
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



13 

Applications of Interval-Based  
Simulations to the Analysis and  

Design of Digital LTI Systems 

Juan A. López1, Enrique Sedano1, Luis Esteban2, Gabriel Caffarena3,  
Angel Fernández-Herrero1 and Carlos Carreras1 

1Departamento de Ingeniería Electrónica, Universidad Politécnica de Madrid, 
2Laboratorio Nacional de Fusión, Centro de Investigaciones Energéticas  

Medioambientales y Tecnológicas (CIEMAT), 
3Departamento de Ingeniería de Sistemas de Información y de Telecomunicación, 

Universidad CEU-San Pablo,  
Spain 

1. Introduction  

As the complexity of digital systems increases, the existing simulation-based quantization 

approaches soon become unaffordable due to the exceedingly long simulation times. Thus, 

it is necessary to develop optimized strategies aimed at significantly reducing the 

computation times required by the algorithms to find a valid solution (Clark et al., 2005; 

Hill, 2006). In this sense, interval-based computations are particularly well-suited to reduce 

the number of simulations required to quantize a digital system, since they are capable of 

evaluating a large number of numerical samples in a single interval-based simulation 

(Caffarena et al., 2009, 2010; López, 2004; López et al., 2007, 2008).  

This chapter presents a review of the most common interval-based computation techniques, 

as well as some experiments that show their application to the analysis and design of digital 

Linear Time Invariant (LTI) systems. One of the main features of these computations is that 

they are capable of significantly reducing the number of simulations needed to characterize 

a digital system, at the expense of some additional complexity in the processing of each 

operation. On the other hand, one of the most important problems associated to these 

computations is interval oversizing (i.e., the computed bounds of the intervals are wider 

than required), so new descriptions and methods are continuously being proposed. In this 

sense, each description has its own features and drawbacks, making it suitable for a 

different type of processing. 

The structure is as follows: Section 2 presents a general review of the main interval-based 
computation methods that have been proposed in the literature to perform fast evaluation of 
system descriptions. For each technique, the representation of the different types of 
computing elements is given, as well as the main advantages and disadvantages of each 
approach. Section 3 presents three groups of interval-based experiments: (i) a comparison of 
the results provided by two different interval-based approaches to show the main problem 
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of interval-based computations; (ii) an analysis of the application of interval-based 
computations to measure and compare the sensitivity of the signals in the frequency 
domain; and (iii) an analysis of the application of interval-based techniques to the Monte-
Carlo method. Finally, Section 4 concludes this work.  

2. General overview of interval-based computations 

2.1 Interval arithmetic  

Since its formalization in 1962 by R. Moore (Moore, 1962), Interval Arithmetic (IA) has 
been widely used to bound uncertainties in complex systems (Moore, 1966). The main 
advantage of traditional IA is that it is able to obtain the range of all the possible results of 
a given function. On the other hand, it suffers from three different types of problems 
(Neumaier, 2002): the dependency problem, the cancellation problem, and the wrapping 
effect.  
The dependency problem expresses that IA computations overestimate the output range of 
a given function whenever it depends on one or more of its variables through two or more 
different paths. The cancellation problem occurs when the width of the intervals is not 
canceled in the inverse functions. In particular, this situation occurs in the subtraction 

operations (i.e., given the non-empty interval I1 – I1  0), what can be seen as a particular 
case of the dependency problem, but its effect is clearly identified. The wrapping effect 
occurs because the intervals are not able to accurately represent regions of space whose 
boundaries are not parallel to the coordinate axes.  
These overestimations are propagated in the computations and make the results inaccurate, 
and even useless in some cases. For this reason, the Overestimation Factor (OF) (Makino & 
Berz, 2003; Neumaier, 2002) has been defined as 

 OF = (Estimated Range – Exact Range) / (Exact Range), (1) 

to quantify the accuracy of the results. Another interesting definition used to evaluate the 
performance of these methods is the Approximation Order (Makino & Berz, 2003; 

Neumaier, 2002), defined as the minimum order of the monomial C S (where C is constant, 

and   [0,1]) that contains the difference between the bounds of the interval function and 
the target function in the range of interest. 

2.2 Extensions of interval arithmetic  

The different extensions of IA try to improve the accuracy of the computed results at the 

expense of more complex representations. A classification of the main variants of IA is given 

in Figure 1. 

According to the representation of the uncertainties, the extensions of IA can be classified in 

three different types: Extended IA (EIA), Parameterized IA and Centered Forms (CFs). In a 

further division, these methods are further classified as follows. In the first group, Directed 

Intervals (DIs) and Modal Intervals (MIs); in the second group, Generalized IA (GIA); and in 

the third group, Mean Value Forms (MVFs), slopes, Taylor Models (TMs) and Affine 

Arithmetic (AA). A brief description of each formulation is given below. 

DIs (Kreinovich, 2004) include the direction or sign of each interval to avoid the cancellation 

problem in the subtraction operations (I1+ - I1+ = 0), which is the most important source of 

overestimation (Kaucher, 1980; Ortolf, Bonn, 1969). 
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Fig. 1. Classification of interval-based computations methods. 

In MIs (Gardenes, 1985; Gardenes & Trepat, 1980; SIGLA/X, 1999a, 1999b), each element is 

composed of one interval and a parameter called "modality" that indicates if the equation of 

the MIs holds for a single value of the interval or for all its values. These two descriptions 

are used to generate equations that bound the target function. If both descriptions exist and 

are equal, the result is exact. Among the publications on MIs, the underlying theoretical 

formulation and the justifications are given in (SIGLA/X, 1999a) and the applications, 

particularly for control systems, are given in (Armengol, et al., DX-2001; SIGLA/X, 1999b; 

Vehí, 1998) 

GIA (Hansen, 1975; Tupper, 1996) is based on limiting the regions of the represented 

domain using intervals with parameterizable endpoints, such as [1 – 2x, 3 + 4x] with x  

[0,1]. The authors define different types of parameterized intervals (constant, linear, 

quadratic, linear, multi-dimensional, functional and symbolic), but their analysis has 

focused on evaluating whether the target function is increasing or decreasing, concave or 

convex, in the region of interest using constant, linear and polynomial parameters. In the 

experiments, they have obtained the areas where the existence of the function is impossible, 

but they conclude that this type of analysis is too complex for parameterizations greater 

than the linear case. 

In the different representations, CFs are based on representing a function as a Taylor Series 

expansion with one or more intervals that incorporate the uncertainties. Therefore, all these 

techniques are composed of one independent value (the central point of the function) and a 

set of summands that incorporate the intervals in the representation. 

MVFs (Alefeld, 1984; Coconut_Group, 2002; Moore, 1966; Neumaier, 1990; Schichl & 

Neumaier, 2002) are based on developing an expression of a first-order Taylor Series that 

bounds the region of interest. The general expression is as follows: 

 f (x) = f (x0) + f ´(x )(x – x0)           fMVF (Ix) = f (x0) + f ´( Ix ) (Ix – x0) (2) 

where x is the point or region where f(x) must be evaluated, x0 is the central point of the 

Taylor Series, and Ix is the interval that bounds the uncertainty range. The computation of 

the derivative is not complex when the function is polynomial, as it is usually the case in 

function approximation methods. Since the approximation error is quadratic, this method 

does not provide good results when the input intervals are large. However, if the input 

intervals are small, it provides better results than traditional IA. 

Aritmética 

de 

    Directed Intervals (DIs) 

Modal Intervals (MIs) 

   Generalized IA (GIA) 

Mean Value Forms (MVFs) 

Slopes 

                  Taylor Models (TMs)  

                             Affine Arithmetic (AA) 
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Interval 
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The slopes (Moore, 1966; Neumaier, 1990; Schichl & Neumaier, 2002) also use a first-order 
Taylor Series expansion, but they apply the Newton's method to recursively compute the 
values of the derivatives. Its general expression is as follows: 

 f (x) = f (x0) + f ´(x )(x – x0)             fS (IS, Ix) = f (x0) + IS (Ix – x0) (3) 

where IS is determined according to the expression  (Garloff, 1999): 

           
0

0
0

0 0

S

f(x) f(x ) 
if x x

x xI  

x if x x

   
 

 (4) 

It is worth mentioning that slopes typically provide better estimates than MVFs by a factor 
of 2, and that the results can be further improved by combining their computation with IA 
(Schichl & Neumaier, 2002) 
TMs (Berz, 1997, 1999; Makino & Berz, 1999) combine a N-order Taylor Series expansion 
with an interval that incorporates the uncertainty in the function under analysis. Its 
mathematical expression is as follows: 

 fTM (x, In) = an xn + an-1 xn-1 + ... + a1 x + a0 + In (5) 

where ai is the i-th coefficient of the interpolation polynomial of order n, and In is the 
uncertainty interval for this polynomial. The approximation error has now order N+1, rather 
than quadratic as in previous cases. In addition, TMs improve the representation of the 
domain regions, which reduces the wrapping effect. The applications of TMs have been 
largely studied thanks to the development of the tool COSY INFINITY (Berz, 1991, 1999; 
Berz, et al., 1996; Berz & Makino, 1998, 2004; Hoefkens, 2001; Hoefkens, et al., 2001, 2003; 
Makino, 1998, 1999). The main features of this tool include the resolution of Ordinary 
Differential Equations (ODEs), higher order ODEs and systems, multivariable integration, 
and techniques for relieving the wrapping effect, the dimensionality course, and the cluster 
effect (Hoefkens, 2001; Makino & Berz, 2003; Neumaier, 2002). Another relevant contributor 
in the development of the TMs is the GlobSol project (Corliss, 2004; GlobSol_Group, 2004; 
Kearfott, 2004; Schulte, 2004; Walster, 2004), focused on the application of interval 
computations to different applications, including systems modeling, computer graphics, 
gene prediction, missile design tips, portfolio management, foreign exchange market, 
parameter optimization in medical measures, software development of Taylor operators, 
interval support for the GNU Fortran compiler, improved methods of automatic 
differentiation, resolution of chemical models, etc. (GlobSol_Group, 2004). 
There are discussions about the capabilities of TMs to solve the different theoretical and 

applied problems. In this sense, it is worth mentioning that "the TMs only reduce the 

problem of bounding a factorable function to bounding the range of a polynomial in a small 

box centered at 0. However, they are good or bad depending on how they are applied to 

solve each problem." (Neumaier, 2002). This statement is also applicable to the other 

uncertainty computation methods.  

In AA (Comba & Stolfi, 1993; Figuereido & Stolfi, 2002; Stolfi & Figuereido, 1997), each 
element or affine form consists of a central value plus a set of noise terms (NTs). Each NT is 
composed of one uncertainty source identifier, called Noise Symbol (NS), and a constant 
coefficient associated to it. The mathematical expression is: 
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 fAA (i) = x’ = xc +  x0 0 + x1 1 + 2 x2 + ... +n xn (6) 

where x’ represents the affine form, xc is the central point, and each i and xi are the NS and 

its associated coefficient. In AA the operations are classified in two types: affine and non-

affine operations. Affine operations (addition and constant multiplication) are computed 

without error, but non-affine operations need to include additional NTs to provide the 

bounds of the results. The main advantage of AA is that it keeps track of the different noise 

symbols and cancels all the first-order uncertainties, so it is capable of providing accurate 

results in linear sequences of operations. In nonlinear systems, AA obtains quadratic 

convergence, but the increment of the number of NTs in the nonlinear operations makes the 

computations less accurate and more time-consuming. A detailed analysis of the 

implementation of AA and a description of the most relevant computation algorithms is 

given in (Stolfi & Figuereido, 1997). 

Among other applications, AA has been successfully used to evaluate the tolerance of circuit 
components (Femia & Spagnuolo, 2000), the sizing of analog circuits  (Lemke, et al., Nov. 
2002), the evolution of deformable models (Goldenstein, et al., 2001), the evaluation of 
polynomials (Shou, et al., 2002), and the analysis of the Round-Off Noise (RON) in Digital 
Signal Processing (DSP) systems (Fang, 2003; López, 2004; López et al., 2007, 2008), etc. 
Modified AA (MAA) (Shou, et al., 2003) has been proposed to accurately compute the 
evolution of the uncertainties in nonlinear descriptions. Its mathematical expression is as 
follows: 

  
0 0 0 0

k 2 2 k
c     n1 1 2 3 1 4 1MAA i ii,k

f ( e )  x’ x x e x e x e x e e x e  ... x            (7) 

It is easy to see that MAA is an extension of AA that includes the polynomial NTs in the 

description. Thus, it is capable of computing the evolution of higher-order uncertainties that 

appear in polynomial descriptions (of a given smooth system), but the number of terms of 

the representation grows exponentially with the number of uncertainties and the order of 

the polynomial description. Thus, in this case it is particularly important to keep the number 

of NTs of the representation under a reasonable limit. 

Obviously, the higher order NTs are not required when computing the evolution of the 

uncertainties in LTI systems, so MAA is less convenient than AA in this case. 

3. Interval-based analysis of DSP systems  

This Section examines the variations of the properties of the signals that occur in the 
evaluation of the DSP systems when Monte-Carlo Simulations (MCS) are performed using 
Extensions of IA (EIA) instead of the traditional numerical simulations. The simulations 
based on IA and EIA can handle the uncertainties and nonlinearities associated, for 
example, to the quantization operations of fixed-point digital filters, and other types of 
systems in the general case. 
The most relevant advantages of using EIA to evaluate DSP systems can be summarized in 
the following points: 
1. It is capable of managing the uncertainties associated with the quantization of 

coefficients, signals, complex computations and nonlinearities. 
2. It avoids the cancellation problem of IA. 
3. It provides faster results than the traditional numerical simulations. 
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The intuitive reason that determines the benefits of EIA is simple. Since EIA is capable of 

processing large sets of data in a single interval-based simulation, the results are obtained 

faster than in the separate computation of the numerical samples. Although the use of 

intervals imposes a limitation of connectivity on the computation of the results, both the 

speed and the accuracy are improved with respect to the numerical processing of the same 

number of samples.  

Section 3.1 discusses the cancellation problem in the analysis of digital filter structures using 

IA, and justifies the selection of AA for such analysis, indicating the cases in which it can be 

used, and under what types of restrictions. Section 3.2 examines how the Fourier Transform 

is affected when uncertainties are included in one or all of the samples. Section 3.3 evaluates 

the changes that occur in the parameters of the random signals (mean, variance and 

Probability Density Function (PDF)) when a specific width is introduced in the samples, and 

how these changes affect the computed estimates using the Monte-Carlo method. Finally, 

Section 3.4 provides a brief discussion to highlight the capabilities of interval-based 

simulations. 

3.1 Analysis of digital filter structures using IA and AA  

The main problem that arises when performing interval-based analyses of DSP systems 
using IA is that the addition and subtraction operations always increase the interval widths. 
If there are variables that depend on other variables through two or more different paths, 
such as in z(k) = x(k) - x(k), the ranges provided by IA are oversized. This problem, called the 
cancellation problem, is particularly severe when there are feedback loops in the 
realizations, a characteristic which is common in most DSP systems. 
 

 

Fig. 2. Interval oversizing due to the cancellation effect of IA: (a) Signal names and initial 
(interval) values. (b) Computed intervals until the oversizing in the variable tsum is 
detected. In each small figure, the abscissa axis represents the sampled time, and the 
ordinate axis represents the interval values. A dot in a given position represents the 
interval [0,0]. 
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Figure 2.a shows a second-order Infinite Impulse Response (IIR) filter realized in direct 
form, whose transfer function is  

 
1 2 1 2

1 2

1 1
( )

1 1 0.75
H z

a z a z z z    
   

. (8) 

It is initially assumed that the filter is implemented using infinite precision, which implies 
that the quantization effects are negligible and that all signals are generated as linear 
combinations of the input and the state variables. This assumption allows: (i) to perform a 
separate analysis of the mean and the width of the intervals; and (ii) to generalize the results 
obtained in the simulation of a normalized interval to larger or smaller ones. 
Figure 2.b shows the oversizing that occurs in the IA simulation. The input is set to the 
normalized interval [-1, 1], and the state variables are initially set to zero. Here, the 
representations are based on oriented intervals to keep track of the position of the samples 
in each interval, and to detect the overestimations. The initial values and the evolution of the 
intervals are: 

 
= [1, -1]  = [1, -1]  = [1, -1]

 = [-1, 1]  = [-1, 1]
 = [0.75, -0.75]

a1 sum 1

2

t t sv
x y

sv

 
  


 (9) 

and in the next sampled time the values are: 

 
 = [1, -1]  = [1, -1]  = [-1, 1]

= [-1.75, 1.75]
 = [0.75, -0.75]

1 a1
sum

2

sv y t
t

sv

  



 (10) 

instead of tsum = [–0.25, 0.25], which is the correct value. Figure 2.b also shows that this 
oversizing occurs because signal tsum depends on the input signal through two different 
paths. 
Since AA includes a separate signed identifier per uncertainty source, it avoids such 
overestimations and provides the smallest intervals. In this case, the initial values and the 
evolution of the affine forms are: 

 
= 2  = 2  = 2

 = 2  = 2
 = -1.5

a1 sum 1

2

t t sv
x y

sv

  
 


 

  


 (11) 

and in the next sampled time 

 
 = 2  = 2  = 2

= 0.5
 = -1.5

1 a1
sum

2

sv y t
t

sv

  



  




 (12) 

which corresponds to the most accurate interval [-0.25, 0.25].  
This simple example confirms the selection of AA instead of IA, particularly in structures with 
feedback loops. Although the cancellation effect is not necessarily present in all the structures, 
it commonly appears in most DSP realizations. For this reason, it is highly recommended to 
use this arithmetic when performing interval-based analysis of DSP systems. 
When there are multiple simultaneous uncertainty sources, it is necessary to use an oriented 
identifier for each source, in addition to the average value of the signals, which are the 
elements offered by AA to perform the computations. Moreover, the objective of AA is to 
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accurately determine the results of the linear operations (additions, subtractions, constant 
multiplications and delays), and the purpose of the filters is to perform a given linear 
transformation of the input signal. Consequently, the features offered by AA match 
perfectly with the requirements of the interval-based simulations of the unquantised digital 
filter structures. 
When the quantization operations are included in this type of analysis, the affine forms 
must be adjusted to include all the possible values of the results. Since AA keeps track of the 
effects of the uncertainty sources (the noise terms can be seen as the first-order relationship 
between each uncertainty source and the signals), the affine forms are easily modified to 
simulate the effects of the quantization operations in the structures containing feedback 
loops. 
In summary, one of the most important problems of IA to perform accurate interval-based 
simulations of the DSP realizations is the cancellation problem. The use of AA, in 
combination with the modification of the affine forms in the quantization operations, solves 
this problem and allows performing accurate analysis of the linear structures, even when 
they contain feedback loops. 

3.2 Computation of the fourier transform of deterministic interval-based signals  

The analysis of deterministic signals in DSP systems is of great importance, since most 

systems use or modify their properties in the frequency domain to send the information. In 

this sense, the decomposition of the signals using the Fourier transform as finite or infinite 

sums of sinusoids allows to evaluate these properties. Conversely, it is also widely known 

that a sufficient condition to characterize the linear systems is to determine the variations of 

the properties of the sinusoids of the different frequencies.  

The following experiment shows the variations of the properties of deterministic signals 
when intervals of a given width are included in one or all of their samples. These widths 
represent the possible uncertainties in these signals and their effect on their associated 
signals in the transformed domain.  
First, we evaluate the effects of including uncertainties of the same width in all the samples 

of the sequence. The steps required to perform this example are as follows: 

1. Generate the Fast Fourier Transform (FFT) program file, specifying the number of 
stages. 

2. Generate the sampled sinusoidal signals to be used as inputs. 
3. Include the uncertainty specifications in the input signals. 
4. Compute the Fourier Transform (run the interval-based simulation). 
5. Repeat the steps 1-4 modifying the widths of the intervals of step 3. 
6. Repeat the previous steps modifying the periods of the sinusoids of step 2. 
Steps 1 to 4 generate the FFT of the interval-based sinusoidal signals. Step 5 has been 

included to investigate the effects of incorporating uncertainties of a given width to all input 

samples of the FFT. By superposition, this should be equal to the numerical FFT of the mean 

values of the original signal, plus another FFT in which all the input intervals are centered in 

zero and they all have the same width. Finally, step 6 allows us to investigate the variations 

of the computed results according to the periods of the sinusoids. 

Figure 3 shows two examples of cosine signals with equal-width intervals in all the 
samples and their respective computed FFTs. Figure 3.a corresponds to a cosine signal of 
amplitude 1, length 1024, period 32, and width 1/8 in all the samples, and Figure 3.c 
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shows another cosine signal of the same amplitude and width, length 256 and period 8. 
Figures 3.b and 3.d show the computed FFTs for each case, where each black line 
represents a data interval.  

 

 

Fig. 3. Examples of FFTs of deterministic interval signals: (a) First 200 samples of a cosine 
signal of length 1024, period 32, and interval widths 1/8 in all the samples. (b) FFT of the 
previous signal. (c) First 75 samples of a cosine signal of length 256, period 8, and interval 
widths 1/8 in all the samples. (d) FFT of the previous signal.  

As expected, these figures clearly show that the output intervals in the transformed domain 

have the form of the numerical transform, plus a given level of uncertainty in all the 

samples. In addition, Figures 3.b and 3.d also provide: (i) the values of the deviations in the 

transformed domain in each sample with respect to the numerical case, and (ii) the 

maximum levels of uncertainty associated with the uncertainties of the inputs. 

The second part of this experiment evaluates how each uncertainty separately affects to the 

FFT samples. As mentioned above, by performing a separate analysis of how each 

uncertainty affects to the input samples, we are characterizing the quantization effects of the 

FFT. In this case, step 3 is replaced by the following statement: 

3. Include one uncertainty in the specified sample of the input signals. 
which is performed by generating a delta interval in the specified position, and adding it to 

the input signal. 

      
                                          (a)                                                                          (b) 

      
 
                                            (c)                                                                      (d) 
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Figure 4.a shows a cosine signal of length 1024 and period 32, in which only an interval of 
width 1/5 in the sample 27 has been included, and Figure 4.b shows the computed FFT of 
the previous interval trace. In this case, two small intervals appear in the sampled 
frequencies 32 and 968, as well as in the values near 0 in the other frequencies. Unlike the 
results shown in Figure 3, the uncertainties associated with the input interval are very small 
in this case. 
 

 

Fig. 4. Example of an FFT of a deterministic signal with a single interval: (a) First 200 
samples of a cosine signal of length 1024, period 32 and interval width 1/5 in the sample 27. 
(b) FFT of the previous signal, with two small uncertainties in the sampled frequencies 32 
and 968. 

Figure 5 shows the details of the ripples generated by the uncertainties according to their 
positions in each trace. In the first case (Figure 5.a), the interval has been included in sample 
16, which is a factor of the number of FFT points. In this case, there is no ripple. In the other 
three cases (Figures 5.b-d), the interval has been included in three different positions (17, 20 
and 27, respectively), and there is a small ripple in the transformed domain, different in each 
case. Since the FFTs are linear systems, the large ripples that appear in the Figures 3.b and 
3.d are the sum of all the possible equal-width ripples in the frequency domain. 
In summary, the inclusion of intervals in sinusoidal signals and the computation of the FFTs 
show the maximum and minimum deviations in the frequency domain due to the different 
uncertainties. It has been found that the uncertainties do not affect to all the frequencies of 
the FFT in the same way, and that their effects depend on their positions in the trace. 
Although the intervals represent the maximum values of the uncertainties and the noise is 
commonly associated to the second-order statistics, the variations in the computed interval 
widths implies that the noise generated by the FFT is not white, but follows a deterministic 
pattern. 

3.3 Analysis of the statistical parameters of random signals using interval-based 
simulations  

The following experiments show the variations of the statistical parameters of random 
signals (mean, variance and PDF) when random sequences are generated using the Monte-
Carlo method, using intervals of a specified width instead of the traditional numerical 
simulations. 

 

                                             (a)                                                                   (b) 

www.intechopen.com



 
Applications of Interval-Based Simulations to the Analysis and Design of Digital LTI Systems 

 

289 

 

Fig. 5. Details of the ripples that occur in the transformed domain due to the presence of 
uncertainty intervals in the deterministic signals: (a) in a position which is a factor of the 
number of FFT points (16). (b) - (d) in other non-factor positions (17, 20 and 27, respectively). 
The vertical lines above the figures indicate the positions of the deltas, whose heights exceed 
the representable values in the graph. 

The first part of this section analyzes the changes in the PDFs. To do this, data sequences 
following a particular PDF are generated, and they are later reconstructed and compared 
with the original results. The steps used to perform the experiments are as follows: 
1. Generate the traces of the random samples following the specified PDF, and assign the 

width of the intervals. 
2. Obtain the histogram of the trace, group the samples and plot the computed PDF. 
3. Repeat steps 1 and 2 to reduce the variance of the parameters (M times). 
4. Average the histograms obtained in step 3.  
5. Repeat the previous steps assigning other interval widths. 
Step 1 generates the sequences of samples that follow the specified PDF, and in step 2 the 
PDFs are recomputed from these samples. In this experiment, three types of PDFs have been 
used: (i) a uniform PDF in [-1, 1], a normalized normal PDF (mean 0 and variance 1), and a 
bimodal PDF composed of two normal PDFs, with means -3 and 3 and variance 1. Steps 3 
and 4 have been included to reduce the variance of the results. Finally, step 5 allows 
selecting other interval widths. 
Figure 6 presents the results of the three histograms using the Monte-Carlo method with: (i) 
numerical samples, (ii) intervals whose width is set to 1/8 of the variance, and (iii) intervals 

      

                                         (a)                                                                       (b) 

        

                                          (c)                                                                        (d) 
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whose width is set to the variance of the distribution. All the histograms have been 
computed using 20 averages of 5000 data items each. It can be seen that the areas near the 
edges on the uniform distribution are modified, but the remaining parts of the distribution 
are also computed taking into account a larger number of points. It is also noticeable that the 
new PDFs are smoother than the ones computed using the numerical traces, which can be 
explained from the Central Limit Theorem. 
 

 

Fig. 6. Distributions generated using traces of numbers, traces of intervals whose widths are 

set to 1/8 of the variance, and traces of intervals whose widths are set to the variance of the 

distribution. These traces are applied using the Monte Carlo Method to: (a) - (c) a uniform 

distribution in [-1, 1]; (d) - (f) a normal distribution with mean 0 and variance 1; (g) - (i) a 

bimodal distribution with modes 3 and -3 and variance 1. 

Figure 7 details the central part and the tails of a normal distribution generated using traces 

of 100000 numbers and 5000 intervals. It can be observed that the transitions of the 

histograms are much smoother in the distribution generated using intervals. Although there 

are slight deviations from the theoretical values, these deviations (approximately 5% in the 

central part and 15% in the tails) are comparable to the deviations obtained by the numerical 

trace using 100000 numbers. 

 
                           (a)                                               (b)                                                (c) 

 

 
                           (d)                                                (e)                                                 (f) 

 

 

                            (g)                                               (h)                                                 (i) 
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Fig. 7. Details of the normal distribution generated with numerical and interval traces:  
(a) and (b) Central part of the distribution; (c) and (d) Tail of the distribution. 

Therefore, this experiment has shown that signals with normal distributions maintain their 
shape and statistical parameters in the interval-based simulations, but they require fewer 
computations to obtain similar degrees of accuracy. 
The second part of this section evaluates the variations of the statistical estimators when 
interval samples of a specific width are used to compute the mean and variance of the 
random signals in the simulations. Now, the sequence of steps is as follows:  
1. Generate the traces of the random samples following the specified PDF, and assign the 

width of the intervals. 
2. Compute the mean and the variance of the trace. 
3. Repeat steps 1 and 2 to reduce the variance of the parameters (M times). 
4. Group the means and variances of the computed traces, and obtain the estimation and 

the variations of the statistical parameters.  
5. Repeat the previous steps assigning other interval widths. 
These steps allow the computation of the means and variances of the estimators, instead of 
averaging the computed histograms. Step 2 computes the mean and variance of the signals 
specified in step 1, and step 4 averages the results of the mean and variance of the estimators 
(in this experiment M is high, to ensure the reliability of estimator statistics). 
Figure 8 shows the evolution of the estimators of the mean and the variance as a function of 
the lengths of the traces (500, 1000 and 5000 samples) and the widths of the intervals 
 

      

                                          (a)                                                                           (b) 

     

                                            (c)                                                                         (d) 
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Fig. 8. Analysis of the values provided by the mean and variance interval-based estimators 

depending on the lengths of the traces: (a) - (c) average of the mean estimator, (d) - (f) 

variance of the mean, (g) - (i) mean of the variance of the estimator, (j) - (l) variance of the 

variance. In the four cases, the first column represents the average of 1000 simulations using 

traces of 500 samples; the second column, of 1000 samples; and the third column, of 5000 

samples. The values of the abscissa (1 to 8) respectively represent the interval widths: 0, 

1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1. 
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                            (d)                                                 (e)                                               (f) 
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(between 0 and 1). Figures 8.a-c show the averaged mean values computed by the estimator 
for the previous three lengths. It can be observed that the interval-based estimators tend to 
obtain slightly better results than the ones of the numerical simulation, although they are 
roughly of the same order of magnitude. Figures 8.d-f show the variances of these 
computations. In this case, all the results are approximately equal, and the values decrease 
(i.e. they become more precise) with longer simulations. Figures 8.g-i show the mean of the 
variance of the interval-based simulations estimator. It can be observed that when the 
intervals have small widths, the ideal values are obtained, but when the interval widths are 
comparable to the variance of the distribution (approximately from 1/4 of its value) the 
computed values increase significantly the variance of the estimator. Figures 8.j-l show the 
evolution of the variance estimator. The results are approximately equal in all cases, and 
decrease with the longer simulations. 
Therefore, interval-based simulations tend to reduce the edges of the PDFs and to equalize the 
other parts of the distribution according to the interval widths. If no additional operation is 
performed, the edges of the PDFs may change significantly, particularly in uniform 
distributions. However, since these effects are known, they can possibly be compensated. 
When using normal signals, the mean and variance of the MC method are similar to the ones 
obtained in numerical simulations, but the mean of the variance tends to grow for widths 
above 1/8 of the variance. However, since the improvement in the computed accuracy is 
small, it does not seem to compensate the increased complexity of the process. 

3.4 Discussion on interval-based simulations 
Section 3.1 has revealed the importance of using EIA in the interval-based simulation of DSP 
systems, particularly when they contain feedback loops. It has also shown that traditional IA 
provides overestimated results due to the cancellation problem. Although the analysis has 
been performed through a simple example, it can be shown that this problem occurs in most 
IIR realizations of order equal or greater than two. If there are no dependencies, IA provides 
the same results than AA, but AA is recommended to be used in the general case. In 
interval-based simulations of quantized systems, the affine forms must be modified to 
include all the possible values of the quantization operations without increasing the number 
of noise terms. The proposed approach solves the overestimation problem, and allows 
performing accurate analysis of linear systems with feedback loops. 
Another important conclusion is that, since the propagation of uncertainties in AA is 
accurate for linear computations, the features of AA perfectly match with the requirements 
of the interval-based simulations of digital filters and transforms. 
Section 3.2 has evaluated the effects of including one or more uncertainties in a deterministic 
signal. In addition to determining the maximum and minimum bounds of the variations of 
the signals in the frequency domain, the analyses have shown the position of the largest 
uncertainties. Since these amplitudes are not equal, the noise at the output of the FFT does 
not seem to be white. Moreover, its effect seems to be dependent on the position of the 
uncertainties in the time domain. The analyses based on interval computations have 
detected this effect, but they must be combined with statistical techniques to verify the 
results. A more precise understanding of these effects would help to recover weak signals in 
environments with low signal-to-noise ratios. 
In Section 3.3 the effects of using intervals or extended intervals of a given width in the 
Monte-Carlo method instead of the traditional numerical simulations has been analyzed. In 
the first part, the results show that this type of processing softens the edges and the peaks of 
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the PDFs, although these effects can be reduced by selecting smaller intervals or by 
preprocessing the probability function. In particular, normal distributions are better defined 
(due to the Central Limit Theorem) and, if the widths of the intervals are significantly 
smaller than the variance of the distribution, the differences with respect to the theoretical 
PDFs are smaller than with numerical simulations using the same number of samples. In the 
second part, the evolution of the mean and the variance of the mean and variance estimators 
has been studied for a normal PDF using the Monte-Carlo method for different interval 
widths. These estimators behave similarly than their numerical counterparts (slightly better 
in most cases), but the mean of the variance increases when the interval widths are greater 
than 1/8 of the variance of the distribution. Moreover, the increased complexity associated 
to the interval-based computations does not seem to compensate the small improvement of 
the accuracy of the statistical estimators in the general case.  
In summary, interval-based simulations are preferred when the PDFs are being evaluated, 
but these improvements are not significant when only the statistical parameters are 
computed. If the distributions contain edges (for example in the uniform or histogram-based 
distributions), a pre-processing or post-processing stage can be included to cancel the 
smoothing performed by the interval sets. Otherwise (such in normally distributed signals), 
this step can be avoided.  

4. Conclusions and future work 

This chapter has presented a detailed review of the interval-based simulation techniques 
and their application to the analysis and design of DSP systems. First, the main extensions of 
the traditional IA have been explained, and AA has been selected as the most suitable 
arithmetic for the simulation of linear systems. MAA has also been introduced for the 
analysis of nonlinear systems, but in this case it is particularly important to keep the number 
of noise terms of the affine forms under a reasonable limit. 
Second, three groups of experiments have been performed. In the first group, a simple IIR 
filter has been simulated using IA and AA to detail the causes of the oversizing of the IA-
based simulations, and to determine why AA is particularly well suited to solve this 
problem. In the second group, different deterministic traces have been simulated using 
intervals of different widths in some or all the samples. This experiment has revealed the 
most sensitive frequencies to the small variations of the signals. In the third group, the effect 
of including intervals in the computation of the statistical parameters using the Monte-Carlo 
method has been studied. Thanks to these experiments, it has been shown that interval-
based simulations can reduce the number of samples of the simulations, but the edges of the 
distributions are softened by this type of processing. 
Finally, it is important to remark that interval-based simulations can significantly reduce the 

computation times in the analysis of DSP systems. Due to their features, they are 

particularly well suited to perform rapid system modeling, verification of the system 

stability, and fast and accurate determination of finite wordlength effects. 
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