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1. Introduction 

Epidural or subdural electrodes are often used in humans in order to identify eloquent 
structures by stimulation or recording. Neurosurgeons are able to use the motor maps 
gathered more than 50 years ago by Penfield and Jasper (1954) for delineation of the 
functions of non-lesioned cortical tissue. These and other contributions have been made 
during surgical procedures in humans by either applying direct cortical stimulation 
(Woolsey et al., 1979; Burke and Hicks, 1998) or recording from the spinal cord tracts after 
cortical or peripheral nerve stimulation (Burke and Hicks, 1998; Di Lazzaro et al., 2006). 
Peroperatory neurophysiological monitoring offers also great opportunities for learning 
from using neurophysiological techniques, at the same time as helping the surgeon to reach 
a better outcome (Rainov et al., 1997; Horikoshi et al., 2000; Deletis and Sala, 2008).  
These procedures have not only helped to improve the surgical procedure but they have 
allowed the use of neurophysiological tests to expand our knowledge on human central 
nervous system circuitry and functional connectivity. Nowadays, stereotactically placed 
electrodes with therapeutic aims such as deep brain stimulation (DBS), offer the possibility 
to reach structures that could not be otherwise targeted in humans and investigate further 
physiological aspects of brain circuits. For these purposes, authors have used the DBS 
electrodes inserted either in the nucleus ventralis intermedius of the thalamus (Vim), the 
globus pallidus internus (GPi), the subthalamic nucleus (STN), the pedunculopontine 
nucleus (PPN) or others in which the results of research are still scarce (Weinberger et al., 
2008; Galati et al., 2008; Shimamoto et al., 2010; Alessandro et al., 2010). The information 
brought by these studies has already shed some light on the functioning of some central 
nervous system circuits. However, many questions remain to be answered and further 
research on the subject is required to 1) understand fully the physiological mechanisms 
underlying the beneficial effects of chronic repetitive high frequency DBS, and 2) strengthen 
our knowledge on human brain circuitry and connectivity.   
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In this chapter, we revise the contributions that have been made to various physiological 
questions by the use of the electrodes implanted for therapeutic purposes in patients with 
Parkinson disease (PD) or dystonia. We have not included works on clinical effects of deep 
brain stimulation or clinical correlations, unless they were considered relevant for 
understanding physiological processes. The reader interested on clinical aspects may look 
for recent reviews on the topic (Limousin and Martinez-Torres, 2008; Lozano and Schneider, 
2008; Benabid et al., 2009; Foltynie et al., 2010). 

2. Recording 

2.1 Neuronal spikes and local field potentials 
2.1.1 Localization of targets 
During the surgical procedure, at the operating room, it is possible to perform direct 
microelectrode recording of neuronal activity along the structures crossed by the electrode 
to reach the target nucleus. This is part of routine practice in most centers to help in 
localizing the target basal ganglia (Hutchison et al., 1998; Benazzouz et al., 2002; Sterio et al., 
2002a; Molinuevo et al., 2003; Mrakic-Sposta et al., 2008). An example of such recordings 
taken from a patient along the trajectory of the electrode to the STN is shown in Figure 1. 
 

 

Fig. 1. Neurophysiological recording of various sites while inserting the electrode. From the 
bottom to the top: The electrode in the zona incerta (ZI) records almost no activity. When it 
enters the subthalamic nucleus (STN), the spikes become grouped in various bursts. Exiting 
the nucleus, there is a zone with no activity and then a continuous firing of spikes at a 
relatively high frequency, when the electrode enters the substantia nigra pars reticulata (SNr). 
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The possibility exists of recording from different nuclei in the circuitry. It is known, for 
instance, that the globus pallidus externus (GPe) shows a typical pauser neuronal firing, 
with activity in bursts. Sani et al. (2009) hypothesized that the characteristics of such firing 
might be different in patients with different disorders. They examined pause characteristics 
in 224 GPe units in patients with primary generalized dystonia, PD and secondary dystonia. 
The results showed that the characteristics of the pauses recorded in the GPe in awake 
humans distinguished primary dystonia from PD and secondary dystonia. Patients with 
primary dystonia had longer pause length, shorter interpause interval and higher mean 
pause frequency than PD patients. Interpause interval was also shorter in primary than in 
secondary dystonia. These results indicated an increased phasic input from striatal D2 
receptor positive cells in primary dystonia. 
A method to help localizing the border between the STN and the substantia nigra pars 
reticulata (SNr) has been shown by Lafreniere-Roula et al. (2009). These authors stimulated 
at low and high frequency through the electrode intended for the STN. When the electrode 
was at the border area between the STN and the SNr, they observed that high frequency 
stimulation caused a long lasting pause in the SNr firing but not in the STN. This is, 
therefore, an interesting technique to be used as a landmark for the STN electrode 
positioning. The same authors found inhibition in the GPi, similar to that induced in the 
SNr, although there were differences in threshold (Lafrenière-Roula et al., 2010), and 
suggested that such activity depression could contribute to the therapeutic effects of high 
frequency stimulation. A wavelet-based measure for quantitative assessment of neural 
background was used by Snellings et al. (2009) to show increase background levels within 
the STN that would help in identifying better the nucleus boundaries. 
In our institution, we use the following criteria to consider electrode placement: For the GPi 
or the STN we consider signs of appropriate placement: 1) the observation of neuronal 
activity linked to limb movements, 2) a good therapeutic response such as improvement of 
bradykinesia, rigidity or tremor with intraoperatory high frequency stimulation, and 3) the 
absence of capsular, visual or ocular effects with the high frequency stimulation or its 
presence only when the stimulus intensity is increased above therapeutic threshold. For the 
Vim, we consider the finding of tremor cells within the boundaries of the nucleus and the 
disappearance of tremor when stimulating in the absence of motor or sensory side effects.  
In 2002, various authors reported their observations on the preferred technical approach to 
reach the anatomical location for the electrodes to be implanted in the STN, GPi or Vim 
(Benazzouz et al., 2002; Lanotte et al., 2002; Starr et al., 2002; Saint-Cyr et al., 2002). 
However, good outcome measures of the surgical procedure should consider not only the 
precise localization of the appropriate target but, also, the lowest occurrence of residual 
symptoms and the lowest occurrence of side effects (Guehl et al., 2007).   
Recognizing the target structure is a very important task at the time of electrode 
implantation. Knowing where the stimuli are actually applied or where they are more 
effective is another important piece of information for feedback. An attempt at knowing 
where the stimuli were actually applied through the STN electrode for the best clinical 
outcome was made by Maks et al. (2009). These authors used neuroimaging to measure the 
theoretical volume of tissue activated (VTA) by clinically defined best therapeutic 
stimulation parameters. They showed that therapeutic benefit was mainly achieved when 
the majority of VTA was in the area of the STN, mainly at its dorsal region, but outside the 
atlas defined boundaries of the nucleus. This, therefore, underlines the importance of the 
axons surrounding the STN for therapeutic efficacy. A similar observation was made by 
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Herzog et al. (2007) using electrodes implanted in the thalamus for the treatment of tremor. 
These authors observed a better effect on tremor using leads that were located closer to the 
STN rather than in the thalamus itself.  

2.1.2 Assessment of activity and connectivity 

Once in the target nucleus, the microelectrode can record both neuronal spikes and local 

field potentials (LFPs) originating in the same nucleus or in neighbouring neuronal groups. 

Such recordings have been used to characterize the physiological relationship between the 

target nuclei and its surroundings, as well as to provide evidence for disease-related 

neurophysiological abnormalities and their modulation by treatment (pharmacological 

and/or DBS). 

Microelectrode recordings from within the STN show relatively rich background and 

spontaneously firing single neurons. Interestingly, however, if spikes are removed 

(obtaining a ‘despiked’ trace), the analysis of the STN signal still provides for the possibility 

to identify a pattern of activity typical of the STN (Danish et al., 2008). Various authors have 

reported high firing rates of neuronal spikes in PD patients in both, the STN (Rodríguez-

Oroz et al., 2001; Sterio et al., 2002a), and the GPi (Hutchison et al., 1997; 2003), fitting well 

with the hypothesized hyperactivity of the indirect circuit of the basal ganglia in PD patients 

(Alexander and Crutcher, 1990; Wichmann and DeLong, 1996). An interesting finding has 

been recently reported by Novak et al. (2009) to provide a cue to understand why patients 

with unilateral STN DBS show bilateral benefit. These authors found that during high 

frequency STN DBS, there was an increase in multiunit spiking activity in the contralateral 

STN, an observation that provides also many questions to be answered in future studies. 

Apart from increased firing frequency, Levy et al. (2001; 2002) observed that neuronal spikes 

recorded from PD patients with tremor showed a prominent oscillatory pattern, which was 

substantially modified under dopaminergic activity. In the case of dystonia, however, the 

hypothesized low frequency firing rate of the GPi neurons has not always been found. 

While Vitek et al. (1999) reported firing rates lower than in PD in 3 patients with dystonia 

and one patient with hemiballismus, other authors have suggested that anesthesia played an 

important role in decreasing neuronal firing rate (Hutchison et al., 2003). The effect of 

anesthesia has not always been confirmed (Sanghera et al., 2003) and, according to Pralong 

et al. (2005), the lower firing rate of GPi neurons is independent of the type of anesthetic 

drug used.  

Tremor is usually treated with thalamic high frequency stimulation both in PD and in 
essential tremor (ET). To see if there were differences between the two disorders in regard to 
the spontaneous neuronal firing in thalamic neurons, Chen et al., (2010) analyzed the 
recordings from the ventral oral posterior and the ventral intermediate nuclei. These authors 
concluded that there were significant differences between the two disorders, with decreased 
ventral oral posterior firing frequency in ET and increased neuronal firing rates in the 
ventral intermediate nucleus in patients with PD. The authors speculated on the possible 
pathophysiological implications of their findings. 
Neuronal activity can be recorded also as LFPs, which have been confirmed to be time-
locked to spikes generated in neighbouring neurones by recording spike-triggered LFP 
averages (Kuhn et al., 2005a) or examining coherence with multiunit recordings (Weinberger 
et al., 2006). The analysis of the LFPs may help confirming that the electrode is between the 
dorsal and ventral borders of the STN (Miyagi et al., 2009). 
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The LFPs can be recorded from the macroelectrode leads left externalized after surgery prior 
to connection to the impulse generator and, therefore, they can be analyzed while patients 
perform cognitive or motor tasks (Brown and Williams, 2005). Three prevailing frequency 
bands have been identified in the LFPs recorded from the basal ganglia: <8, 8-30 and >60 
Hz. The band dominating the spectrum in the ‘off’ medication stage is the frequency in the 
alpha-beta range (8-25 Hz), while in the ‘on’ medication state baseline frequencies are higher 
(70-80 Hz). Brown et al. (2002) reported an increase in the amplitude of the frequency band 
of 25 Hz in the GPi of 2 PD patients that occurred prior to completion of a bimanual timing 
task. Because of a strong correlation between band amplitude changes and task duration, 
the authors suggested that modulation of this GPi frequency band could be involved in the 
prediction of movement timing. The band of 8-30 Hz predominates in the STN and GPi of 
PD patients withdrawn from their dopaminergic medication and is, therefore, considered 
antikinetic, likely contributing to the bradykinesia.  
The high frequency LFP oscillations can only be recorded with normal levels of 
dopaminergic activity, while the band of 8-30 Hz is suppressed by dopaminergic treatments, 
behaviourally relevant stimuli and voluntary movement. Therefore, it seems that the 
subthalamo-pallidal-thalamo-cortical circuit undergo an opposite modulation by 
dopaminergic activity that may be a fundamental feature of the pathophysiological 
mechanisms of bradykinesia in PD (Brown, 2003). Actually, a correlation has been reported 
between the efficacy of the pair of leads used for chronic stimulation and the energy of the 
beta and gamma frequency band detected initially with LFP recordings during movements 
(Ince et al., 2010; Zaidel et al., 2010).  
Foffani et al. (2003; 2005) described a distinct 300 Hz band in the STN that was more 
consistently seen during movement than at rest and more robust after apomorphine 
treatment. The authors suggested that such high frequency band represented a distinct 
mode of operation of the STN that could be a pathophysiological clue for PD. However the 
same group reported a similar high frequency band in the STN of two patients with 
diagnosis other than PD (one with dystonia and another with ET), hence suggesting that this 
finding may represent a broader feature of human STN function rather than being specific 
for PD (Danish et al., 2007). 
Various loops are likely to run between the cortex and the basal ganglia that can be 
segregated by the amplitude of the frequency band. Williams et al. (2002) examined 
coherence between neuronal oscillatory activity recorded from electrodes inserted into the 
STN (8 patients) or the GPi (2 patients) and the EEG activity. They found significant 
coherence in three major frequency bands: 2-10 Hz, 10-30 Hz and 70-85 Hz, which differed 
in their cortical topography. Cortical activity led by around 20 ms the basal ganglia activity 
in frequencies <30 Hz, while it was the other way around with frequencies in the 70-85 Hz 
band. 
An exaggerated synchronization in the band between 8 and 35 Hz (alpha/beta) might be 
implicated in the pathophysiology of Parkinson’s disease. The power in this band decreased 
with dopamine treatment, as shown by several authors in the analysis of STN-LFP 
oscillations (Giannicola et al., 2010). The same effect has been obtained with STN DBS (Kuhn 
et al., 2008; Bronte-Stewart et al., 2009; Giannicola et al., 2010) although the intensity of the 
effect has not been the same in all reports. The abnormally enhanced beta band oscillations 
are encountered in certain sites of the STN and some authors have found a correlation 
between localization of the electrode in sites of the STN where there was a predominating 
beta band and the efficacy of STN DBS in alleviating the patient’s symptoms (Ince et al., 
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2010; Zaidel et al., 2010). Interestingly, the activity was transiently suppressed between 200 
and 600 ms after transcranial magnetic stimuli (TMS), regardless of it being applied to the 
motor cortex or to the supplementary motor area (Gaynor et al., 2008). The effect was seen 
even with subthreshold intensity for elicitation of a motor evoked potential and, therefore, 
the authors dismissed the possibility for peripheral reafferentation as the cause of the 
transient interruption. This observation could underline the beneficial effects of repetitive 
TMS (rTMS) in patients with PD but the differences between L-Dopa, STN DBS and rTMS 
point out to the existence of other contributory mechanisms.   
The high frequency oscillatory activity (gamma band) is more prominently recorded in 

patients treated with L-Dopa, suggesting that this may be an important correlate of 

dopaminergic activity. Although initially considered to be related to the L-Dopa induced 

dyskinesias, an increase power in the gamma band was actually seen at movement onset in 

patients in the OFF medication state, to increase significantly in the ‘on’ medication state 

(Androulidakis et al., 2007). Therefore, there is evidence that the L-Dopa related increase in 

gamma band power is a sign of restoration of physiological pattern of oscillatory activity in 

Parkinson’s disease. An abnormally low ratio between beta and gamma activity has been found 

in the STN during tremor (Weinberger et al., 2009), suggesting that the balance between these 

two oscillatory frequency bands may be associated with the clinical manifestation of tremor. 
Kuhn et al. (2006a) examined event-related desynchronization (ERD) by recording LFPs 
from the STN region in 8 PD patients ‘off’ dopaminergic medication. Patients were 
instructed to either extend the wrist or to imagine performing the same task without any 
overt movement. They found that imagining a motor action was accompanied by ERD of 
oscillatory beta activity in the region of the STN that was similar in frequency, time course 
and degree to the ERD occurring during real execution of movement. The event-related 
synchronization (ERS) occurring after completion of movement was significantly smaller in 
movement imagination than in movement execution. According to these observations, 
neuronal activity in an area around the STN might have a role in trial-to-trial motor learning 
and in the re-establishment of postural set after movement. 
In dystonia, Chu Chen et al. (2006), using a multielectrode that combined 4 platinum-
tungsten fibers in a glass insulation with 4 circular contacts, reported the finding of a high 
power 3-12 Hz band in the analysis of LFP from the GPi, which has been considered 
relevant in the pathophysiology of dystonia (Silberstein et al., 2003; Liu et al., 2006). Again, 
computed spike-triggered averages demonstrated that the oscillations were actually 
generated by GPi neuronal spikes. Consistent with the expected basal ganglia functional 
activity, a significantly lower firing rate was found in the GPi neurons in dystonic patients 
than in PD patients (Tang et al., 2007). When recording from the STN of dystonic patients, 
Schrock et al. (2009) found a frequency of firing of 26.3 Hz (SD 13.6), which was lower than 
that in the PD patients (35.6 Hz, SD 15.2), but higher than published values for subjects 
without basal ganglia dysfunction. In Tourette's syndrome, Marceglia et al. (2010) reported 
the observation of bursting neuronal activity in the ventralis oralis (VO) complex of the 
thalamus, known to improve tics in patients with Tourette's syndrome. These bursts 
occurred at low frequencies (2-7 Hz) and in the alpha-band (8-13 Hz), while there was 
virtually absent beta band activity. Microelectrode recording was performed in the GPi by 
Zhuang et al. (2009) to explore the relationship between basal ganglia output and 
electromyographic activity during tics and demonstrate that the basal ganglia motor circuit 
is involved in tic movements. In 232 neurons, these authors found 45% of them that were 
related to either a burst of activity or a pause in ongoing tonic activity.  
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The correlation between LFP oscillatory changes and movements has been reported by 
many authors, supporting the hypothesis that the GPi and the STN are somehow involved 
in movement preparation in humans. An increase in high frequency activity (>60 Hz) has 
been found to occur before voluntary movement (Cassidy et al., 2002). Alegre et al. (2005) 
reported bilateral changes in the neuronal oscillatory activity of the STN during voluntary 
unilateral hand movements, suggesting that movement-related activity in the STN has a 
bilateral representation and probably reflects cortical input. Alegre et al. (2010) also 
reported, during movement observation, a bilateral beta reduction in subthalamic power, 
similar to that observed in the EEG, , and decreased cortico-STN coherence, suggesting that 
the basal ganglia might be engaged by the activity of the human mirror system. Likely, there 
are multiple circuits linking the motor cortex with the basal ganglia that are segregated by 
not only topography but also frequency (Lalo et al., 2008). 
Interestingly, Paradiso et al. (2003) reported the finding of pre-movement potentials 
recorded from the STN similar to those recorded from the scalp. These authors found a 
bilateral slow rising negative pre-motor potential beginning at a latency of more than 2 
seconds before onset of self-paced wrist extension movements. Further support for the 
implication of the cortico-basal ganglia-thalamocortical circuit in movement preparation has 
been brought recently by the same group. Purzner et al. (2007) reported a phase reversal of 
the pre-movement potential when simultaneously recorded the activity preceding self-
paced or externally cued movements with scalp electrodes and STN electrodes. The 
possibility that rhythms of neuronal oscillatory activity determine the participation of the 
basal ganglia on movement preparation, movement execution and post-movement recovery 
was pointed out by Foffani et al. (2005), while Marceglia et al. (2006) suggested that the key 
factor could be the interaction between rhythms generated in different neuronal circuits.  
There is some evidence for the human STN area to be involved in the processing or 
transmission of emotional information: Kuhn et al. (2005b) recorded LFPs through the STN 
electrode in 10 PD patients while viewing pleasant and unpleasant emotionally arousing 
and neutral pictures. They found a significant, unspecific, ERD in the alpha power (8 to 12 
Hz), starting at about 0.5 seconds after stimulus presentation, and a later ERD (at about 1 to 
2 seconds post-stimulus), that was larger in trials containing pleasant or unpleasant images 
than in those with neutral stimuli. These findings suggest some kind of link between the 
STN and limbic structures that could be a clue for understanding the pathophysiology 
underlying the mood changes observed in patients with PD and high frequency STN 
stimulation. The basal ganglia may be involved in the evaluation of changes in the 
environment and their significance, which could explain the behavioural impairment that 
can follow basal ganglia lesions or dysfunctions (Sauleau et al., 2009). 

2.1.3 Responses of nearby neuronal groups  

In search for an explanation of the effects of high frequency stimulation, investigators have 
used microelectrode recording of neuronal spikes and LFPs in response to local stimuli. 
Technical development has brought up the possibility of recording from one contact while 
stimulating by another at a few hundred microns distance only, allowing for the construct of 
a functional stereotactic mapping around the microelectrode. Dostrovsky et al. (2000) 
reported inhibition of the GPi neurons by high frequency stimulation through another 
electrode inserted in the same nucleus, between 250 and 600 microns apart. This was re-
examined in 2007 by Pralong et al., who reported opposite effects of high frequency 
stimulation (100 Hz) over neurones located in different parts of the GPi nucleus, with a 
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pattern of local inhibition and distant excitation. A similar study was done in STN neurons 
by Filali et al. (2004), who reported an inhibitory effect of stimulation applied through 
another electrode located in the same nucleus at a distance of about 600 microns. Welter et 
al. (2004) reported that stimulation at frequencies over 40 Hz decreased firing frequency and 
increased burst-like activity of STN neurons in patients with PD. Montgomery (2006) 
reported on microelectrode recordings in the posterior VO nucleus of the thalamus during 
high frequency GPi DBS in a patient with dystonia. Eighty-eight percent of neurons showed 
brief but highly consistent increased firing in the first 1ms following stimulation. This was 
followed by inhibition in about half of the neurons, which occurred at about 3.5 to 5 ms, and 
a post-inhibitory rebound of enhanced activity in 25% of neurons.  
The importance of stimulus intensity in determining effects on neuronal firing was 
demonstrated by Maurice et al. (2003) who reported that the firing rate of the SNr neurons 
increased with high intensity, and decreased with low intensity STN DBS. This observation 
suggests that the fibers connecting STN to SNr neurons may carry inhibitory or excitatory 
inputs depending on the firing frequency. Sterio et al. (2002b) demonstrated that the STN 
neurons were activated by stimuli applied to the GPi, with two different main effects: 
reduction of firing rate in neurons of the dorsal region of the STN, and facilitation in those of 
the ventral region of the STN. The latter had a behavior similar to that of the SNr neurons. 
The authors point out that this finding is just one example of the complexity of the basal 
ganglia loops, which overshadows the relatively simple and linear, although still useful, 
schematic connections predicted after the classical circuitry (Alexander and Crutcher, 1990; 
Wichmann and DeLong, 1996). 

2.1.4 Effects of disease and treatment on neuronal activity in the basal ganglia 

The possible association between characteristics of the neuronal firing in the STN and GPi 
and tremor, dyskinesias and other movement dysfunctions of PD patients has been studied 
by many authors in ‘off’ and ‘on’ medication state. The high frequency STN rhythm at about 
300 Hz described by Foffani et al. (2003) was dopamine-dependent. It was more robust and 
larger after apomorphine, suggesting that modulation of this high frequency band may be 
underlying beneficial therapeutic effects in PD. The authors suggested that an absent 300-Hz 
STN rhythm during movement could be a pathophysiological clue for PD. Priori et al. (2004) 
reported that the main effects of L-Dopa and apomorphine were an increase in the power of 
the low frequency bands (2-7 Hz), and a decrease in the power of low-beta activity (13-20 
Hz). Their findings were compatible with at least two STN neuronal oscillatory rhythms, 
separately modulated by antiparkinsonian medication: one at low frequencies and one in 
the beta range. Alonso-Frech et al. (2006) found basically the same results and suggested 
that the increase in the power of the 4-10 Hz frequency band could account for dopamine-
induced dyskinesias in PD patients. This has been also pointed out more recently by Lee et 
al. (2007) who observed that a decrease in neuronal firing rate in the GPi preceded the onset 
of dyskinesias induced by the administration of apomorphine. 
Kuhn et al. (2006b) calculated in 9 PD patients the STN LFP power over the frequencies of 
the most prominent spectral peak within the 8-35 Hz frequency band and of any peak in the 
60-90 Hz band. They observed a dopamine-related reduction in peak activity in the 8-35 Hz 
band, which was positively correlated with the contralateral hemibody improvement on 
motor aspects of the unified Parkinson’s disease rating scale (UPDRS) and with hemibody 
subscores of akinesia-rigidity, but not tremor. They also found a trend for negative 
correlations between peak 60-90 Hz LFP power and UPDRS hemibody score, suggesting 
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that positive correlations were relatively frequency specific. Peak amplitude or power of the 
frequency band may be not the only relevant aspect for the function of basal ganglia. 
A few authors have examined whether STN DBS have the same effects as dopamine on 
neuronal firing and LFP oscillations. This has been assessed immediately after switching off 
the stimulator, when patients still benefit from STN DBS but there is no ongoing stimulation 
(Foffani et al., 2003; Priori et al., 2006). In those studies, the effects were limited to an 
increase in the power of very low frequency bands (1-1.5 Hz), while no effects were seen in 
the low beta band (13-20 Hz), high beta band (20-35 Hz), gamma band (60-90 Hz) or in the 
300 Hz oscillations. However, Wingeier et al. (2006) were able to document in two patients a 
significant attenuation of the power of the beta band oscillatory activity recorded from the 
STN immediately after DBS, an effect that lasted for 15-25 s after DBS had been turned off. 
Therefore, more work is needed in this area to establish whether or not the effects induced 
by DBS on the neuronal oscillatory activity of the STN are the same or not as those induced 
by dopaminergic treatment.  
The mechanisms by which DBS is effective in the symptomatic treatment of PD remain not 
fully elucidated. A prevailing theory is that, instead of just blocking the activity, the 
electrical stimuli interfere with the output from the STN, in such a way that the pathological 
activity is jammed. Carlson et al. (2010) found results consistent with this hypothesis when 
recording from the STN during therapeutically effective stimulation. These authors saw that 
the spontaneous firing was not arrested but the firing patterns were altered, with a 
predominant shift toward random firing.  

2.1.5 Discussion 

Neurophysiological recordings during surgery are routine practice for most departments 
carrying out stereotactic procedures for treatment of Parkinson’s disease. Recording 
neuronal spikes helps in the assessment of the trajectory and, together with the magnetic 
resonance imaging (MRI) correlate of the electrode and the relevant anatomical structures, 
has provided cues for the assessment of the electrode position with most effective clinical 
results. Although landmarks have been defined and are helpful for orientation of the target, 
modification of the first tract is done in about 1/3 of patients in order to reach better 
outcomes for the specific individual. The relationship between movements of specific body 
parts and STN neuronal activity has led to recognize topographic specificity of neuronal 
groups within the STN, which may lead in the future to modification of the target to better 
suit specific purposes. One example is speech, a complex function that is not always 
improved and many times even worsens when the STN DBS has been implanted in the best 
location for improvement of motor function (Rodriguez-Oroz et al., 2005; Tornqvist et al., 
2005). At present, when morbidity is low and patients can be relatively assured of an 
outstanding clinical benefit, the challenge for specialized teams is to search for alternatives 
that lead to still larger benefit by improving as many functions as possible and avoiding 
unwanted effects. The neurophysiological mapping of neuronal groups in the STN and 
other target nuclei could help to better locate the leads in the somatosensory area of the 
STN, avoiding associative and limbic areas. 
Unfortunately, the findings on frequency of spike recordings, band power of LFPs, or even 
cortico-STN oscillations cannot have a direct correlation with the pathophysiological 
mechanisms of the disease, since the setup in which these features are recorded implies the 
presence of interfering factors such as anesthetics, surgery-related stress, and others that 
may influence brain activity in general. However, measurements of neuronal firing and 
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LFPs allow for understanding better the effects of medication and repetitive stimulation on 
the behaviour of local neuronal activity and oscillatory loops. Many authors agree in that 
frequency bands at about the beta range decrease with dopamine. However, it is not always 
clear whether repetitive STN DBS modifies the recordings in the same way, and further 
work is certainly needed in this regard. 

2.2 Intracranial recording through the implanted electrode 
2.2.1 Characteristics of the evoked potentials 

Intracranial electrodes can be used to record relatively large volume conduction action 
potentials from distant sources. The electrodes inserted in the thalamus, mainly with the 
purposes of arresting tremor in patients with PD or severe ET, are likely the most 
appropriate for recording the evoked potentials (EP) after somatosensory stimuli (). In 
general, the EPs recorded from DBS electrodes are polyphasic and of a latency 2 to 3 ms 
shorter than the cortical EPs (Figure 2). In most occasions, the subcortical EPs have been 
recorded from the thalamic Vim, where the electrodes are close to the source of activity. 
Klosterman et al. (2003) recorded the median nerve EPs from various sites along the 
pathway of the electrode. When recording from sites along the tract to the STN or the Vim, 
the EPs were of low amplitude with no high frequency oscillations (HFO). These 
characteristics did not change when the electrode entered the STN, while entering the Vim it 
 

 

Fig. 2. Somatosensory evoked potentials recorded from Erb’s point (Erb), cervical spinal 
cord (cervical), the nucleus ventral intermedius of the thalamus (thalamus) and the cortex to 
median nerve stimulation at the wrist. 
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was recognized by a sharp amplitude increase and the observation of HFOs. The latter were 
characterized by Hanajima et al. (2004a), who identified them with intrathalamic neuronal 
firing at intervals between 0.8 and 1.2 ms (a frequency of about 1000 Hz) and found the site 
of phase reversal at about the nucleus ventralis caudalis. The same authors (Hanajima et al., 
2004b) recorded from the thalamic electrode a large somatosensory EP with a mean latency 
of 17.9+/-1.7 ms, which had a phase reversal at the level of the inter-commissural line. 
Assessment of phase reversal with bipolar recordings from two electrode leads may be 
potentially useful intraoperatory to establish the optimal position of the contacts relative to 
the sensory pathways, contributing to the choice of contacts for chronic stimulation. Laser 
stimulation has been reported recently to induce also intrathalamic evoked potentials 
(Kobayashi et al., 2009; Valeriani et al., 2009). 
The small EPs recorded from the STN or along the tract are likely to be volume conduction 
from non-local generators, although Pesenti et al. (2003) proposed that the STN EPs can also 
be due to local field potentials elicited by muscle afferent inputs to the STN or to activity in 
thalamo-subthalamic projections. A few articles have been published on intracerebral 
recording from other nuclei than the thalamus. However, Kitagawa et al. (2007) recorded the 
somatosensory EPs from the thalamus and the subthalamic area, indicating that this could 
be a way to refine target localization. Balaz et al. (2008) recorded the P300 wave from the 
STN, suggesting that this nucleus is involved in cognitive executive functions.  

2.2.2 Efferent and afferent gating in subcortical structures 

Efferent or centrifugal gating is understood as the modulatory effect of movement on 
incoming sensory volleys (Grunewald et al., 1984; Cohen and Starr, 1987), while afferent or 
centripetal gating is understood as the competition between incoming afferent volleys to the 
brain (Schmidt et al., 1990; Nakajima et al., 2005). Both types of gating of EPs in humans 
have been documented to occur in part in subcortical structures by recording from the DBS 
electrodes. However, all authors agree in that a significantly larger effect is seen in scalp 
recordings than in subcortical recordings.   
Regarding efferent gating, Valeriani et al. (2001) recorded the subcortical EPs during 
voluntary movement of the stimulated foot and saw a significant reduction of amplitude in 
all DBS recordings and in cortical somatosensory EP components following the P30 
potential at the vertex but not at the contralateral temporal and ipsilateral parietal 
recordings. The authors speculated on the possibility that posterior tibial nerve stimulation 
generates two differently oriented dipoles in the contralateral hemisphere, one 
perpendicular to the mesial cortex and another radial to the convexity. Insola et al (2004) 
also reported that the movement-induced gating of somatosensory EPs occurs at a 
subcortical level by recording from the STN and GPi electrodes in 9 PD patients. The EPs 
recorded in those nuclei were triphasic (P1-N1-P2) and their latency ranged from 14 to 22 
ms. When they were recorded during voluntary flexo-extension movements of the 
stimulated wrist, the subcortical EPs significantly decreased in the same way as the scalp 
N20, P22 and N30 potentials, while the response recorded in the Erb’s point remained 
unchanged. Klosterman et al. (2002) investigated gating of intrathalamic somatosensory EPs 
in 10 PD patients during the surgical procedure. These authors applied median nerve 
stimuli to record EPs simultaneously with the intrathalamic and scalp electrodes in patients 
anesthetized with propofol. They compared conditions before and after application of the 
depolarising muscle blocker succinylcholine, i.e., with and without reafferent 
somatosensory inflow from background muscular tone and the repetitive muscle twitches 
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caused by the median nerve stimulation needed to induce the EPs. The authors found no 
changes in the sensory nerve action potentials recorded at the upper arm, but the primary 
cortical component (N20) was significantly increased under succinylcholine (+17%). This 
cortical release from gating was not paralleled, however, by an increased thalamic response; 
rather, the primary thalamic response (P16) showed a significant (-9%) amplitude reduction. 
Thus, the findings reported by these authors suggest a thalamo-cortical dissociation in the 
phenomenon of gating, when tested by causing muscle relaxation, with significantly more 
effect in the primary somatosensory cortex than in the thalamus.  
Regarding afferent gating, Hsieh et al. (1995) performed a very early study in 5 patients with 

PD and one with Meige’s syndrome undergoing thalamotomy. These authors examined the 

afferent gating induced by simultaneous stimulation of two fingers. Apart from 

intrathalamic recordings, these authors obtained direct recordings also from the sensory and 

motor cortices, and the cuneate nucleus. Electrical stimulation was applied to the II, III or V 

fingers individually, and also to pairs of either the II and III fingers or the II and V fingers 

simultaneously. The authors calculated the interaction between afferent volleys as the ratio 

of amplitude attenuation of the EP caused by the simultaneous stimulation to two fingers 

compared with the amplitude of the arithmetically summed EPs to the individual 

stimulation of each finger. The largest interaction was observed in the responses recorded in 

the scalp (P25 and P22), but a significant effect was also seen in the thalamic recordings. We 

have examined another form of afferent gating, i.e., the simultaneous activation of fibers by 

two different stimulus modalities: mechanical taps to the muscle and electrical stimulation 

to the digital nerves. Interactions between inputs of different sensory modality occur along 

the sensory pathway, including the thalamus. We investigated the interactions between 

mechanical taps and electrical nerve stimuli in 8 patients who had an implanted electrode 

for deep brain stimulation for symptomatic treatment of ET or PD (Costa et al., 2008). A 

hand-held electronic reflex hammer was used to deliver a mechanical tap to the skin 

overlying the first dorsal interosseous muscle, and trigger an ipsilateral digital median 

nerve electrical stimulus time-locked to the mechanical tap with a variable delay of 0 to 

50ms. There were significant time-dependent interactions between the two sensory volleys 

at subcortical level. Thalamic SEPs were decreased in amplitude at inter-stimulus intervals 

(ISIs) from 10 to 40ms with maximum effect at 20ms, with no changes in peripheral 

responses. Our results are in line with those reported in other forms of gating and indicate 

that gating among two different somatosensory afferent volleys occurs at various levels of 

the central nervous system, and although it is predominating in cortical circuits there is 

already a significant effect taking place at a subcortical level.  

2.2.3 Discussion 

Having electrodes implanted in the basal ganglia and particularly in thalamic nuclei called 

for investigating physiological mechanisms involving sensory events. Most of the research 

in this area has dealt with thalamic EPs. Although the Vim does not contain the second 

order neurons activated by somatosensory inputs, the EPs to median or tibial nerve 

stimulation show consistently reproducible HFOs thought to reflect neuronal activity in the 

nearby nucleus ventralis caudalis of the thalamus. A few authors have used the electrodes in 

the STN or GPi to record EPs. In most instances, the authors agree in the fact that the EPs 

recorded in these nuclei have the same characteristics as those recorded outside the 

thalamus and are probably volume-conducted from distant sources.  
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Many investigators have devoted their efforts to examine the phenomenon of gating at the 
thalamic level. All authors coincide in that the two main forms of gating reported in the EPs 
(afferent and efferent) can already be demonstrated at thalamic level. However, gating 
increases in more rostral structures, in such a way that the EPs recorded from scalp 
electrodes show more effect than those of the thalamus. The whole picture indicates that 
gating is a multilevel effect that begins at a point caudal to the thalamus and increases along 
the path up to the site of generation of the scalp EPs.  
Interestingly, while nerve stimulation causes well defined EPs in the Vim, we were unable 
to record such EPs to mechanical muscle taps. Only a slow shift of the baseline time-locked 
to the mechanical stimulus was apparent in some recordings, indicating that the afferent 
volley has reached a central nervous system structure where it generated an action potential 
that is volume conducted towards the electrode. A series of studies may be necessary to 
determine, for instance, whether or not direct electrical stimulation of muscle afferents does 
or does not generate Vim EPs. It would be interesting also to use other more natural forms 
of stimulation to assess their effects on thalamic neurons either by direct recording of EPs or 
by assessing the effects that such stimuli may induce in thalamic EPs generated by electrical 
stimuli. In the same line, research has not been done yet in other afferent pathways, such as 
visual or auditory. Challenges for future investigations using intrathalamic electrodes 
involve not only deepening in the mechanisms of gating but also in the role of the thalamus 
in mediating and processing the input from different sources of information. 

3. Stimulation 

3.1 Experimental procedures 
3.1.1 Effects due to activation of circuits and tracts 

Because patients are kept awake during most of the surgical time during implantation of 
electrodes for DBS, the immediate beneficial effects of electrical stimulation can be evaluated 
in situ by clinical neurological observations and tests. Nevertheless, Liu et al. (2005) have 
drawn the attention to the usefulness of monitoring the effects of DBS with surface 
electromyography from the affected muscles to assist electrode implantation and lesioning. 
According to the authors, there are several potential uses of intraoperative EMG monitoring. 
EMG can be used as the reference signal for other events, such as the oscillatory LFPs 
simultaneously recorded via the implanted electrodes, to quantify the effects of acute 
electrical stimulation on the motor symptoms and to detect unwanted muscle responses 
induced by direct stimulation of the motor tract.  
The effects of stimulation through the DBS electrode may be evaluated in a 
neurophysiological environment that is more convenient than the operating room if the 
electrodes are left available for a few days for further testing before implantation of the 
stimulator. It is understood that the electric field generated by the current delivered through 
the electrode spreads beyond the target nuclei and affects surrounding structures (McIntyre 
et al., 2004; Butson et al., 2007). According to the general principles of the effects of 
stimulation of the neuropil (Nowak and Bullier 1998; Ashby et al., 1999), electrical stimuli 
are more likely to activate axons than cell bodies, fibers near the cathode than those near the 
anode, and fiber tracts that run parallel rather than those that run perpendicular to the 
electrode. Indeed, the effects obtained with just a single stimulus at the weakest possible 
intensity are usually those due to activation of axons in long tracts located in the vicinity of 
the target nuclei. Ashby and Rothwell (2000) have summarized nicely the possibilities for 
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neurophysiological studies using deep brain electrodes. Two structures have been used for 
recording: the brain and the muscle.  

3.1.2 Effects on cortical activity 
The EEG activity is modulated by stimuli applied through the electrodes inserted in the STN 
(Ashby et al., 2001). Single stimuli elicited a negative potential with an onset latency of 
approximately 3 ms, followed by later potentials at 5 and 8 ms, which were usually largest 
over the frontal region in 9 out of 11 sides. Medium latency (18-25 ms) and long latency 
(longer than 50 ms) responses were also reported. Short latency EPs had short chronaxie and 
refractory period, implying that they arose from the activation of low threshold neural 
elements, possibly myelinated axons. They were maintained without blocking at stimulation 
frequencies as high as 100 Hz. Cortical responses likely due to direct stimulation of axons 
running close to the electrode were reported by Baker et al. (2002) with latencies ranging 
from 8 to 400 ms. Medium-latency EPs, with an average onset of 14 +/- 3 ms and peak at 23 
+/- 4 ms, were reported by MacKinnon et al. (2005) to low frequency STN stimulation (5-10 
Hz). These authors showed that the distribution of the EPs recorded by scalp electrodes to 
stimuli applied through the STN electrode was similar to that of the EPs elicited by median 
nerve stimuli. One likely axonal bundle that may generate the EEG potentials after electrical 
stimulation through the electrode inserted in the STN is the pallido-thalamic tract, which 
contains highly myelinated axons and traverses the dorsal aspect of the STN. These authors, 
did not find a positive correlation between the cathodal contact that produced the largest 
EEG response and the one that produced the optimal clinical benefit, suggesting that the 
neural elements mediating the medium-latency EP are different from those responsible for 
clinical effects. However, Kuriakose et al. (2010) have recently suggested that one of the 
mechanisms by which the STN DBS causes a beneficial effect is through cortical activation. 
These authors examined the time course of cortical activation after controlled stimulation at 
the STN and suggested that cortical activation could be due to short-latency antidromic 
stimulation of cortico-subthalamic projections and the medium-latency facilitatory basal 
ganglia-thalamo-cortical interactions. No significant changes were observed in event related 
potentials in regard to amplitude in a standard oddball auditory paradigm (Kovacs et al., 
2008), in spite of the improvement in the accuracy of the task. Interestingly, the P300 was 
recorded from the STN or its vicinity in 8 out of 14 leads examined by Balaz et al. (2008). 
A few other observations of the effects of DBS have been reported in circuits involving the 
cortex. Fraix et al. (2008) reported a tendency to normalization of the contralateral silent period 
to TMS and short-interval intracortical facilitation during STN DBS. Herzog et al. (2008) 
reported improvement of integration of sensory inputs from the bladder with STN DBS ‘on’. 
Using positron emission computed tomography (PET) they showed that urinary bladder 
filling led to an increased regional cerebral blood flow (rCBF) in the periaqueductal grey, the 
posterior thalamus, the insular cortex as well as in the right frontal cortex and the cerebellum 
bilaterally. These authors suggest that STN DBS facilitates the discrimination of different 
bodily states by supporting sensory perception and the underlying neural mechanisms. 
Neuroimaging techniques have given some cues for understanding the relationship between 
basal ganglia nuclei and regions of the cortex using functional MRI (fMRI) (Jech et al., 2001; 
Perlmutter et al., 2002; Karimi et al., 2008) or rCBF with PET (Payoux et al., 2004, Grafton et al., 
2006; Thobois et al., 2002; Strafella et al., 2003; Vafaee et al., 2004). In these studies, high 
frequency stimulation decreased the abnormal hyperactivity of the motor cortex at rest and 
increased activity in premotor areas during movement in PD patients. Measuring rCBF, 
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Payoux et al. (2009) showed opposite effects of GPi and GPe over the ipsilateral primary 
sensorimotor cortex. Using PET, Arai et al. (2008) observed effects of unilateral thalamic 
stimulation on the motor cortex of the side stimulated and on the GPi of the contralateral side, 
which could underline the observation of bilateral improvement after unilateral stimulation.  

3.1.3 Muscle responses 

Ashby et al. (1998; 1999) were the first to report the effects of controlled external stimuli 
using the artifact of the implanted stimulator, picked up by cutaneous electrodes, as the 
trigger of the recording device a few months after the stimulator had been implanted. Single 
stimuli modulated voluntary EMG activity of contralateral muscles, inducing a short-latency 
facilitation, followed by a longer latency inhibition. The authors hypothesized that 
facilitation was due to activation of descending axons in the corticospinal tract of the 
capsula interna, which lies at a mean distance of about 4.5 mm in the mediolateral plane and 
2 mm in the antero-posterior plane from the tip of the electrode implanted in the STN 
(Schaltenbrand and Wahren, 1977; Voges et al., 2002; Molinuevo et al., 2003). Ashby et al. 
(1999) reported also an inhibitory effect of DBS on the ongoing voluntary activity, revealed 
by a decrease (‘dip’) in the level of EMG activity. This silent period (SP) was thought to arise 
from the activation of large-diameter inhibitory thalamo-cortical fibres running parallel to 
the electrode. Hanajima et al., (2004c) observed that 3 ms after STN stimulation, the Motor 
Evoked Potential (MEP) amplitudes produced by TMS-induced anterior-posterior directed 
currents were significantly larger than control responses, while the responses to lateral-
medial currents were unchanged. Similar facilitation also occurred after GPi stimulation, but 
not with thalamic stimulation. Therefore, single pulse STN DBS had a short latency 
facilitatory effect on motor cortex, which may be due to antidromic excitation of the cortico-
STN fibers or transmission through the basal ganglia-thalamocortical pathway. 
Kuhn et al. (2004) compared motor effects of activation of corticospinal neurons using either 
subcortical (direct electrical stimulation through the DBS electrode) or cortical (indirect 
stimulation of cortical neurons by TMS) stimuli. The study was done in 8 dystonic patients 
that underwent GPi DBS, using again the artifact of the stimuli issued by the implanted 
electrodes as triggers for the recording. Single pulse DBS activated a fast conducting 
monosynaptic pathway to alpha motoneurones. The contralateral MEPs had a significantly 
shorter onset latency and shorter duration compared to the responses induced by TMS. 
They reported the observation of a contralateral SP of short duration and no ipsilateral 
facilitatory or inhibitory motor effects. These results suggest that DBS of the GPi activates 
the corticospinal neurons at the level of the internal capsule to account for the MEP, and the 
thalamic fasciculus or cerebellothalamic fibers to account for the SP (see also Strafella et al., 
1997 and Ashby et al., 1999). The absence of ipsilateral inhibition is consistent with a 
transcallosal pathway for the ipsilateral SP. In contrast, our group (Compta et al., 2006), who 
used the electrode implanted in the STN, reported ipsilateral SP with two short duration 
phases. This challenged the possibility that the ipsilateral SP is mediated through the corpus 
callosum since the stimuli were applied caudal to the transcallosal fibers. However, the 
possibility still exists that some parts of the ipsilateral SP are indeed mediated through 
transcallosal collaterals activated antidromically.  
We found a long duration contralateral SP that had the peculiarity of having a burst separating 
it into two parts (Figure 3). The characteristics of the contralateral SP were explained on the 
bases of collision between the antidromic impulses generated through the DBS electrode and 
the descending volleys related to voluntary activity. Collision would have freed some neurons 
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from antidromic invasion of inhibitory collaterals and precisely the firing of these neurons 
with new premotor inputs would account for the burst of EMG activity breaking through the 
SP. Methodological differences could account for the different results reported by Kuhn et al. 
(2004) and our group (Compta et al., 2006). Kuhn et al. (2004) used electrodes inserted in the 
GPi, which is slightly more rostral, anterior and lateral than the STN, and could activate a 
different bunch of corticospinal axons than the electrode inserted in the STN. The same 
differences apply to the volley reaching the axons responsible for inhibitory effects via the 
thalamus. Whereas Compta et al. (2006) studied patients with Parkinson’s disease, Kuhn et al. 
(2004) studied patients with generalized dystonia who are known to have a disorder of 
inhibition and an abnormally shorter SP (Ridding et al., 1995; Chen et al., 1997). Finally, Kuhn 
et al. (2004) applied the stimuli at a frequency of 5 Hz from the implanted generators, which 
allows for a relatively short time for analysis between two consecutive stimuli.  
 

 

Fig. 3. Contralateral and ipsilateral silent periods induced by a single unilateral 
suprathreshold stimulus through the electrode inserted in the STN 
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Obviously, MEPs are not only obtained in hand muscles but in all muscles receiving 
innervation through fibers running in the capsula interna. This includes the cortico-bulbar 
tract. Fibers of the cortico-bulbar tract run in the genu of the capsula interna and are readily 
accessible to stimuli applied through the DBS electrode. Our knowledge of the distribution 
of cortical innervation to muscles innervated by cranial nerves is less accurate than for limb 
muscles because of various drawbacks of cortical stimulation such as the generation of large 
artefacts and the unavoidable elicitation of direct and reflex responses to activation of 
cranial nerves in the posterior fossa. We studied responses of cranial nerve innervated 
muscles to single STN DBS in 14 PD patients (Costa et al., 2007). The stimulus intensity used 
was 130% the resting threshold for an MEP in the thenar muscles. The inhibitory effects 
were also examined during sustained voluntary contraction of about 20% of maximum. As 
expected, unilateral stimuli induced strictly contralateral responses in thenar muscles at a 
mean latency of 20.1±2.0 ms. The MEPs obtained in the trapezius, deltoid and biceps 
muscles were also present in only the contralateral side, but the same stimulus induced 
always (i.e., a probability of 100%) bilateral MEPs in orbicularis oculi, orbicularis oris, 
masseter and sternocleidomastoid. The mean MEP latency ranged from 6.0 to 9.1 ms. The 
MEP latencies were significantly longer in facial nerve innervated muscles than in masseter 
and sternocleidomastoid muscles (Figure 4).  
 

 

Fig. 4. Motor evoked potentials of cranial nerve innervated muscles to unilateral STN DBS 
electrode stimulation. Responses in the contralateral muscles are on the left side column 
while those of the ipsilateral muscles are on the right side column. OOc= Orbicularis oculi; 
OOr=Orbicularis oris; MAS= Maseter; SCM= sternocleidomastoid. Note the small short 
latency potential in the ipsilateral orbicularis oculi (inclined arrow) 
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Well defined SPs to single unilateral STN stimuli were present in both sides in the 
orbicularis oculi and masseter muscles in all patients, probably due to transient alpha 
motoneuron refractoriness after synchronized firing, blocking of the arrival of excitatory 
inputs to the motoneurons (Compta et al., 2006), and activation of thalamocortical inhibitory 
projections (Strafella et al., 1997). The amplitude of the MEP elicited during contraction was 
higher, and the duration of the SP was significantly longer, in the contralateral with respect 
to the ipsilateral sides. However, duration of the SP had no significant correlation with 
amplitude of the MEP. 

3.1.4 Discussion 

It seems obvious that chronic high frequency DBS causes its therapeutic effects by changing 
neuronal excitability in the area covered by the electrical field. Therefore, several authors 
have studied the effect in neurons in the vicinity. However, the mechanism of action of high 
frequency DBS is far from being clarified. Instead, the analysis of the effects of stimulation 
through one electrode lead and recording with a nearby electrode has brought new 
evidences for interconnections between nuclei of the basal ganglia. As expected, the 
observations suggest a more complex circuitry than a simple chain of nuclei with excitatory 
and inhibitory connections. In at least some connections, the frequency of inputs determines 
the sign of the effect while in others the exact site of the nucleus receiving the inputs is what 
makes a difference. This is likely reflecting that we are beginning to establish the temporal 
and spatial characteristics of the connectivity between basal ganglia nuclei and from the 
basal ganglia to output structures.  
STN DBS induces consistent changes in cortical metabolism that can be summarized as a 

decrease of motor cortical activity at rest and an increase in cortical activity of the 

supplementary motor area and premotor cortex during active movements. However, the 

changes in metabolism do not necessarily show the function of the neurons undergoing 

such change, because they may involve both facilitatory and inhibitory neurons. 

Unfortunately, a good correlation between neuroimaging studies reflecting changes in 

metabolism and neurophysiology studies showing changes in cortical excitability has not 

yet been done.   

There are effects of STN DBS on tracts with long projections that run close to the position of 

the electrode. We do not know if activation of those tracts contributes somehow to the 

clinical effects of DBS. Corticonuclear and corticospinal fiber tracts can be activated at 

relatively low intensity through the electrodes inserted in the STN or in the GPi. It is 

noteworthy that the effects on the motor tract of stimuli applied through the STN electrode 

seem not to be the same as those induced by stimuli applied through the GPi electrode 

(Kuhn et al., 2004; Compta et al., 2006). If these differences hold true in future works, they 

may be a hint to further understand the differential mechanisms of action of electrodes 

inserted in the two nuclei.  

As with the MEPs elicited in hand muscles, the most likely physiological mechanism 

accounting for the generation of the MEPs in cranial nerve innervated muscles is activation 

of axons of the corticonuclear tracts within the internal capsule. However, in the case of the 

facial nucleus, Morecraft et al. (2001) have reported up to 5 projections from motor cortical 

areas to subsectors of the facial nucleus. Therefore, the MEPs obtained in cranial nerve 

innervated muscles by single pulse STN DBS could result from activation of just one of the 

many descending corticonuclear pathways, the function of which is largely unknown. 
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3.2 Effects of DBS on neurophysiological tests of clinical use. 

Several studies have demonstrated that high frequency DBS improves the symptoms of PD 
patients. These effects have been documented and quantified using clinical scales. For 
instance, a clinical significant effect of the treatment is usually considered when there is 
more than 30% improvement in the UPDRS score. However, researchers have been 
interested in knowing how DBS modifies certain clinical neurophysiological abnormalities 
that may not have a direct clinical correlate but support in part pathophysiological 
mechanisms underlying parkinsonian symptoms and signs (Hallett, 1998; Rossini et al., 
1998; Deecke, 2001; Valls-Solé and Valldeoriola, 2002). This has a double advantage: One is 
the quantitation and documentation of improvement through objective scales; the other is 
the determination of the neurophysiological abnormalities that are more closely related to 
clinical changes. Usually, the clinical and neurophysiological effects of DBS are compared 
with those of dopaminergic medication in a quadruple comparison: ‘on’ vs. ‘off’ medication 
and ‘on’ vs. ‘off’ stimulation.  

3.2.1 Cortical physiology 

One of the first observations on the neurophysiological effects of DBS was the change in 

contingent negative variation reported by Gerschlager et al. (1999) with bilateral STN DBS in 

PD patients. The contingent negative variation is a slow negative potential shift reflecting 

cognitive processes associated with the preparation and/or anticipation of a response that 

has been found to be reduced over the frontal and frontocentral regions in PD (Deecke, 

2001). The increase in amplitude of the contingent negative variation with STN DBS ‘on’ 

(Gerschlager et al., 1999) suggests improvement of the impaired cortical functioning in PD, 

particularly within the frontal and premotor areas.  

In a series of works on ERD preceding movement and ERS at movement termination, Devos 

et al. (2003, 2004, 2006) showed that STN DBS had also effects on the abnormally reduced 

and delayed cortical oscillatory activity patterns of PD patients, which have been considered 

a correlate of bradykinesia (Magnani et al., 1998; Brown and Marsden, 1999). The effects 

shown by Devos et al. with STN DBS (2003, 2004) were similar to those of an acute 

administration of L-Dopa. Interestingly, when recording ERD and ERS from the electrode 

inserted in the STN, the contacts that produced the best clinical results were also those 

showing the earliest mu and beta ERD and the strongest beta and gamma ERS.   

The effects of STN or GPi DBS on motor cortex excitability have been studied by many 

authors. Chen et al. (2001) reported the effects of GPi DBS on several brain circuits that may 

exhibit functional abnormalities when examined with neurophysiological methods in PD 

patients. These included motor threshold, MEP recruitment curve, SP duration, short 

interval intracortical inhibition (SICI), long interval intracortical inhibition, and intracortical 

facilitation. The stimulators were set at the optimal parameters, at half the optimal stimulus 

intensity or switched off, in random order, while patients remained in their usual 

medication condition. No significant differences were found in most tests among the three 

conditions, the only exception being a reduction in the SP duration. Similar absence of 

modification of SICI was reported by Kuhn et al. (2003) during GPi DBS in patients with 

dystonia. However, switching off GPi stimulation led to an increase in motor threshold, and 

reduced the size of contralateral responses in the stimulus-response curves in relaxed 

muscles. On top of that, the authors reported no STN DBS related changes in spinal 

excitability, assessed by the H-reflex in the forearm muscles.   
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A different result was reported by Cunic et al. (2002) who examined the effects of STN DBS 
on cortical excitability in 9 PD patients, using the same protocol that Chen et al. (2001) and 
Kuhn et al. (2003) used for the GPi. These authors found that resting SICI, studied with 
paired-pulse TMS at the interstimulus interval of 2 ms, was restored to normal levels in the 
‘on’ condition. Opposite to the results reported with GPi DBS, STN DBS did not induce 
changes in SP duration, motor threshold or MEP recruitment curve. Thus, in parallel to the 
differences found when recording hand muscle responses (Kuhn et al., 2004; Compta et al., 
2006), it seems that the effects of STN DBS are different from those of the GPi DBS on motor 
cortex excitability changes accessible to neurophysiological testing with TMS. The effects of 
STN DBS on resting SICI were confirmed by Pierantozzi et al. (2002), who found an increase 
in SICI at intervals of 2 ms with STN and 2 and 3 ms with GPi. The improvement was similar 
to the one provided by apomorphine infusion. The authors suggest that improvement of SICI 
may be related to a recovery in modulation of thalamo-cortical motor pathway.  

3.2.2 Subcortical circuits 

Tisch et al. (2006a) measured changes in the excitability of the blink reflex after GPi DBS in 
10 patients with dystonia. The abnormally enhanced excitability recovery after a 
conditioning stimulus (Kimura, 1973) was found to decrease progressively at intervals of 1, 
3, and 6 months after surgery, suggesting that GPi DBS results in functional reorganization 
of the nervous system and a long-term increase in brainstem inhibition. Another 
dysfunction seen in the recording of the blink reflexes in PD patients is reduced prepulse 
inhibition (Schicatano et al., 2000; Valls-Solé et al., 2004). The pathophysiology of this 
phenomenon is not clarified but the abnormalities observed in PD may be due to a 
dysfunction in the connections between the basal ganglia and the brainstem nuclei, 
particularly the PPN (Pahapill and Lozano, 2000). We investigated the prepulse effects of 
single electrical STN DBS on the blink reflex induced in orbicularis oculi muscle by 
supraorbital electrical nerve stimulation in 7 PD patients (Costa et al., 2006). Five of them 
had an abnormally reduced prepulse inhibition to auditory and somatosensory stimuli. In 
all 7 patients, stimuli applied through the STN electrodes induced significant inhibition of 
the R2 at inter-stimuli intervals between 10 and 30 ms, with a mean percentage inhibition of 
92% at 20 ms. Therefore, dysfunction of auditory and somatosensory prepulses in PD 
patients cannot be due to the machinery activated by DBS. We proposed that either the 
abnormal reduction in prepulse inhibition lies in a point of the circuit before reaching the 
structures activated by DBS, or STN DBS causes the prepulse by a different circuit than 
auditory and somatosensory stimuli.   
The effects of DBS on spinal cord excitability have been reported for propriospinal circuits in 
the forearm (Tisch et al., 2006b) and in the leg (Potter et al., 2004). Tisch et al. (2006) reported 
a progressive improvement of the reciprocal inhibitory effect of a radial nerve stimulus on 
the median nerve H reflex, at 1,3, and 6 months of GPi DBS in patients with dystonia, and 
suggested that DBS causes functional reorganization of the nervous system that includes the 
spinal machinery. Potter et al. (2004) reported an increase of autogenic inhibition of the 
soleus H reflex, a propriospinal inhibitory phenomenon that has been found to be abnormal 
in PD (Delwaide et al., 1991). The authors measured the soleus H-reflex alone or conditioned 
by previous gastrocnemius nerve stimulation at ISIs of 2 to 10 ms in 10 PD patients. STN 
DBS induced an increase in the inhibitory effect of the conditioning stimulus that was 
significantly correlated with the clinical improvement of gait and posture. In a more recent 
work, the same group (Tisch et al., 2007) reported the absence of long-term potentiation-like 
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effect in patients with dystonia and GPi DBS. This has been considered a sign of abnormal 
plasticity in patients with dystonia (Quartarone et al., 2003). Therefore, this negative result 
could be reflecting the mechanism of action of pallidal DBS in dystonia.    
Activity in descending tracts facilitates the soleus H reflex but such facilitation is abnormally 

decreased in patients with PD. This has been shown for auditory stimuli (Delwaide et al., 

1993) and for TMS (Valls-Sole and Valldeoriola, 2002). Potter-Nerger et al. (2008) reported an 

improvement of the descending modulation of the H reflex by continuous high frequency 

STN DBS. Using single pulse STN DBS, we found in 11 PD patients that it modulates the 

amplitude of the soleus H reflex and therefore the net influence of the various mechanisms 

determining the excitability of the spinal alpha-motoneuron pool (Costa et al., 2011). 

Furthermore, the modulation of the H reflex was different according to the site of 

stimulation (ipsilateral vs. contralateral). In the case of contralateral single pulse STN DBS, 

the modulation of the soleus H reflex is distributed in an early and late facilitation phases, 

while in the case of ipsilateral single pulse STN DBS, there is a single early facilitation phase. 

Whether the modulation of the H reflex by STN DBS is the consequence of direct or indirect 

effects on the reticulospinal motor system is presently unknown. 

The work of Tisch et al. and Potter et al. are just illustrative studies of one of the many 

positive effects reported during continuous high frequency STN DBS in the various 

abnormalities described in patients with PD, dystonia or ET (Sailer et al., 2007 for afferent 

inhibition; Potter et al., 2008 for audiospinal reactions; Yugeta et al., 2010, for the initiation 

and inhibition of saccades; Kronenbuerger et al., 2010 for eyeblink conditioning).  

3.2.3 Discussion 

In general terms, DBS causes changes in neurophysiological tests of clinical use that consist 

in a tendency to normalization, although in many occasions differences remain between 

patients with DBS ’on’ and control subjects. This is consistent with clinical observations and 

points to a good correlate of some neurophysiological tests. This is particularly true for 

those tests related to planning and execution of voluntary movements such as the ERD or 

the cognitive negative variation. Changes in these tests demonstrate the influence of basal 

ganglia on cortical reactivity. 

Less straightforward are the results of the assessment of motor cortical excitability at rest or 

during tonic voluntary contraction. Although there is no complete agreement among all 

authors, changes in SICI and in the SP duration seem not to result from activation of the 

same structure since most studies show that when there is reduction in SICI there is no 

effect on SP duration and viceversa. Interestingly, GPi and STN seem to give different 

results, reinforcing the possibility to identify distinctive neurophysiological outcome from 

the two nuclei.  

The effects of DBS on subcortical circuits, including the brainstem and spinal levels, indicate 
a tendency to normalization of the results of neurophysiological tests. One of the subcortical 
circuits of interest in PD is the one responsible for prepulse inhibition (Fendt et al., 2001). 
The abnormally reduced prepulse inhibition in PD patients (Schicatano et al., 2000; Valls-
Solé et al., 2004) reflects in part disturbed sensorimotor integration, but the normality of the 
effects when DBS is used as prepulse indicate that the defect does not lie ahead of the 
structures activated by the stimulus. We cannot assume that the circuit of prepulse 
inhibition is the same with DBS and with auditory or somatosensory stimuli. Actually, the 
STN is not part of the circuit of the prepulse. However, fibers connecting the GPi and the 
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PPN run close to the STN (Swerdlow et al., 2001) and might have been activated by the 
stimulus through the STN electrode. If this was the case, two explanations should be 
considered: One is that the dysfunction responsible for the loss of prepulse inhibition by 
acoustic and somatosensory inputs lies in circuits rostral to the PPN. One such possibility is 
the nucleus reticularis pontis caudalis, which receives inputs from the acoustic and 
somatosensory stimuli, and has reciprocal connections to the PPN. Another is that STN DBS 
induces its effects at a point beyond the PPN in the prepulse circuit. In favour of the first 
hypothesis is the fact that PD patients have an abnormal startle reaction due to dysfunction 
in nuclei of the reticular formation. In favour of the second hypothesis is the fact that STN 
DBS is known to cause inhibitory effects by way of activating afferents to the thalamic 
nuclei. Only further work in the area may help in answering the questions that remain 
unsolved by the findings reported so far.   

4. Conclusion and future perspectives 

The outstanding clinical neurophysiological investigation that is currently ongoing makes 
probably superfluous the task of guessing what can be expected in future years in this field. 
Nevertheless, the rapid growing understanding of both, the physiology and 
pathophysiology mechanisms of the different subcortical-cortical circuits, as well as the 
underlying clinical neurophysiological mechanisms of DBS, points to the possibility in the 
near future to: (1) Change the paradigm of DBS to another one were patients are treated 
with electrodes placed simultaneous in different nuclei (e.g. STN and PPN); (2) Allow for 
the simultaneous assessment of neuronal activity through recording of LFPs from DBS 
electrode leads and the consequent change in DBS stimulation parameters delivered by 
other DBS electrode leads, in a kind of real time individualised DBS therapy; (3) Begin to 
explore the possibility of improving non-motor symptoms through identification of new 
targets and stimulation parameters. 
Many more studies than those reported here dealing with the effects of DBS have been 
published, bringing small or large pieces of information to increase our understanding of 
how the basal ganglia participate in the very many tasks that they are assigned. In this 
review, we attempted to focus on neurophysiological aspects of DBS not necessarily 
correlated with therapeutic effects. Understanding the physiological mechanisms 
accounting for some of the events seen with DBS is a growing field in which relevant 
contributions appear often in the literature and some of them might have done so while this 
chapter was in the review or publication processes. We hope, however, that this review 
reflects the state of our knowledge at the beginning of a new era in neurophysiology: that of 
direct recording and stimulation from deep brain electrodes. We hope also that it stimulates 
research in the field, the only way to eventually understand at least partially the function of 
the basal ganglia and subcortical motor circuits.   
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