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1. Introduction

The purpose of the neuromagnetic inverse problem is to reconstruct primary neural current

from measured MEG data. It is known that this inverse problem is ill-posed: uniqueness

of the solution to the inverse problem is not guaranteed without a priori assumptions on

the current source (Fokas et al. (2004)), and, even when using the source model that can be

uniquely reconstructed, the obtained solution changes very sensitively depending on the

noise contained in MEG data. Thus, employment of a stable algorithm is highly required

in order that MEG becomes a non-invasive brain monitoring tool with not only high temporal

resolution but also high spatial resolution.

Basically, conventional methods are categorized into two groups: parametric approaches and

imaging approaches. See the detailed list of references in Baillet et al. (2001). The former

methods assume that the current source can be represented by a relatively small number of

equivalent current dipoles (ECDs). This source model is shown to be uniquely reconstructed

from radial MEG data, except the radial component of the dipole moment, when the head is

assumed to consist of concentric spheres. The usual algorithm for this source model is the

non-linear least-squares method that minimizes the squared error of data and the forward

solution. An advantage of this algorithm is that the parametric description allows us the

accurate estimation of the center position of the activated region. However, the problems of

this algorithm are: 1) it requires an initial solution, 2) it requires an iterative computing of

forward solution, 3) it is often trapped by the local minimum of the cost function, which gives

a solution far from the true one, 4) estimation of the number of ECDs is difficult, and 5) spatial

extent of the source is not considered.

The second methods, imaging approaches, assume that there exist current dipoles at the nodes

of artificial meshes on the cerebral surface, and solve a system of linear equations for the

dipole moments at the fixed positions. An advantage of this method is that it can describe the

spatial distribution of the neural current. However, the problems of this algorithm are: 1) the

solution is not unique, 2) adding a regularization term often gives a unique but over-smoothed

solution, 3) choice of the regularization parameters strongly affects the solution.

Recently, a method with the multipolar representation of the source has been developed that
incorporates some of the advantages of the above two methods, and has attracted considerable

attention (Irimia et al. (2009); Jerbi et al. (2002; 2004); Nara (2008a); Nolte et al. (1997; 2000)).

In this model, instead of expressing the current source by an equivalent current dipole,
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an equivalent dipole and quadrupole (Jerbi et al. (2002; 2004)) or an equivalent dipole and

octopole (Nolte et al. (1997; 2000)) are used where the quadrupole or octopole is determined

depending on the spatial extent of the support of the current source. Jerbi et al. (2004) showed

that the centroid of the spatially distributed source, which they called a patch source, can
be estimated more accurately using the dipole and quadrupole model than using the dipole

model by means of the nonlinear least squares method. We considered a two-dimensional

(2D) problem using a complex analysis framework and proposed an explicit method to

reconstruct the dipole and quadrupole parameters directly from the boundary measurements

of the meromorphic function (Nara (2008a)). In Nara (2008b), we proposed an explicit method

for 3D case when the dipoles were distributed in a plane parallel to the xy-plane.

The aim of this chapter is to describe explicit methods for the equivalent current dipole

model and the equivalent current dipole-quadrupole model in Nara et al. (2007), Nara (2008a),

and Nara (2008b) and compare them using numerical simulations. Here, the term ‘explicit’

means that we have an analytic and explicit form of the solution to the inverse problem.

As a consequence, the explicit method for the ECD model can resolve the problems 1)-4)

in the parametric approach with the conventional, non-linear least-squares method listed

above. That is, without an initial solution and iterative computation of forward solution,

the algorithm can reconstruct the ECD parameters. The number of the ECDs can be also

estimated. With the explicit reconstruction formula, the sensitivity analysis can be conducted

in which the estimation error is evaluated with the noise level. From a practical viewpoint, the

solution obtained by the explicit method can be used as a good initial solution close to the true

one for the iterative non-linear squares methods. Moreover, in order to resolve the problem

5) in the parametric approach, we show an explicit method for the dipole-quadrupole source

model.

The rest of this chapter is organized as follows. In section 2, we introduce the equivalent

current dipole and quadrupole source model, and show how it expresses the spatial extent

of the current source. In section 3, an explicit method is shown: subsection 3.1 describes an

algorithm for the equivalent current dipole model, whereas subsection 3.2 explains a method

for the equivalent current dipole-quadrupole source model. In section 4, both the algorithms

are compared with numerical simulations.

2. Problem setting

In this chapter, we explain our explicit algorithm using the spherical head model. Let

Ω1, Ω2, Ω3 and Ω4 be concentric balls centered at the origin in 3D space, where Ωi ⊂ Ωi+1 for

i = 1, 2, 3. Here, Ω1, Ω2/Ω1, and Ω3/Ω2, represent the brain, skull, and scalp, respectively.

Ω3 represents the head. We assume that the radial component of the magnetic field is

measured on the sphere Γ = ∂Ω4 with the radius of R. Although we use this simple head

model as well as the spherical sensor surface, the method can be extended to a more realistic

case when the head is modeled by a piecewise homogeneous layered domain and the sensors

are set on an arbitrarily shaped surface (Nara et al. (2007)).

Let us assume that the neural current J p is supported on several domains Dk(⊂ Ω1) for

k = 1, 2, · · · , N. The ‘center’ position of Dk is denoted by rk = (xk, yk, zk)
T; this is the main

parameter to be reconstructed. We express this source equivalently by the current dipoles and
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An Explicit Method for Inverse Reconstruction of Equivalent Current Dipoles and Quadrupoles 3

quadrupoles:

Jp =
N

∑
k=1

pkδ(r − rk) +
N

∑
k=1

Qk∇δ(r − rk), (1)

where

pk ≡
∫

Dk

J p(r
′)dv′

is the equivalent current dipole for the source in Dk, and

Qk ≡
∫

Dk

Jp(r
′)(r′ − rk)dv′ =

⎛

⎝

qxx,k qxy,k qxz,k

qyx,k qyy,k qyz,k

qzx,k qzy,k qzz,k

⎞

⎠

is the equivalent current quadrupole for the source in Dk. Note here that pk does not depend

on the size of Dk, while Qk depends on the spatial extent of Jp around rk in Dk. Qk is a 3 × 3

tensor of order 2 and is called the quadrupole moment tensor.

In this chapter, we assume that Qk are of the form

⎛

⎝

qxx,k qxy,k 0

qyx,k qyy,k 0

0 0 0

⎞

⎠ .

In other words, the quadrupoles are parallel to the xy-plane. Extention to general case where

all the components of Qk are not zero is an important aspect of further studies.

The validity of the source model (1) is confirmed as follows. Substituting Eq. (1) into the

expression of radial MEG given by the Biot–Savart law

r · B(r) =
µ0

4π

∫

Ω1

(

∇′ 1

|r − r′|
× r

)

· Jp(r
′)dv′, (2)

where µ0 is the magnetic permeability assumed to be constant in the whole space, we have

r · B(r) =
µ0

4π

N

∑
k=1

(

(rk × pk) · (r − rk)

|r − rk|3
+ Qk :

3(r × rk)(r − rk) + |r − rk|
2Xr

|r − rk|5

)

. (3)

Here, ‘:’ represents the tensor contraction defined by A : B = ∑
3
i=1 ∑

3
j=1 AijBij for second

order tensors A and B whose (i, j) components are given by Aij and Bij, respectively, and Xr

is the cross product tensor defined by

Xra = r × a,

and hence is written as

Xr =

⎛

⎝

0 −z y

z 0 −x

−y x 0

⎞

⎠ for r = (x, y, z)T .
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See Appendix for derivation of Eq. (3). Eq. (3) was given in Eq. (46) in Jerbi et al. (2002) (when

N = 1), which was obtained by truncating the Taylor series expansion of radial MEG, up to

the secondly dominant terms, generated by Jp with spatial extent. The first term in Eq. (3)

is the magnetic field created by the equivalent current dipole pk, and the second term is the
magnetic field created by the equivalent current quadrupole Qk. Hence we call Eq. (1) the

equivalent current dipole-quadrupole source model.

Using this source model (1), our inverse problem is formulated as follows: reconstruct

rk, pk, Qk and N from radial MEG data on Γ. Since estimation of pk and Qk is a linear problem

if rk and N are determined, we restrict our interest in this chapter to estimation of rk and N.

3. Explicit method

In this section, we show an explicit method for the source model (1). In subsection 3.1,

a method for the dipole source model (when Qk = 0) is shown. An algorithm for the

dipole-quadrupole source model is described in subsection 3.2.

Both the algorithms are based on the multipole expansion of radial MEG: Eq. (2) can be

expressed by the multipole expansion

r · B(r) = µ0

∞

∑
l=0

l

∑
m=−l

l + 1

2l + 1
Mlm

Ŷ∗
lm(θ, φ)

rl+1
,

where

Ŷlm(θ, φ) =

√

2l + 1

4π

(l − m)!

(l + m)!
Ylm(θ, φ) : normalized spherical harmonics,

Ylm(θ, φ) = Pm
l (cos θ)eimφ : spherical harmonics,

and Pm
l (cos θ) are the associated Legendre polynomials. As shown in Eq. (84) in Jerbi et al.

(2002), the multipole moment has the following relationship with Jp:

Mlm =
1

l + 1

∫

Ω1

[∇′r′lŶlm(θ
′, φ′)] ·

(

r′ × J p(r
′)
)

d3r′. (4)

Substituting Eq. (1) into Eq. (4) and using Eq. (17) gives

Mlm =
1

l + 1

N

∑
k=1

(

∇′r′lŶlm(θ
′, φ′)

∣

∣

r ′=rk
· (rk × pk)

+Qk :
(

∇′(∇′r′lŶlm(θ
′, φ′)× r′)

)T ∣
∣

r ′=rk

)

. (5)

On the other hand, using the orthogonality of the spherical harmonics, the multipole moment

is shown to have another relationship with the radial magnetic field on a spherical surface Γ

(Alvarez (1991)):

Mlm =
2l + 1

µ0(l + 1)

∫

Γ
n′ · B(r′)RlŶlm(θ

′, φ′)dS′, (6)
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where n′ is the outward unit normal vector at r′ on Γ. Equating Eqs. (5) and (6) for l ≥ m ≥ 0

gives algebraic equations

N

∑
k=1

(

∇′r′lŶlm(θ
′, φ′)

∣

∣

r ′=rk
· (rk × pk) + Qk :

(

∇′(∇′r′lŶlm(θ
′, φ′)× r′)

)T∣
∣

r ′=rk

)

=
2l + 1

µ0

∫

Γ
n′ · B(r′)RlŶlm(θ

′, φ′)dS′ (7)

relating the unknown parameters of the sources to the radial MEG data.

3.1 Explicit method for the equivalent current dipoles

First, we describe an explicit algorithm for the equivalent current dipole source model (Qk =
0). Let us consider Eqs. (7) for l = m, which are called ‘sectorial harmonics’ components. Since

in this case it holds that (Hobson (1931))

rmYmm(θ, φ) = (2m − 1)!!(x + iy)m,

we have

N

∑
k=1

(rk × pk) · [∇(x + iy)m]r=rk
=

2m + 1

µ0

∫

Γ
n · B(r)(x + iy)mdΓ, (8)

where [∇(x + iy)m]r=rk
represents ∇(x + iy)m evaluated at r = rk. The prime characters in

the integrands have been omitted for brevity. Define now the following quantities:

Sk ≡ xk + iyk : k-th dipole position projected on the xy-plane,

µk ≡ rk × pk : magnetic moment of k-th dipole,

µk ≡ [µk]x+iy : projection of µk on the xy-plane,

where [∗]x+iy represents (the x-component of the vector ∗)+ i×(the y-component of the vector

∗). Then, from the identity

∇(x + iy)m = m(x + iy)m−1

⎛

⎝

1

i

0

⎞

⎠ , (9)

Eq. (8) can be rewritten as

N

∑
k=1

µkSm
k = cm, (m = 0, 1, 2, · · · ) (10)

where

cm ≡
2m + 3

(m + 1)µ0

∫

Γ
n · B(r)(x + iy)m+1dΓ.

The problem of determining Sk, µk and N in Eqs. (10) from cm (m = 0, 1, · · · ) appears in

many inverse problems such as computed tomography (Golub et al. (1997)), EEG inversion
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(El-Badia et al. (2000); Nara et al. (2003)), MEG inversion (Nara et al. (2007)), and locating the

zeros of analytic functions (Kravanja et al. (1994)). To this problem, an algebraic algorithm

called Prony’s method and its modified/extended algorithms have been proposed that enable

us to reconstruct the source parameter Sk, µk and N from cm.
The essence of Prony’s method is as follows (See e.g. Elad et al. (2004)). First, let us assume

that N is fixed and known a priori. Estimation of N is explained afterwards. For N positions

S1, · · · , SN , let us define σ1, · · · , σN by the coefficients of the polynomial

N

∏
n=1

(ζ − Sn) ≡ ζN + σ1ζN−1 + · · ·+ σN .

Then, the following difference equations holds

σ1cm+N−1 + σ2cm+N−2 + · · ·+ σNcm = −cm+N, (m = 0, 1, 2, · · · ). (11)

Thus, from the 2N linear equations (11) for m = 0, 1, · · · , 2N − 1, we have

⎛

⎜

⎜

⎜

⎜

⎜

⎝

c0 c1 · · · cN−1

c1 c2 · · · cN

...
...

...
...

cN−1 cN · · · c2N−2

⎞











⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

σN

σN−1

...

σ1

⎞











⎠

= −

⎛

⎜

⎜

⎜

⎜

⎜

⎝

cN

cN+1

...

c2N−1

⎞











⎠

. (12)

Here, since the coefficient matrix in Eq. (12) is diagonalized as

⎛

⎜

⎜

⎜

⎜

⎜

⎝

c0 c1 · · · cN−1

c1 c2 · · · cN

...
...

...
...

cN−1 cN · · · c2N−2

⎞











⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1

S1 S2 · · · SN

...
...

...
...

SN−1
1 SN−1

2 · · · SN−1
N

⎞











⎠

diag (µ1, µ2, · · · , µN)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 · · · 1

S1 S2 · · · SN

...
...

...
...

SN−1
1 SN−1

2 · · · SN−1
N

⎞











⎠

T

,

we have

det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

c0 c1 · · · cN−1

c1 c2 · · · cN

...
...

...
...

cN−1 cN · · · c2N−2

⎞











⎠

=
N

∏
k=1

µk ∏
i>j

(Si − Sj)
2.

Hence, when µk �= 0 and Si �= Sj, Eqs. (12) can be uniquely solved for σ1, · · · , σN . Then, Sn

are obtained as solutions to the Nth degree equation ζN + σ1ζN−1 + · · ·+ σN = 0.
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Although it is known that Prony’s method is numerically unstable, modified versions of

Prony’s method have been proposed by using the truncated singular value decomposition

(Kumaresan et al. (1982)), by the projection method (Cadzow (1988)), or by repeating Prony’s

method while changing the model order N (Barone et al. (1998)). Methods to transform
Eqs. (10) to an eigenvalue problem have also been proposed (Hua et al. (1990), Luk et al.

(1997), Golub et al. (1997), El-Badia et al. (2000)). See Elad et al. (2004) for a review.

Onece Sk are determined, µk can be obtained by solving the linear equations (10).

To determine zk we use Eqs.(7) for l = m + 1. Since it holds that (Hobson (1931))

rm+1Ym+1,m(θ, φ) = (2m + 1)!!(x + iy)mz,

we have

N

∑
k=1

(mµkzkSm−1
k + [µk]zSm

k ) = dm, (m = 0, 1, 2, · · · ) (13)

where

dm ≡
2m + 3

µ0

∫

Γ
n · B(r) (x + iy)mzdΓ.

Hence, after Sk and µk are obtained, zk and the z-component of µk denoted by [µk]z can be

determined by solving Eqs. (13).

In order to estimate N, we assume that there exist N′(> N) dipoles and estimate µ1, · · · , µN ′

using the algorithm mentioned above. Then it would be expected, when the data includes

noise, that µk of the ‘spurious’ sources k = N + 1, · · · , N′ are much smaller than those of the

true sources, from which N can be estimated.

3.2 Explicit method for the equivalent current dipoles and quadrupoles

Now we describe an explicit algorithm for the equivalent current dipole and quadrupole

source model (Qk �= 0). Considering again Eqs. (7) for l = m, we have

N

∑
k=1

(

∇(x + iy)m
∣

∣

r=rk
· (rk × pk) + Qk :

(

∇(∇(x + iy)m × r)
)T∣

∣

r=rk

)

=
2m + 1

µ0

∫

Γ
n · B(r)(x + iy)mdS. (14)

It is shown in Nara (2008b) that Eq. (14) is rewritten as

N

∑
k=1

µkSm
k + m

N

∑
k=1

νkSm−1
k = cm , (m = 0, 1, 2, · · · ), (15)

where

νk = (i(qxx,k − qyy,k)− (qxy,k + qyx,k))zk.
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Eq. (15) has the same form as that of Eq. (6) in Nara (2008a), and can be transformed into the

simultaneous second degree equations

σ
T HN,mσ = 0, (m = 0, 1, · · · , 2N − 1), (16)

where

HN,m =

⎛

⎜

⎜

⎜

⎝

cm cm+1 · · · cm+N

cm+1 cm+2 · · · cm+N+1
...

...
...

...

cm+N cm+N+1 · · · cm+2N

⎞







⎠

,

and

σ = (σN , σN−1, · · · , σ1, 1)T .

Furthermore, the second degree equations (16) for m = 0, 1, · · · , 2N − 1 can be turned into

linear equations for σ1, · · · , σN . (See Nara (2008a)).

An example of the algorithm when N = 2 is illustrated in Fig. 1: in Step 1), starting with

σT HN,mσ = 0 for m = 0, 1, 2, 3, we compute their linear combinations to have three equations

with the Hankel matrices whose (1,1)-components are zero. In Step 2), the linear combinations

of those three equations are computed so that we have two equations with the Hankel matrices

whose first and second anti-diagonal components are zero. In Step 3), by computing the linear

combinations of those two equations, we arrive at a single equation, which is a linear equation

for σ1. In Step 4), by substituting the obtained σ1 into the equations obtained in Step 2), we

have linear equations for σ2. This is an example how the algorithm proceeds when N = 2. See

Nara (2008a) for the detailed algorithm for general N.

Once σ1, · · · , σN are obtained, S1, · · · , SN are obtained by solving ζN + σ1ζN−1 + · · ·+ σN = 0.

µk and νk for k = 1, 2, · · · , N are linearly solved using Eqs. (15) for m = 0, 1, · · · , 2N − 1.

Then, we use Eqs. (7) for l = m + 1 which leads to the second degree equations for zk.

To estimate N, following the method for the dipole source model, we assume that there

are N′(> N) dipole-quadrupole sources and then estimate Sk as well as µk and νk for

k = 1, 2, · · · , N′. Then we compute |µk+1/µk| and |νk+1/νk | for k = 1, 2, · · · , N′ − 1, which are

expected to be sufficiently small when k = N. Practically, we estimate N such that these ratios

become smaller than some thresholds set a priori. The thresholds should be determined by the

ratios of the noise level contained in the data to the dipole and quadrupole strength which can

be regarded as a physiologically meaningful source. As for the dipole source model in the 2D

problem, the threshold is theoretically evaluated in the context of the Padé approximation

(Barone et al. (1998)). A similar theory for the dipole-quadrupole source model, although

greatly required, is left for further research; in this paper we show only numerical examples

in section 4.

Remark: solving the second degree equations under noisy condition

The algorithm repeating elimination might be sensitive to noise contained in data due to the

cancellation. To avoid or reduce it, we can alternatively solve the simultaneous second degree

equations (16) by means of the Gröbner bases. For example, when N = 1, we solve Eq. (16)

for m = 0 so that we have a set of two projected positions, say A = {S(1), S(2)}, and then

solve Eq. (16) for m = 1 giving the other set, B = {S(3), S(4)}. Theoretically, the true position
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An Explicit Method for Inverse Reconstruction of Equivalent Current Dipoles and Quadrupoles 9

Fig. 1. Example of transformation of the second degree equations to the linear equations for
σ = (σ2, σ1, 1)T when N = 2.

is included in both A and B. When the data includes noise, we choose an element in A and

B, say S(1) and S(3), such that the distance between them, |S(1) − S(3)|, is smaller than the

distance between the other pair, |S(2)− S(4)|, and estimate the projected position S by S(1)+S(3)

2 .

In the simulations in section 4, we use this algorithm.

4. Numerical simulations

In this section, we compare the explicit method assuming the dipole-quadrupole model

(DQM) with the explicit method assuming the dipole model (DM). To model dipoles on

cerebral convolutions, we assume that dipoles are placed on a mesh on a half cylinder with

a radius of r = 5mm and a height of h = 5 mm, as shown in Fig. 2. There are six dipoles

in the circumferential direction by five in the longitudinal direction, and hence a total of

30 dipoles on the half cylinder. All the dipoles are aligned perpendicular to the surface of

the cylinder to model the fact that the dipoles are perpendicular to the cerebral convolutions

(Hämäläinen et al. (1993)). We examined the following three cases:

• case (i) A single half-cylinder source at r1 = 70(sin θ1 cos φ1, sin θ1 sin φ1, cos θ1) mm,

where θ1 = 10
180 π and φ1 = π. The vectors which determine the posture of the cylinder, e12

and e11, are set to be (0, 0, 1) and (1, 0, 0), respectively. See Fig. 3 left. In this case, the total
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dipole moment p1 is nearly parallel to r1; the angle between them is 9.8 degrees. Since a

radial dipole is a silent source for radial MEG (Hämäläinen et al. (1993)), this cylindrical

source is regarded as being almost quadrupolar.

• case (ii) A half-cylinder at r1 = 70(sin θ1 cos φ1, sin θ1 sin φ1, cos θ1) where θ1 = 70
180 π and

φ1 = 0. e12 = (0, 0, 1) and e11 = (1, 0, 0). See Fig. 3 center. In this case, the angle between

r1 and p1 is 78 degrees, so that the source has a detectable equivalent dipole moment as

well as the equivalent quadrupole moment.

• case (iii) Two half-cylinder sources of cases (i) and (ii). See Fig. 3 right. The source at r1 is

almost quadrupolar and that at r2 is a dipole-quadrupole source.

Fig. 2. ‘Cylindrical source’: distributed dipoles on a half cylinder modeling the cerebral
convolutions.

Fig. 3. Case (i) a single cylindrical source where r1 is nearly parallel to the equivalent current
dipole p1 (the angle between them is 9.8 degrees); this cylindrical source is almost
quadrupolar. Case (ii) a single cylindrical source where r1 is nearly perpendicular to p1 (the
angle between them is 78 degrees); this cylindrical source has a detectable equivalent dipole
moment as well as the equivalent quadrupole moment. Case (iii) two cylindrical sources
(combination of cases (i) and (ii)).

We computed the forward solution generated by the 30 (case (i) and (ii)) or 60 (case (iii))

elemental dipoles using Eq. (2). Note that Eq. (3) was not used to compute the theoretical

data. The radius of a head was set to be 100 mm. We assumed that the radial component of

the magnetic field was measured at M = 361 points distributed uniformly on a sphere with

R = 120 mm using the spherical t-design (Saff97 et al. (1997)); it is a set of M points on Γ such

that the integral of any polynomial of degree t or less over Γ is equal to the average value of

the polynomial over the set of M points. We used M = (t + 1)2 = 361 points (t = 18) given

by Chen et al. (2009). Based on this property, for numerical integration, the integrand values

on the N points were summed with equal weights 4π
M .
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To validate our algorithm for the dipole-quadrupole model, we assumed that the data was

available on the whole sphere which enclosed the source. Simulations using sensors on a

part of the sphere is left for future studies. To this end, the so-called Signal Space Separation

method proposed by Taulu et al. (2005) or the method for stable data continuation from data
on the upper hemisphere to those on the lower hemisphere proposed by Popov (2002) could

be very useful.

Gaussian noise was added to the theoretical forward solution, where the noise level defined

by the ratio of the standard deviation of the noise to the root mean squares of the data was

5%. 10 data sets with the different noise added were used for reconstruction.

First we show the reconstruction result when N is know a priori. Table 1 shows the error

between the true position and the mean estimated position using 10 data sets. The true and

estimated positions projected on the xy-plane are depicted in Fig. 4. We observe that in case

(i) the method using DM cannot estimate the source accurately, while the method using DQM

can estimate it within an error of 2 mm. This is because the source is almost quadrupolar.

In case (ii), the result using DM is better than that using DQM.

In case (iii), the maximum error about the xy-projected positions using DQM is 7.6 mm,

whereas that using DM is 110 mm (for the almost quadrupolar source). However, the

z-coordinates is not accurately obtained even when using DQM. This is because the

z-coordinates are estimated using the obtained x- and y-coordinates.

2D-DM (mm) 2D-DQM (mm) 3D-DM (mm) 3D-DQM (mm)

case (i) 3.0e1 3.1e-1 3.0e1 1.4e0

case (ii) 8.9e-1 6.5e0 1.7e0 6.6e0
case (iii) 1.1e2, 8.3e0 7.6e0, 6.3e0 1.1e2, 8.9e0 5.7e1, 6.3e0

Table 1. 2D and 3D localization error when using DM and DQM. ‘2D’ means the error
projected on the xy-plane.

Next, we show the case when N is not known a priori. Fig. 5 shows the reconstruction result

when assuming N′ = 2 in cases (i) and (ii) and N′ = 3 in case (iii). In case (i), when using

DQM where N′ = 2, the two positions are estimated: one is close to the true one, and another

is far from the true one (In Fig. 5 top left, the estimated position far from the true position is

not seen, since it is out of the figure.) Numbering them 1 and 2, we have |µ2/µ1| = 5.3e − 4

and |ν2/ν1| = 9.9e − 4. From this, we can reasonably judge that the second source is spurious

due to the noise, and there is a single dipole-quadrupole source. In contrast, when using DM

where N′ = 2, |µ2/µ1| = 4.3e − 1; µ1 and µ2 are almost the same order, and hence we judge

that there are two dipoles. The estimated dipoles are close to the side walls of the half cylinder.

However, the distance between them is larger than the diameter of the cylinder as in Fig. 5 top

left.

In case (ii), when using DQM where N′ = 2, |µ2/µ1| = 9.7e − 4 and |ν2/ν1| = 6.5e − 3. Also,

when using DM where N′ = 2, |µ2/µ1| = 4.1e − 3. Hence, both DQM and DM can estimate

the number of the sources.

In case (iii), when using DQM where N′ = 3, |µ3/µ2| = 9.5e − 4 and |ν3/ν2| = 9.0e − 4, from

which we can judge that N = 2. In contrast, when using DM where N′ = 3, |µ3/µ2| = 1.1e− 1;

the third source is not much smaller than the second one. Also we observe that, for almost the

quadrupole source, the estimated two dipoles are too separated.
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Fig. 4. The reconstruction result projected on the xy-plane. In this figure, N is assumed to be
known a priori. (top left) In case (i), the equivalent dipole is almost directed to the radial
direction, and the source is almost quadrupolar. As a result, when using DM with N = 1, the
cylindrical source is not at all localized, while DQM with N = 1 well estimates the center of
the source. (top right) In case (ii), the equivalent dipole is almost perpendicular to the radial
direction. In this case, both DM and DQM can well localize the source. (bottom) In case (iii),
both the sources are well estimated when using DQM, while almost the quadrupole source is
not at all estimated when using DM.
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Fig. 5. The result when N is not known a priori. (top left) Reconstruction result in case (i)
when assuming N′ = 2. When using DQM, the estimated source far from the true position
(which is out of the figure and is not depicted) has much smaller dipole and quadrupole
moments than the estimated source close to the true position. In fact, |µ2/µ1| = 5.3e − 4 and
|ν2/ν1| = 9.9e − 4, from which we can judge N = 1. In contrast, when using DM,
|µ2/µ1| = 4.3e − 1 from which we judge that there are two dipoles. Although two dipoles are
estimated close to the side walls of the cylindrical surface, the distance between them is
larger than the diameter of the cylinder. (top right) In case (ii), |µ2/µ1| = 9.7e − 4 and
|ν2/ν1| = 6.5e − 3 when using DQM where N′ = 2. Also, |µ2/µ1| = 4.1e − 3 when using
DM. Hence, both DQM and DM can estimate the number of the sources. (bottom) In case
(iii), |µ3/µ2| = 9.5e − 4 and |ν3/ν2| = 9.0e − 4 when using DQM where N′ = 3, from which
we can judge that N = 2. In contrast, when using DM where N′ = 3, |µ3/µ2| = 1.1e − 1; the
third source is not much smaller than the second one. Also we observe that, for almost the
quadrupole source, the estimated two dipoles are too separated.
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5. Conclusion

In this chapter, we introduced the equivalent current dipole-quadrupole source model which

has a potential to parametrically represent the spatial extent of the neural current in MEG

inverse problem. Then, explicit methods for the equivalent dipole-quadrupole source model

as well as the equivalent dipole source model were shown, that enables us to reconstruct

the dipole-quadrupole parameters explicitly with MEG data. In numerical simulations, it

was suggested that the dipole-quadrupole source model would be useful especially when

the elemental dipoles are distributed on the surface of a half cylinder modeling the cerebral

convolution such that the equivalent dipole is parallel to the radial direction.

6. Appendix

It is easy to obtain the dipole terms. For the quadrupole terms, we use the identity

∫

Ω1

a(r′) · Qk∇
′δ(r′ − rk)dv′ = Qk : (∇′a(r′))T |r ′=rk

(17)

for an arbitrary vector field a(r′) = (ax(r′), ay(r′), az(r′))T, where T represents the transpose.

When inserting the quadrupole terms in Eq. (1) into Eq. (2), we have from Eq. (17)

∫

Ω1

(∇′ 1

|r − r′|
× r′) · Qk∇

′δ(r′ − rk)dv′ = Qk : (∇′(∇′ 1

|r − r′|
× r′))T |r′=rk

.

Here, it holds that

∇′(∇′ 1

|r − r′|
× r′) = ∇′ r × r′

|r − r′|3
= (∇′ 1

|r − r′|3
)(r × r′) +

∇′(r × r′)

|r − r′|3

=
3(r − r′)(r × r′)

|r − r′|5
+

1

|r − r′|3

⎛

⎝

0 z −y

−z 0 x

y −x 0

⎞

⎠ ,

and hence

(∇′(∇′ 1

|r − r′|
× r′))T |r′=rk

=
3(r × rk)(r − rk)

|r − rk|5
+

Xr

|r − rk|3
.

Thus we have Eq. (3).
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