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Complex Digital Filter Designs for Audio 
Processing in Doppler Ultrasound System 

Baba Tatsuro 
Toshiba Medical Systems Corporation 

Japan 

1. Introduction 

A medical Doppler ultrasound system has a spectrum display that indicates the blood flow 
direction, whether the blood flows forward or away from a probe. It also has Doppler audio 
outputs. In particular, the latter is a special process peculiar to the Doppler ultrasound 
system and separates the blood flow direction and outputs from the left and right speakers.  
Owing to this function, the existence of a blood flow is quickly detectable. When changing 
conventional analog signal-processing into digital signal-processing, we researched many 
processing systems of Doppler audio. First, target performances, such as a response time 
and direction separation, were set up, and six kinds of digital signal-processing systems 
were examined. Further, we investigated some new anti-aliasing processing systems unique 
to Doppler ultrasound system. We compared three kinds of anti-aliasing processing 
systems. Consequently, we clarified that a complex IIR (infinite impulse response) filter 
system has an excellent response and a low calculation load. 

2. Outline of Doppler ultrasound system and conventional analog signal-
processing 

Recently, the diagnostic ultrasound system has been popular in many diagnostic fields, such 
as cardiac, abdomen, and so on. In Section 2.1, an example of diagnostic image and its 
principle are introduced. In Section 2.2, the phase shift system that is an example of 
representation of conventional analog signal-processing is introduced. 

2.1 Outline of Doppler ultrasound system 

An example of diagnostic image of a carotid artery is shown in Fig. 1. The upper is a 
tomogram image and bottom is a spectrum Doppler image. This image expresses the time 
change of the flow velocity in the PWD (Pulse Wave Doppler) range gate set up in the 
central of a blood vessel in a tomogram. A horizontal axis and a vertical axis are the flow 
velocities corresponding to Doppler shift frequency and time, respectively.  
Signal processing of the ultrasound echo signal is shown in Fig. 2. An ultrasonic wave is 
transmitted for every cycle of PRF (pulse repetition frequency: fs) in the transceiver 
processing part of Fig. 2(a), and a reflective echo is received. An ultrasonic beam is scanned 
in the transverse direction, and envelope detection of the received signal is carried out in the 
range direction. This scanning constitutes the tomogram image. 

www.intechopen.com



 
Applications of Digital Signal Processing 

 

212 

 

Fig. 1. Example of ultrasound diagnostic image of a carotid artery 

Except for Doppler signal processing, as another method of blood-flow or tissue velocity 
detection, the cross-correlation method using the signal before quadrature-detection 
processing (R (t) in Fig. 2(a)) has been also reported. However, the base-band signal (L (t) in 
Fig. 2(a)) processing after quadrature-detection is the present mainstream, because of its 
narrow bandwidth and little processing load. All the direction separation systems examined 
this time are the IQ-signal processing after quadrature-detection. The received signal R(t) in 
a range gate is denoted by a formula (1). Here, a reflective echo signal is assumed to be the 

amplitude iA , Doppler shift angle-frequency i , and phase i . 

    ( ) exp
i

i p i iR t A j t j           (1) 

The mixer output M(t) is denoted by a formula (2). Reference angle-frequency of a mixer is 

set to p  (same as probe Tx angle-frequency) here. 

 

 
    

( ) ( ) exp

1 1
exp 2 exp

2 2

p

i i

i p i i i i i

M t R t j t

A j t j A j t j



    

   

              
  (2) 

The LPF output L(t), high frequency component is removed is denoted by a formula (3). 

  1
( ) exp

2

i

i i iL t A j t j            (3) 

In Fig. 2(a) (R1), (R2), and (R3) show the position of the blood-vessel-wall upper part, the 
inside of a blood vessel, and the blood-vessel-wall lower part, respectively. Fig. 2(b) shows 
typical spectra of quadrature-detection output L(t), when a range gate is set in each position.  
A vertical axis shows power and the horizontal axis shows frequency, respectively. Since the 
sampling is interlocked with PRF of transmission, the vertical axis has a frequency range of 

/ 2fs . L(t) is mainly constituted from the low frequency component caused by the clatter 

(strong echo from tissue) and middle to high frequency component caused by weak blood-
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flow.  Also inside of blood vessel, a blood vessel wall and a transmit-wavelength influence 
the blood-flow signal. Then, in order to prevent the saturation of the frequency analysis or 
the Doppler audio processing, a wall-filter is arranged in pre-processing of them. The wall-
filter is HPF with high order cut-off property. The details of Spectrum Doppler signal 
processing are shown in Fig. 2(c). Range gate processing is the integration of L(t) in the 
range direction in the range gate. Wall-filter processing removes a clatter component.  The 
complex IQ-signal x(t) after these processing is inputted into the spectrum Doppler display 
processing and the Doppler audio processing. The former displays the spectrum Doppler as 
a time-change image of a flow velocity. The latter separates the direction of Doppler signal, 
and outputs them as stereo sounds from a right-and-left speaker. 
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Fig. 2. Doppler ultrasound signal-processing. 

2.2 Conventional analog signal-processing  

An analog phase-shift processing system that consists of all-pass filters has been used in the 

direction separation processing. The outline of it is shown in Fig. 3. This is a processing 

system that shifts the phase between the IQ-signals of 90 degree, and adds them or subtracts 

them. Since an all-pass filter has the characteristic that the phase reverses on cut-off 

frequency, this system shifts the phase in a target frequency range combining all-pass filter 

arrays. If it assumes that the input IQ-signal x(t) has a frequency component of d . 

 ( ) exp( )dx t j t     (4) 
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Fig. 3. Outline of analog direction separation system  
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Fig. 4. Frequency characteristics of all-pass filters 

In Fig. 4(b), the phase characteristics of I-channel and Q-channel are delayed as frequency 
becomes high. Here, the phase characteristics of I-channel and Q-channel are defined to be 

( )    and ( )  , respectively. The output of I-channel and Q-channel are set to PI(t) and 

PQ(t). 

  ( ) Re ( ) exp( ( ( ) )) ( ) sin( ( ))d dPI t x t j sign t               (5) 
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  ( ) Im ( ) exp( ( ( ))) sin( ( ))dPQ t x t j t            (6) 

Here,   is / 2  when Doppler frequency d  is positive, and   is /2  when d  is 

negative. So ( )dsign   means the polarity. The subtraction-output Forward(t) and the 

addition-output Reverse(t) are 

 ( ) ( ) ( ) ( ( ) 1) sin( ( ))d dForward t PI t PQ t sign t            (7) 

 Re ( ) ( ) ( ) ( ( ) 1) sin( ( ))d dverse t PI t PQ t sign t            (8) 

From the formulas (7) and (8), when d  is positive, only the Forward(t) serves as a non-

zero output. And when d  is negative, only the Reverse(t) serves as a non-zero output. Thus, 

IQ-signals are separable into positive-component and negative-component. Comparison of 

direction separation performance is shown in Fig. 5. The frequency-characteristic in the 

velocity range 4kHz (-2kHz to +2kHz) that is well used in diagnosis of the cardiac or 

abdomen is shown. A solid line shows the positive-component (Forward) and a dashed line 

shows the negative-component (Reverse). The direction separation performance of the phase-

shift system (conventional analog system) is shown in Fig. 5(a), and the direction separation 

performance of the complex IIR filter system (digital system referenced in section 3.2) is 

shown in Fig. 5(b).   

 

Frequency　(Hz)

Power (dB)

(a) the phase-shift system (analog)

(b) the complex IIR system (digital)

Frequency　(Hz)

Power (dB)

Forward

Forward

Reverse

Reverse

 

Fig. 5. Direction separation performance 

In Fig. 5, a filter-order to which hardware size becomes same is set up. In the complex IIR 

filter system, sufficient separation performance (more than 30 dB) is got except for near a 

low frequency and near the Nyquist frequency. On the one hand a ringing has occurred by 

the phase shift system, there is little degradation near the Nyquist frequency. Although the 

direction separation performance near a low frequency and near the Nyquist frequency can 

improve if the filter-order is raised in the complex IIR filter system, the processing load 

becomes large. It is although the ringing will decrease if range of the phase-shift system is 

divided finely, processing load becomes large similarly.   
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3. Comparison of six kinds of Doppler audio processing 

The digitization of Doppler ultrasound system had progressed in recent years, and the 
digital signal processing using DSP etc. can realize complex processing easily from the 
conventional analog-circuit. We made the target performances of the direction separating 
process of digital Doppler audio, and evaluated six kinds of digital-signal processing ideas 
that were pre-existing or were newly devised.  

3.1 Design of a target specification 

For the digitization, the target performance is investigated and taken up to Table 1. 
 

item target 

1. time-delay bellow 20ms (PRF 4kHz) 

2. direction separation above 30dB 

3. frequency characterization 
fs/128 to 63*fs/128 (both direction) 

flat as possible 

4. frequency resolution fs/100 

5. calculation volume light as possible 

Table 1. Requirement specification of Doppler audio direction separation 

Time-delay: 

A user usually sets up the Doppler range gate on a tomogram, moves it, and performs blood 
flow diagnosis with the Doppler ultrasound system. In searching for a small blood vessel, 
the Doppler audio is effective, because its response is faster than that of the spectrum image. 
This is because a tomogram set with the Doppler audio delays the outputs of about 20 ms, 
compared with the spectrum image that has a typical delay of about 40 ms. The time delay 
of tomogram processing is a few cycle of one frame (13.3 - 16.7 ms). In the Doppler signal 
processing system, it has a total processing delay of 10 ms by quadrature-detection and HPF 
processing, except for the Doppler processing part. Therefore, to make the tomogram and 
audio agree, a time delay of 3.3 - 6.7 ms is required at the Doppler signal processing part. 
However, because the direction separation process, which is the main factor of the Doppler 
signal processing part delay, requires a number of series samplings for processing, a target 
time delay is theoretically difficult to achieve. Therefore, the target time delay was set to be 
20 ms or smaller, so that the target delay time required for the direction separation process 
to store the Doppler audio is about one frame cycle at maximum in a tomogram. 

Direction separation:   

It has been reported that human's direction distinction requires a right-and-left signal 
difference of 15 to 20 dB or lager. In an actual Doppler ultrasound system, considering that 
the Doppler signal has a broad band, that the angle between the right-and-left speakers is 
small, and that blood flow velocity changes with time, a larger signal difference is required. 
The target performance of direction separation was set to be 30 dB or higher at observation 
frequency. 

Frequency characteristic:   

A signal processing frequency range is the range fs from negative-side Nyquist frequency to 
positive-side Nyquist frequency, where fs is input IQ-signal sampling frequency. We made 

the frequency characteristic flat in the region of /128fs  to 63 /128fs   range. 
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Frequency resolution:   

Since spectrum image signal processing involves 256-point FFT, an acceptable frequency 

(velocity) resolution is obtained. However, when the frequency resolution of the Doppler 

audio is unacceptable, similar to that of a small-pitch Doppler image, we set the target 

resolution to be fs/100. The frequency range is determined from sample frequency. 

However, the frequency resolution is proportional to the reciprocal of observation time. For 

example, in FFT, it is equivalent to the main robe width of the sampling function 

determined from observation time width and the window function. 

Calculation load:   

Although operation load is dependent on the hardware-architecture, such as DSP, ASIC, 

and FPGA, lighter load is more advantageous to cost, size, and power consumption in 

common. 

3.2 Six kinds of digital signal-processing ideas 

Six kinds of digital signal-processing systems that were pre-existing or newly devised are 

examined. They are shown in Fig. 6. 

 

(a) the Hilbert transform system (b) the complex FIR system (c) the complex IIR system

(d) the FFT/IFFT system (e) the modulation/demodulation system (f) the phase-shift system
 

 

Fig. 6. Six kinds of digital signal-processing systems 

Hilbert transform system:   

The delay of (filter tap length)/2 is given to I-channel of IQ-signals. It and the Hilbert 

transform output of Q-signal are subtracted or added. The direction separated signals are 

calculates by formulas (9) and (10). Here a convolution is indicated  . The tap number is 

set to 128 in the estimation of the calculation load shown in Table 3. 

    1( ) Re ( / 2) Im ( ) 1( )F n X n ntap X n h ntap       (9) 

    1( ) Re ( /2) Im ( ) 1( )R n X n ntap X n h ntap       (10) 

The coefficient h1 of Hilbert transform is given by a formula (11). 
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22 sin ( / 2)
1( ) ( 0)

0 ( 0)

n
h n n

n
n





  

 
 (11) 

Complex FIR system:   

There is a report of the Doppler audio separation processing using a complex FIR filter.  

However, since there is no description about a filter coefficient, we designed in a frequency 

domain and transformed into FIR coefficient in time domain using inverse Fourier 

transform. The output of complex FIR system is denoted by formulas (12) and (13). In the 

estimation of Table 3, the 128-tap coefficient sequence with the pass band of /128fs  to 

63 /128fs   is used. 

 2( ) ( ) 2( )F n X n HF ntap   (12) 

 2( ) ( ) 2( )R n X n HR ntap   (13) 

Complex IIR system:   

Based on the shift theory of Fourier transform, frequency shift is applied to z operators.  A 

real-LPF transfer function is changed into the positive-BPF and the negative-BPF. The 

complex IIR transfer functions become a formulas (14) and (15). 

 3( ) 3( ) ( )F z HF z X z    (14) 

 3( ) 3( ) ( )R z HR z X z   (15) 

When the transfer function of real LPF is set to RLPF (z), transfer functions of HF3 (z') and 

FR3 (z'') are calculated by transformed operators. In the estimation of Table 3, the filter with 

the 8th order Butterworth type is used.  

  3( ) 3( ')HF z RLPF z       where 'z j z     (16) 

 3( ) 3( '')HR z RLPF z     where ''z j z    (17) 

FFT/IFFT system:   

The IQ-signal is separated by the positive-filter and negative-filter in a frequency domain.  

Next, the separated spectra are returned to waveforms in time domain by inverse-FFT.  

There is a report of this system aiming at the Doppler noise rejection. For the continuous 

output after inverse-FFT, a shift addition of the time waveform is carried out in time 

domain.  The outputs of this system can be denoted by formulas (18) and (19). In estimation 

of Table 3, FFT/IFFT point number is set to 128, and used the frequency filter of /128fs  to 

63 /128fs   for separation. Moreover, Hamming window (h4) is applied, and 32 time-

series are shift-added. 

    4( ) Re ( ) ( ) 4( )F n IFFT WF FFT X n h n      (18) 
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     4( ) Re ( ) ( ) 4( )R n IFFT WR FFT X n h n    (19) 

Modulation/demodulation system:   
IQ signal is modulated and frequency is shifted +fs/4 and –fs/4. The positive-component (0 to 

+fs/2) and negative-component (-fs/2 to 0) are extracted by LPF. The +fs/4 shift and the –fs/4 

shift are returned by demodulation. The direction separation outputs are calculated by 

formulas (20) and (21). The example of Table 3 is referred to the prior art. The 128-tap FIR 

low-pass filter, which has 63/128 cut-off, is used. 

 5( ) ( ) exp ( ) exp
2 2

F n X n j n CLPF ntap j n
                    

     
   (20) 

 5( ) ( ) exp ( ) exp
2 2

R n X n j n CLPF ntap j n
                    

     
   (21) 

Phase-shift system:   

There are two sets of phase-shifter with the transfer characteristic that makes relative phase 

difference of IQ-signal 90 degree. The addition-and-subtraction of these outputs is used.  

The direction separation outputs are calculated by formulas (22) and (23). 

     6( ) Re ( ) 1( ) Im ( ) 2( )F z X z Phase z X z Phase z     (22) 

    6( ) Re ( ) 1( ) Im ( ) 2( )R z X z Phase z X z Phase z       (23) 

The two sets of phase-shifter are the cascade connection of second-order all-pass filter 

arrays. They are denoted by formulas (24) and (25) as a Phase1 (z) and a Phase2 (z). In the 

estimation of Table 3, the cascade connections of four steps of all-pass filters are used.  

Moreover, in order to improve the performance near the Nyquist frequency, an interpolator 

and a decimator are added before and after phase-shifter. Table 3 is calculated in N= 4, and 

the FIR filter of 2N tap is used as an interpolator. 

 
1

1
1

1( )
1

n
k

k k

z a
Phase z

a z









   (24) 

  
1

1
1

2( )
1

n
k

k k

z b
Phase z

b z









   (25) 

Above six kinds of signal-processing algorithms are confirmed by the simulation. The chirp-
waveform that frequency and a direction are changed is used as an input. The result of a 
simulation is shown in Fig. 7. Fig. 7(a) is an input signal and the sign of frequency has 
inverted near 200ck (equivalent to the time shown in the Fig. 7 broken line). A solid line is I-
signal and a dotted line is Q-signal. Figures 7(b) to (g) are output waveforms of each signal-
processing system. A solid line is a positive-output (forward) of the Doppler audio, and a 
dotted line is a negative-output (reverse) of the Doppler audio. Amplitude of positive-
output becomes large on the right-hand side of a broken line, and it becomes small on the 
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left-hand side of the broken line. Amplitude of negative-output becomes small on the right-
hand side of a broken line, and it becomes large on the left-hand side of the broken line.  
This result shows that each system works correctly. Moreover, it shows that the waveform 
and response time at the turning point of sign (near the DC) have a difference among the 
systems. As these causes, performance differences, such as the response characteristic and 
delay time, can be considered. 
 

(a) input signal

Time (ck)

Amplitude

Amplitude

Amplitude

Amplitude

Amplitude

Amplitude

Amplitude

(b) output signal of the Hilbert transform system

(c) output signal of the complex FIR system

(d) output signal of the complex IIR system

(e) output signal of the FFT/IFFT system

(f) output signal of the modulation/demodulation system

(g) output signal of the phase-shift system

I-channel

Q-channel

forward

reverse

forward

forward

forward

forward

forward

reverse

reverse

reverse

reverse

reverse

 

Fig. 7. Chirp wave responses 

3.3 Comparison of time-delay and calculation load 

The response is important for blood vessel detection, and the time-delay estimates it.  The 
simulation result of the time-delay is shown in Fig. 8. They are response waveforms of the 
sinusoidal-waveform that changes discontinuously. Solid line and dotted line are I-signal 
and Q-signal in Fig. 8(a). Amplitude and frequency are changing near the 50ck. The solid 
lines of Fig. 8(b) and Fig. 8(c) are positive-output waveforms, and dotted lines are negative-
output waveforms. The output waveform of the complex FIR system of Fig. 8 (b) changed 
from a turning point of the input shown with the dashed line after 64ck (time shown with 
the chain line among Fig. 8(b)), and is stable gradually. The output waveform of the 
complex IIR system of Fig. 8(c) is stable from the turning point after 8ck (time shown with 
the chain line among Fig. 8(c)). 
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The comparison of time-delay is shown in Table 2. Frequency resolution is adjusted by 
parameter of each system in accordance with the target performance of Table 1. Since the 
signal-processing inputs are sampled by fs, time-delay will become large if fs becomes 
low.  Table 2 is calculated by fs=4kHz condition. Incidentally by fs=1kHz, time-delay 
increases 4 times. The time-delay caused by operation is assumed zero, and estimated 
only the delay caused by sampling simply. Moreover, the influence of the transient 
response of the complex IIR system and the phase-shift system is not taking into 
consideration here. 
 

(a) input signal

Time (ck)

Amplitude

(c) output signal of the complex IIR system

(b) output signal of the complex FIR system
Amplitude

Amplitude

Time (ck)

Time (ck)

I-channel Q-channel

forward

forward

reverse

reverse

 

Fig. 8. Comparison of response between complex FIR method and complex IIR method  

 

method estimation time-delay (ms) 

Hilbert transform tap/fs 32 (tap=128) 

Complex FIR tap/fs 32 (tap=128) 

Complex IIR order/fs  (*1) 2 (order=8) 

FFT/IFFT 1.5*N/fs  (*2) 48 (N=128) 

Moduration/Demoduration tap/fs 32 (tap=128) 

Phase shift max(2,order/N)/fs  (*1) 1 (order=4, N=1) 
Estimated at fs=4kHz,  (*1) not including transient response,   (*2) IFFT shift addition pitch is N/4 

Table 2. Comparison of time-delay 

As calculation load depends on the hardware architecture, the multiplication and addition 

times per 1 second (floating point single precision) is used for this estimation. Moreover, the 

complex-multiplication is considered as 4 times, and complex-addition is considered as 

twice. The overhead of the processing which requires a lot of memory buffers is assumed to 

be 20%.  The other overhead is assumed to be 10%. The calculation elements, estimation 

formula and calculation load for each signal-processing systems are shown in Table 3.  

Incidentally, at fs=52 kHz (maximum PRF in actual system), calculation load increases 13 

times. The result of Table 2 and Table 3 shows that the complex IIR system and the phase-
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shift system are filling the target performance of time-delay. It turns out that calculation 

load is light in order of the phase-shift system, the complex IIR system, and the Hilbert 

transform system. 

 

method calculation component estimation equation 
load 
(MFLOPS) 

Hilbert 
transform 

R-add: (tap+1)*fs, R-mul: tap*fs 
Ovh: 20% 

fs*(2*tap+1)*1.2 
1.26 

(tap=128) 

complex FIR 
C-add: (tap-1)*2+fs, C-mul: 
tap*2*fs 
Ovh: 10% 

fs*(12*tap-4)*1.1 
6.74 

(tap=128) 

complex IIR 
C-add: order*4*fs, C-mul: 
order*4*fs 
Ovh: 10% 

fs*(24*order)*1.1 
0.84 

(order=8) 

FFT/IFFT 
C-add: N*r*3, C-mul: (N*r/2)*3
Ovh: 20%, R-mul: N*4 

12*N*r*1.2*(fs*4/N) 
(FFT shift addition, N/4 

shift) 

1.61 
(N=128, r=7) 

 modulation/ 
demodulation 

C-add: (tap-1)*2*fs 
C-mul: (tap+2)*2*fs, Ovh: 20% 

fs*(12*tap-12)*1.2 
7.32 

(tap=128) 

Phase-shift 

R-add: 
[2*N*(2*N+2*order)+2]*fs 
R-mul: 4*N*(N+order)*fs, Ovh: 
20% 

fs*[4*N*(N+order) 
+2*(N-1)]*1.2 

0.64 
(order=4,N=4) 

R-add: real addition,  R-mul: real multiplication,  Ovh: over head,  C-add: complex addition, 
C-mul: complex multiplication,  Calculation load is estimated at fs=4kHz

Table 3. Comparison of calculation load 

3.4 Comparison of a frequency characteristic and direction separation 

Frequency characteristic and direction separation performance are largely dependent on the 
filter property that are related to time-delay and calculation load. If the number of filter taps 
of FIR and the filter order of IIR are reduced, time-delay and calculation load will decrease. 
But these become the trade-off of frequency resolution and frequency characteristic. The 
Hilbert transform system frequency characteristic when changing the number of taps is 
shown in Fig. 9. The frequency characteristic near the Nyquist and near the DC has 
deteriorated, when the number of taps is short. This is the same also about the taps of the 
complex FIR system, the modulation/demodulation system and the FFT point number of 
the FFT / IFFT system. 
In order to compare the direction separation performance, the frequency characteristic 
simulation is performed. The frequency characteristics of positive-component (solid line: 
forward) and negative-component (dashed line: reverse) are shown in Fig. 10. The target 
performance of direction separation is filled except for the phase shift system. The stop-band 
property near the low frequency and near the Nyquist frequency is good in the Hilbert 
transform system, the complex FIR system, and the FFT/IFFT system. Exclude near the DC 
and near the Nyquist frequency, a sufficient separation performance (not less than 30 dB) 
and frequency characteristic are acquired by the complex IIR system and the 
modulation/demodulation system. The phase-shift system has generally insufficient 
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separation performance. The separation performance is deteriorated especially near the 
Nyquist frequency. 
 

Frequency (fs )

Power

(dB)

tap =8tap =32tap =128

 

Fig. 9. Example of frequency response:  the Hilbert transform system  
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Fig. 10. Frequency characterization and direction separation performance 

3.5 Conclusion 
We made the target performances of the direction separating process of digital Doppler 
audio, and evaluated six kinds of digital-signal-processing ideas that were pre-existing or 
were newly devised. The performances of each processing were evaluated by comparing 
many responses such as chirp or step and so on. The results are following. 
1. The complex IIR system and the phase-shift system are filling the target performance of 

response time. 
2. The target performance of direction separation is filled except for the phase-shift 

system. 
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3. All the systems fill the frequency characteristic. However, the frequency characteristics 
near the DC and near the Nyquist region are dependent on the filter characteristics of 
each processing system. 

4. Signal processing for Doppler audio anti-aliasing 

The direction separation system of the foregoing section is developed further, and the 
Doppler audio technology exceeding the Nyquist frequency is examined. Some direction-
separation systems for a Doppler audio that is interlocked with the baseline-shift of a 
spectrum image are investigated. First, section 4.1 explains a problem peculiar to the 
Doppler audio corresponding to the Doppler display processing. In section 4.2 we defined 
the target performance of anti-aliasing Doppler audio processing selected three kinds of 
signal-processing systems. In section 4.3 the various systems of the 
modulation/demodulation system, the FFT/IFFT system and the complex IIR Filter system 
are explained. Next, in section 4.4 the signal-processing algorithms are compared with the 
target performances. It was confirmed that the complex IIR band-pass filter system has an 
excellent response and a low calculation load. Finally, in section 4.5 using the blood-flow 
data collected from Doppler phantom, we performed functional and performance analyses 
by simulation shown in Fig. 22. 

4.1 Anti-aliasing display and conventional problem 

The Doppler ultrasound system extracts the blood flow component used in the quadrature-
detection of the Doppler signal from the blood (mainly an erythrocyte), which moves inside 
a blood vessel, and removes a reflective signal from tissue, such as a blood vessel wall with 
a high-pass filter, and transforms the Doppler component into an image and sound. The 
Doppler ultrasound system is shown in Fig. 11. The signal obtained after HPF processing is 
divided into two lines. Spectrum image processing generates a Doppler signal as a spectrum 
time change image corresponding to blood velocity, and Doppler audio processing outputs 
direction separation signals as stereo sound from the right-and-left speakers.  
 

Tx/Rx

Processing

HPF

B-Mode Image Processing

Spectrum

Image Proc.

Doppler

Audio Proc.

Quadrature

detection

Display

Left Speaker

Right Speaker

Probe

 

Fig. 11. Doppler ultrasound system. 

Because the Doppler signal contains phase information, the signal includes both positive-
side (forward) and negative-side (reverse) frequency components. If sampling frequency is 
set to be fs, the detection of a Doppler frequency component corresponding to the frequency 
range of -fs/2 to +fs/2 is possible. A spectrum image is shown in Fig. 12. The horizontal axis 
corresponds to time. The vertical axis corresponds to the velocity derived from Doppler shift 
frequency, and luminosity corresponds to the spectrum intensity of each time. Since a 
spectrum image is a power spectrum generated by complex FFT processing, it has the 
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frequency range of –fs/2 to +fs/2 on the baseline (0Hz) shown in Fig. 12(a). At the time (A) in 
Fig. 12, the frequency of the spectrum exceeds +fs/2 and aliasing is induced. The Doppler 
ultrasound system has an anti-aliasing display function (BLS: baseline-shift) that shifts a 
baseline to a negative side, as shown in Fig. 12(b), and expands a positive velocity range 
seemingly. Thus we can measure the peak velocity of blood flow easily. The power 
spectrum at the zero baseline-shift is shown in Fig. 13(a). The spectrum image at the -0.25*fs 
baseline-shift and the power spectrum corresponding to the time (A) in Fig. 12 are shown in 
Fig. 13(b). In the spectrum image, a baseline-shift is easily realized by changing the 
frequency read-out operation of the spectrum after FFT processing. However, since there is 
no baseline-shift function in the Doppler audio, a baseline-shift is not realized in spectrum 
imaging and Doppler audio processing. For example, although a negative-component is lost 
in the spectrum image shown in Fig. 13(b), since Doppler sound is still in the state shown in 
Fig. 13(a), it displays a negative-output and does not correspond to the Doppler image. 
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(a) baseline-shift=0 (b) baseline-shift=-0.25・fs
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Time
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Fig. 12. Spectrum Doppler image 
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Fig. 13. Spectrum display area and baseline shift. 

4.2 Anti-aliasing processing of Doppler audio and its target performance 

To solve the problem of the spectrum image and Doppler audio not working together, we 
examined the signal processing system of the Doppler audio to determine the possible type 
of baseline-shift. On the other hand, since IQ-signals after quadrature-detection had little 
merit at a small operation load in narrow-band processing, we examined a realization 
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method based on the IQ-signals. The Hilbert transform, complex FIR filter, phase-shift, 
complex IIR filter, FFT/IFFT and modulation/demodulation systems also indicated that the 
direction separation system of the Doppler audio does not allow a baseline-shift. Among 
these systems, the Hilbert transform and phase-shift systems enable direction separation by 
addition and subtraction between signals with a 180-degree phase-difference. Since an input 
IQ-signal has a 90-degree phase difference, these systems give a phase-difference of 90 
degree between channels with a filter. Since the phase-difference of an IQ-signal stops being 
90 degree when sampling frequency is doubled as a countermeasure, in the Hilbert 
transform and phase-shift systems, which make the phase-difference between channels a 
simple 90 degree, direction separation is difficult. Moreover, the complex FIR filter system 
involves the same pre-processing step as that in the complex IIR filter system, and anti-alias 
processing becomes possible.  However, since the length of a FIR coefficient sequence 
doubles, the operation load increases. On the other hand, the FFT/IFFT system can reduce 
the operation load by diverting the FFT output of spectrum Doppler imaging processing. 
When the FFT output is diverted, the returning anti-alias processing can be performed only 
by inverse-FFT and shift-addition. The modulation/demodulation and the complex IIR filter 
systems mainly involve the multiplication of modulation/demodulation and IIR filter 
processing. Thus, their calculation processing is easy, and the increase in calculation load by 
anti-aliasing processing is small. As mentioned above, from the viewpoints of calculation 
load reduction and anti-alias processing feasibility, we chose and examined the following 
three systems: the modulation/demodulation, the FFT/IFFT, and the complex IIR systems. 
When evaluating these systems, we showed the same target performance required as that of 
the Doppler ultrasound system in Table 4. The items 1 to 4 (time-delay, direction separation, 
frequency characteristic, frequency resolution) are same as table 1.  
 

item target 

1.  time-delay bellow 20ms (fs=4KHz) 

2.  direction separation above 30dB 

3.  frequency characterization 
-fs/128 to –127*fs/128, fs/128 to 127*fs/128  
flat as possible 

4.  frequency resolution fs/100 

5.  baseline-shift range -fs/2 to +fs/2  (-0.5 to 0.5) 

Table 4. Target specification of Doppler audio processing. 

 

baseline-shift -0.5 -0.25 0 0.25 0.5 

FB: band-width of forward 4/8 3/8 2/8 1/8 0 

FBC: center freq. of forward 4/16 3/16 2/16 1/16 0 

RB: band-width of reverse 0 1/8 2/8 3/8 4/8 

RBC: center freq. of reverse 0 -1/16 -2/16 -3/16 -4/16 
Notes: Baseline shift, FB, FBC, RB and RBC are normalized by fs. 

Table 5. Frequency shift and bandwidth table of baseline-shift 

Baseline-shift range:   

The baseline-shift range is considered to be -0.5*fs to +0.5*fs to enable range expansion on 

the positive and negative sides to twice the Nyquist frequency range. The ranges of both 
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sides correspond to the baseline-shift shown in Table 5. FB and RB indicate the bandwidths 

on the positive (forward) and negative (reverse) sides, whereas FBC and RBC, the center 

frequencies on the same sides, respectively. These are normalized using fs. Although five 

stages were used from the baseline shift range of -0.5 to +0.5 in this example, a small setup is 

possible with the actual Doppler ultrasound system.  

4.3 Three kinds of digital signal-processing ideas 
4.3.1 The modulation/demodulation system 

The block diagram of the modulation/demodulation system is shown in Fig. 14. The IQ-

signal is modulated with two sets of quadrature modulators. Thereby, the frequency of the 

signal induces a +FBC shift on the positive-side and a –RCB shift on the negative-side. Next, 

Nyquist frequency is doubled by zero insertion, and applying band limitations on the 

positive and negative sides demodulates signals. The input signal (equivalent to (A) in Fig. 

12) with the aliasing spectrum in Fig. 15(a) is modulated, and the spectra indicating the 

+FBC, and -RCB shifts of the frequency of the signal are shown in Figures 15(b) and 15(c), 

respectively. A positive-side component and a negative-side component are extracted by 

carrying out a baseline-shift and applying a band limitation using the bandwidths of FB  

and RB  in the passage regions of LPF1 (z) and LPF2 (z). The spectra of the LPF1 (z) and 

LPF2 (z) outputs are shown in Figures 15(d) and 15(e). Since sampling frequency has 

doubled after an LPF output, the direction separations on the positive and negative sides 

that shift the frequencies of -FBC/2 and +RCB/2 by demodulation, and are denoted by BPF1 

(z) and BPF2 (z) in Fig. 15(f) are realizable. Although the spectrum in Fig. 15 (equivalent to 

the aliasing (A) in Fig. 12) is outputted to the negative side for the Nyquist frequency fs/2, it 

can extract the positive-side component beyond the Nyquist frequency in Fig. 15( f). The 

operation was changed and performed in the calculation example shown in Table 7. For 

response improvement, we did not use a FIR filter for LPF but the 8th IIR filter with an 

equivalent performance. 
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Fig. 14. Block diagram of the modulation/demodulation system 
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Fig. 15. Frequency design of the modulation/demodulation system 

4.3.2 The FFT/IFFT system 

The block diagram of the FFT/IFFT system is shown in Fig. 16. Two sets of filters 
corresponding to the baseline-shift separate the IQ-signal after FFT processing. These filters 

are realized by applying  WF   and  WR   with the characteristics of FB, RB, FBC, and 

RBC shown in Table 6. Next, the separated spectra are returned to the time domain signals 
by inverse-FFT. Since the frequency range expands on the basis of the baseline-shift, we 
perform twice-point inverse-FFT. Further shift in time waveform after inverse-FFT is carried 
out, and a continuous output is obtained. The power spectrum of the IQ-signal after FFT is 
shown in Fig. 17(a). When the baseline-shift is terminated, the spectrum in the figure 
(equivalent to the aliasing (A) in Fig. 12) is observed on the negative-side. However, by 
operating the read-out address of FFT, the positive display range is expanded and observed 

on the positive-side. Similarly, by carrying out inverse-FFT processing with  WF   and 

 WR   with a frequency twice that of sampling ( 2 fs ), the frequency range of the Doppler 
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Fig. 16. Block diagram of the FFT/IFFT system 
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audio is expanded, and the positive-side component in Fig. 17 (b) and the negative-side 

component in Fig. 17 (c) are obtained. In the calculation example shown in Table 7, we 

perform 128-point FFT and 256-point inverse-FFT. Moreover, we perform the shift-

addition of 32 time series data to which the Hamming window is applied after inverse-FFT.  

 

(a) spectrum of IQ-input (c) IFFT reverse component extracted by WF(ω)
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Fig. 17. Frequency design of the FFT/IFFT system 

4.3.3 The complex IIR filter system 

The signal processing block diagram of the complex IIR filter system is shown in Fig. 18. 

Zero insertion is carried out with a pre-treatment, and Nyquist frequency is increased. Next, 

two complex band-pass filters separate both components directly. The frequency 

characteristics of the transfer functions Hf (z) and Hr (z) with the bandwidths of FB and RB 

(one side bandwidth) for LPF are shown in Figures 19(a) and 19(b). On the basis of the 

Fourier transform shift theory, the frequency shifts (FBC and RBC) are applied to z 

operators, and a transfer function of LPF changes to the positive-side and a negative-side 

band-pass filters. Operator z is transformed to ' exp( )z z j FBC     and 

'' exp( )z z j RBC    . The frequency characteristics of the complex band-pass filters Hf (z') 

and Hr (z'') enable the +FBC and -RBC frequency shifts are shown in Fig. 19(c). In the 

calculation example shown in Table 7, we use the 8th Butterworth filter by considering the 

response of direction separation. 
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Fig. 18. Block diagram of the complex IIR filter system 
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(c) spectra of complex BPF Hf(z')  and Hr(z'')
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Fig. 19. Frequency design of the complex IIR filter system 

4.4 Performances 

To satisfy the target performances of frequency resolution and frequency characteristics 
shown in Table 6, we set up parameters for all the systems, such as the order of the filters 
and the FFT number. We use the 8th Butterworth filter with cut-off 0.495*FB*fs and 
0.495*RB*fs for the LPFs of the modulation/demodulation and complex IIR filter systems.  
We perform 128-point FFT and 256-point inverse-FFT involved in the FFT/IFFT system, and 

we apply rectangular weight to  WF   and  WR  .   

 

system estimation delay (ms) 

modulation/demodulation order/fs   (*1) 2 (order=8) 

FFT/IFFT 0.75*N/fs  (*2) 24 (N=128) 

complex IIR order/fs   (*1) 2 (order=8) 
Delay is estimated at fs=4 kHz.  (*1) not including transient response 
(*2) IFFT shift addition pitch is N/4.

Table 6. Time-delay of Doppler audio processing 

 

System calculation component estimation equation 
load 

(MFLOPS) 

modulation/demodulation
C-add: order*8*fs 
C-mul: (order*8+6)*fs 
Ovh:   20% 

fs*(48*order+24)*1.2 
1.96 

(order=8) 

FFT/IFFT 

C-add: N*r1+4*N*r2 
C-mul: N*r1/2+2*N*r2
R-mul: 2N*6 
Ovh:   20% 

(2fs*4/N)*N*(12+6*r1 
+12*r2)*1.2 

5.76 
(N=128) 

(r1=7,r2=8) 

complex IIR 
C-add: order*8*fs 
C-mul: order*8*fs 

fs*(48*order)*1.2 
1.84 

(order=8) 
R-add: real-addition, Rmul: real-multiplication, Ovh: over head, C-add: complex-addition, 
C-mul: complex-multiplication,  IFFT shift addition pitch is N/4.   
Calculation volume is estimated at fs=4 kHz.

Table 7. Calculation load of Doppler audio processing 
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First, the time-delays theoretically determined from the above-mentioned parameters and 
calculation loads are shown in Tables 6 and 7, respectively. Since the signal processing input 
is sampled using fs, delay time increases with a decrease in fs. Table 6 shows the time-delay 
calculation result for a typical fs=4 kHz diagnostic operation. Moreover, we simply estimate 
the time-delay from the calculation load itself considered to be zero by sampling, and the 
estimated values are not affected by the transient response. Since the operation load 
depends strongly on the hardware-architecture that performs signal processing, we evaluate 
the frequency of multiplication/addition for 1 s (single-accuracy floating point). The 
calculation element for every signal processing system, calculation-load estimated formula 
and operation load per second (fs=4 kHz) are shown in Table 7. The estimated results in 
Tables 6 and 7 show that the complex IIR filter system and the modulation/demodulation 
systems are fulfilling the time-delay performance goal. Regarding the calculation load, the 
complex IIR filter system is the smallest, the modulation/demodulation system is slightly 
larger, and the FFT/IFFT system is the largest, but still small compared with previously 
reported values.  Next, we perform a simulation to check whether we can meet the 
frequency feature of the performance goal in Table 4. We sweep the frequency of the input 
IQ-signal and measure the powers of the positive-side and negative-side outputs. 
We evaluate simultaneously the frequency features and direction separation performance at 

this time. The frequency features of the direction separation output according to the three 

signal processing systems are shown in Fig. 20. A solid line denotes the positive-side 

component, and a dashed line, the negative-side component. The horizontal axis indicates 

the frequency range from -fs to +fs. Moreover, the spectrum image display range 

corresponding to the frequency range is shown in the bottom rail. The output feature of the 

Doppler audio at the zero baseline-shift is shown in Figures 20(a), 20(c) and 20(e), and that 

of +0.4*fs baseline shift is shown in Figures 20(b), 20(d) and 20(f). From these results, we 

confirm that the frequency feature in each signal processing system of the Doppler audio 

corresponds to the baseline-shift of the spectrum image. Here, we consider that owing to the 

effect of the shift-addition in the Hamming window of the FFT/IFFT system, the component 

near DC in Figures 20(c) and 20(d) is missing. Since this missing part has a value lower than 

the typical setting value of cut-off frequency for the high-pass filter (equivalent to HPF in 

Fig. 11) of the preceding process, we do not encounter any problem. Moreover, we observe 

that the separation degrees of the positive-side component in Figures 20(b) and 20(f) are 

insufficient. We consider that the cut-off features (the 8th Butterworth filter is used in the 

simulation) of the modulation/demodulation and the complex IIR filter systems can be 

improved by making them steep. However, in the case of using an IIR filter, we should 

expand the internal bit length (dynamic range), because the increased load is expected to be 

affected by quantizing noise. For example, although Figures 20(e) and 20(f) are calculated 

using the single floating point (24-bit mantissa) in the simulation, by increasing cut-off 

frequency or filter order, mantissa bit length (accuracy) may be insufficient and the 

calculation load or hardware scale may increase. Although we use the Butterworth filter this 

time, we can choose the Chebysev filter and acquire a steep cut-off feature. On the other 

hand, the frequency feature and direction separation performance near cut-off frequency 

deteriorate with a ripple and rapid phase change.  

From the above results, we observe that in choosing the response and calculation load, the 

complex IIR filter system is the most effective. On the other hand, the FFT/IFFT system is 

the most effective in choosing the frequency feature, although the response is poor. Since the 

www.intechopen.com



 
Applications of Digital Signal Processing 

 

232 

response is more important than the frequency feature clinically, and the target performance 

in Table 4 is fulfilled mostly, we consider the complex IIR filter system to be the best device 

for the direction separation of the Doppler audio system. 
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Fig. 20. Frequency characterization of Doppler audio output 

4.5 Implementation of complex IIR filter system 
4.5.1 Signal processing simulation 

We examine the possibility of using the complex IIR filter system in signal processing 
simulation. The input signal is conceived to be for the actual venous blood model. The 
model consists of a noise component (white noise), a blood vessel wall component (clutter: 
low frequency high power), and a blood flow component. The powers and frequencies of 
these components are shown in Table 8. The input and output waveforms and power 
spectra of the processing blocks in the complex IIR filter system are shown in Fig. 21. The 
amplitude of the left-hand-side waveform is normalized by clutter amplitude to be 2.  
Moreover, 256-point FFT with a Hanning window is applied to the calculation of the right-
hand-side power spectrum. Figures 21(a) and 21(c) show the input and output waveforms of 
zero insertion processing, respectively. A solid line denotes the I-component, and a dashed 
line, the Q-component. Figures 21(e) and 21(g) show the Doppler audio outputs of both 
directions at the zero baseline-shift. A solid line denotes the real component, and a dashed 
line, the imaginary component. Figures 21(i) and 21(k) show the Doppler audio outputs of 
both directions at the +0.4*fs baseline-shift. A solid line denotes the real-component, and a 
dashed line, the imaginary-component. Figures 21(b), 21(d), 21(f), 21(h), 21(i) and 21(l) show 
power spectra corresponding to the waveforms in the time domain. The aliasing spectra of 
blood flow and clutter are observed in Fig. 21(d) for a zero insertion processing output.  
Moreover, the approximately –20 dB DC component is observed at the center of the spectra.  
This DC component, which is not removed using the Hanning window, does not affect the 
latter complex band-pass filter processing. From the positive-side output waveform at the 
zero baseline-shift shown in Fig. 21(e), we confirm that the blood flow component of +0.24*fs 
frequency is separated on the positive-side. Moreover, in the power spectrum shown in Fig. 
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21(f) in addition to the blood flow component, we observe that the clutter component (-
0.08*fs) remains on the negative-side under the effect of the filter element. In the negative-
side output waveform at the zero baseline-shift in Fig. 21(g), the separation of the clutter 
component (-0.08*fs) is observed on the negative-side. Moreover, in the power spectrum in 
Fig. 21(h), a clutter component and a DC component are detected. When the baseline shift is 
+0.4*fs, the spectrum image and Doppler audio must generate a negative region larger than 
a positive region. The positive-side output waveform after the baseline shift in Fig. 21(i) 
shows the disappearance of the clutter component (+0.24*fs). Moreover, we confirm the 
absence of the blood flow component in the power spectrum shown in Fig. 21(j). We also 
confirm that a novel blood flow component (-0.76*fs), which is an alias component (+0.24*fs), 
is outputted into the negative-side output waveform after the baseline-shift in Fig. 21(k), 
except for the clutter component (-0.08*fs). Moreover, in the power spectrum in Fig. 21(l), we 
confirm that the blood flow and clutter components are separated on the negative-side. 
 

(a) IQ-input signal (b) spectrum of (a)

(c) after zero insertion waveform (d) spectrum of (c)

(e) forward output (BLS=0) (f) spectrum of (e)

(g) reverse output (BLS=0) (h) spectrum of (g)

(i) forward output  (BLS=+0.4・fs ) (j) spectrum of (i)

(k) reverse output (BLS=+0.4・fs ) (l) spectrum of (k)
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Fig. 21. Simulation waveform and spectrum of complex IIR filter system. 

www.intechopen.com



 
Applications of Digital Signal Processing 

 

234 

components blood noise clutter 

power -6dB -20dB 0dB 

frequency 0.24*fs (white noise) -0.08*fs 

Table 8. Components of simulation input model 

4.5.2 Implementation 

On the basis of the Doppler IQ-signal of the carotid artery collected with the actual Doppler 

ultrasound system, an example of anti-aliasing signal processing of the Doppler audio is 

shown in Fig. 22. We use a string phantom (Mark 4 Doppler Phantom: JJ&A Instrument 

Company) and the ultrasonic diagnosis equipment (SSA-770A: Toshiba Medical Systems 

Corporation) for generating and collecting the Doppler signal. We use PLT-604AT (6.0 MHz 

linear probe) at PRF=4 kHz equivalent to fs. We collect the IQ-data in PWD mode. 

Moreover, we set cut-off frequency at an HPF of 200 Hz for clutter removal. The output 

waveforms of both sides of the Doppler audio and spectrum image obtained from the IQ-

data are shown in Fig. 22. In this figure, in the vicinity of 0.9 s, the baseline-shift is switched 

into -0.4*fs from 0. At the zero baseline-shift, we observe aliasing in the spectrum image 

shown in Fig. 22(a) and a negative-side output in Fig. 22(c). However, we confirm that the 

positive-side display range of the spectrum image expands after a baseline-shift and is 

interlocked with the Doppler audio. Although it is not observed in Fig. 22, the characteristic 

of the band-pass filter changes immediately after a baseline-shift. We will continue to 

examine the transient response of the Doppler audio under this effect and to consider 

implementation technologies, such as muting. 

 

(a) spectrum image

(b) forward output

(c) reverse output

Time (s)

Time (s)

Time (s)

Frequency (kHz)

Amplitude (V)

Amplitude (V)

 

Fig. 22. Doppler spectrum display and audio output waveform 

4.6 Conclusion 

We developed the direction separation system of a Doppler audio interlocked with the anti-
aliasing processing of a spectrum image using a complex IIR band-pass filter system. 
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First, we defined the target performance of Doppler audio processing and selected three 
signal-processing systems. We developed processing algorithms and compared their 
performances. Consequently, we confirmed that the complex IIR band-pass filter system has 
an excellent response and a low calculation load. Next, we performed functional and 
performance analyses by simulation with the data collected using a Doppler signal model 
and a phantom. Conventionally, although in the anti-aliasing process unique to a Doppler 
ultrasound system, the image and audio did not correspond, since it was applied only to a 
spectrum image, we could solve this problem by this signal processing. 
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