition, we demonstrate how the proposed EISON model can be 
employed to identify the highly nonlinear function. The performance of this model will be 
compared with that of earlier works. The function to be identified is a three-input nonlinear 
function given by (4) 

0.5 1 1.5 2

1 2 3(1 )y x x x− −
= + + +  (4) 

which is widely used by Takagi and Hayashi [10], Sugeno and Kang[11], and Kondo[12] to 
test their modeling approaches. 
40 pairs of the input-output data sets are obtained from (4) [14]. The data is divided into 
training data set (Nos. 1-20) and testing data set (Nos. 21-40). To compare the 
performance, the same performance index, average percentage error (APE) adopted in 
[10-14] is used. 

1

ˆ1 | |
100 (%)

m
i i

i i

y y
APE

m y=

−
= ×   (5) 

where m is the number of data pairs and iy and ˆ
iy  are the i-th actual output and model 

output, respectively. 
The design parameters of EISON in each layer are shown in Table 3. The simulation results 
of the EISON are summarized in Table 4. The overall lowest values of the performance 
index, PI=0.188 EPI=1.087, are obtained at the third layer when the weighting factor ( ) is 
0.25.
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Parameters 1st layer 2nd layer 3rd layer 

Maximum generations 40 60 80 

Population size:( w) 20:(15) 60:(50) 80 

String length 8 20 55 

Crossover rate (Pc) 0.85 

Mutation rate (Pm) 0.05 

Weighting factor:   0.1~0.9 

Type (order) 1~3 

Table 3. Design parameters of EISON for modeling. 

w: the number of chosen nodes whose outputs are used as inputs to the next layer 

1st layer 2nd layer 3rd layer 
Weighting factor 

PI EPI PI EPI PI EPI

0.1 5.7845 6.8199 2.3895 3.3400 2.2837 3.1418 

0.25 5.7845 6.8199 0.8535 3.1356 0.1881 1.0879

0.5 5.7845 6.8199 1.6324 5.5291 1.2268 3.5526 

0.75 5.7845 6.8199 1.9092 4.0896 0.5634 2.2097 

0.9 5.7845 6.8199 2.5083 5.1444 0.0002 4.8804 

Table 4. Values of performance index of the proposed EISON model. 
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Fig. 5. Trend of performance index values with respect to generations through layers (
=0.25).

Fig. 5 illustrates the trend of the performance index values produced in successive 
generations of the evolutionary algorithm when the weighting factor  is 0.25. Fig. 6 
shows the values of error function and fitness function in successive evolutionary 
algorithm generations when the  is 0.25. Fig. 7 depicts the proposed EISON model with 
3 layers when the  is 0.25. The structure of EISON is very simple and has a good 
performance. 
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Fig. 6. Values of the error function and fitness function with respect to the successive 
generations (  =0.25). 

Fig. 7. Structure of the EISON model with 3 layers (  =0.25). 

Fig. 8 shows the identification performance of the proposed EISON and its errors when the 
 is 0.25. The output of the EISON follows the actual output very well. 

Table 5 shows the performance of the proposed EISON model and other models studied in 
the literature. The experimental results clearly show that the proposed model outperforms 
the existing models both in terms of better approximation capabilities (PI) as well as superb 
generalization abilities (EPI). 

APE
Model

PI (%) EPI (%) 

GMDH model[12] 4.7 5.7 

Model 1  1.5 2.1 Fuzzy model 
[11] Model 2  0.59 3.4 

Type 1 0.84 1.22 

Type 2 0.73 1.28 FNN [14] 

Type 3 0.63 1.25 

GD-FNN [13] 2.11 1.54 

EISON 0.188 1.087 

Table 5. Performance comparison of various identification models. 
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Fig. 8. Identification performance of EISON model with 3 layers and its errors 

3. Practical Biped Humanoid Robot 

3.1 Design 

Biped humanoid robot designed and implemented is shown in Fig. 9. The specification of 
our biped humanoid robot is depicted in Table 6. The robot has 19 joints and the height and 
the weight are about 445mm and 3000g including vision camera. For the reduction of the 
weight, the body is made of aluminum materials. Each joint is driven by the RC servomotor 
that consists of a DC motor, gear, and simple controller. Each of the RC servomotors is 
mounted in the link structure. This structure is strong against falling down of the robot and 
it looks smart and more similar to a human. 

Size Height : 445mm 

Weight 3kg 

CPU TMS320LF2407 DSP 

Actuator
(RC Servo motors) 

HSR-5995TG (Torque : 30kg·cm at 7.4V) 

Degree of freedom 19 DOF (Leg+Arm+Waist) = 2*6 + 3*2+1) 

Power source Battery  

Actuator : AA Size Ni-poly (7.4V, 1700mAh ) 

Control board : AAA size Ni- poly (7.4V, 700mAh) 

Table 6. Specification of our humanoid robot
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Fig. 9. Designed and implemented humanoid robot. 
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Fig. 10. 3D humanoid robot design and its practical figures 

Front and side view of 3D robot and its practical figures are shown in Fig. 10. Block diagram 
of the biped walking robot and its electric diagram of control board and actuators are also 
shown in Figs. 11 and 12, respectively. Implemented control board and its electric wiring 
diagram schematic is presented in Fig. 13. 

Fig. 11. Block diagram of the humanoid robot 
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Fig. 12. Electric diagram of control board and actuators 

Fig. 13. Implemented control board and its electric wiring diagram schematic 

3.2 Zero moment point measurement system 

As an important criterion for the stability of the walk, the trajectory of the zero moment 
point (ZMP) beneath the robot foot during the walk is investigated. Through the ZMP, we 
can synthesize the walking patterns of biped walking robot and demonstrate walking 
motion with real robots. Thus ZMP is indispensable to ensure dynamic stability for a biped 
robot.
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Fig. 14. Representation of joint angle of the 10 degree of freedoms. 

The places of joints in walking are shown in Fig. 14. The measured ZMP trajectory data to be 
considered here are obtained from 10 degree of freedoms (DOFs) as shown in Fig. 14. Two 
DOFs are assigned to hips and ankles and one DOF to the knee on both sides. From these 
joint angles, cyclic walking pattern has been realized. This biped walking robot can walk 
continuously without falling down. The zero moment point (ZMP) trajectory in the robot 
foot support area is a significant criterion for the stability of the walk. In many studies, ZMP 
coordinates are computed using a model of the robot and information from the joint 
encoders. But we employed more direct approach which is to use measurement data from 
sensors mounted at the robot feet. 
The type of force sensor used in our experiments is FlexiForce sensor A201 which is shown 
in Fig. 15. They are attached to the four corners of the sole plate. Sensor signals are digitized 
by an ADC board, with a sampling time of 10 ms. Measurements are carried out in real time. 

Fig. 15. Employed force sensors under the robot feet. 
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The foot pressure is obtained by summing the force signals. By using the force sensor data, it 
is easy to calculate the actual ZMP data. Feet support phase ZMPs in the local foot 
coordinate frame are computed by equation 6 

8

1

8

1

i i

i

i

i

f r

P

f

=

=

=   (6) 

where fi is each force applied to the right and left foot sensors and ri is sensor position which 
is vector. 

4. Walking Pattern Analysis of the Humanoid Robot 

The walking motions of the biped humanoid robot are shown in Figs. 16-18. These figures 
show series of snapshots in the front views of the biped humanoid robot walking on a flat 
floor, some slopes, and uneven floor, respectively. Fig. 16 gives the series of front views of 
this humanoid robot walking on a flat floor. In Fig. 17 depict the series of front views of this 
humanoid robot going up on an ascent. Fig. 18 shows another type of walking of biped 
humanoid robot, which is walking motion on an uneven floor. 

Fig. 16. Side view of the biped humanoid robot on a flat floor 

Fig. 17. Side view of the biped humanoid robot on an ascent. 



Advanced Humanoid Robot Based on the Evolutionary Inductive Self-organizing Network 463

Fig. 18. Side view of the biped humanoid robot on an uneven floor. 

Experiments using EISON was conducted and the results are summarized in tables and 
figures below. The design parameters of evolutionary inductive self-organizing network in 
each layer are shown in Table 7. The results of the EISON for the walking humanoid robot 
on the flat floor are summarized in Table 8. The overall lowest values of the performance 
indicies, 6.865 and 10.377, are obtained at the third layer when the weighting factor ( ) is 1. 
In addition, the generated ZMP positions and corresponding ZMP trajectory are shown in 
Fig. 19. Table 9 depicts the condition and results for the actual ZMP positions of our 
humanoid walking robot on an ascent floor. We can also see the corresponding ZMP 
trajectories in Fig. 20, respectively. 

Parameters 1st layer 2nd layer 3rd layer 

Maximum generations 40 60 80 

Population size:( w) 40:(30) 100:(80) 160 

String length 13 35 85 

Crossover rate (Pc) 0.85 

Mutation rate (Pm) 0.05 

Weighting factor:   1 

Type (order) 1~3 

Table 7. Design parameters of evolutionary inductive self-organizing network. 

w: the number of chosen nodes whose outputs are used as inputs to the next layer 

Walking condition MSE (mm) 

slope (deg.) 
Layer 

x-coordinate y-coordinate

1 9.676 18.566 

2 7.641 13.397 0
o

3 6.865 10.377 

Table 8. Condition and the corresponding MSE are included for actual ZMP position in four 
step motion of our humanoid robot. 
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(a) x-coordinate                               (b) y-coordinate 

(c) Generated ZMP trajectories 

Fig. 19. Generated ZMP positions and corresponding ZMP trajectories (0
o

).

5. Concluding remarks 

This chapter deals with advanced humanoid robot based on the evolutionary inductive 
self-organizing network. Humanoid robot is the most versatile ones and has almost the 
same mechanisms as a human and is suitable for moving in an human’s environment. 
But the dynamics involved are highly nonlinear, complex and unstable. So it is difficult 
to generate human-like walking motion. In this chapter, we have employed zero 
moment point as an important criterion for the balance of the walking robots. In 
addition, evolutionary inductive self-organizing network is also utilized to establish 
empirical relationships between the humanoid walking robots and the ground and to 
explain empirical laws by incorporating them into the humanoid robot. From obtained 
natural walking motions of the humanoid robot, EISON can be effectively used to the 
walking robot and we can see the synergy effect humanoid robot and evolutionary 
inductive self-organizing network. 
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(a) x-coordinate                                                 (b) y-coordinate 

(c) Generated ZMP trajectories 

Fig. 20. Generated ZMP positions and corresponding ZMP trajectories (10
o

).
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