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1. Introduction    

Compressive sensing (CS) has been widely investigated as a method to reduce the sampling 

rate needed to obtain accurate measurements of sparse signals (Donoho, 2006; Candes & 

Tao, 2006; Baraniuk, 2007; Candes & Wakin, 2008; Loris, 2008; Candes et al., 2011; Duarte & 

Baraniuk, 2011). CS depends on mixing a sparse input signal (or image) down in dimension, 

digitizing the reduced dimension signal, and recovering the input signal through 

optimization algorithms. Two classes of recovery algorithms have been extensively used. 

One class is based on finding the sparse target vector with the minimum ell-1 norm that 

satisfies the measurement constraint: that is, when the vector is transformed back to the 

input signal domain and multiplied by the mixing matrix, it satisfies the reduced dimension 

measurement. In the presence of noise, recovery proceeds by minimizing the ell-1 norm plus 

a term proportional to ell-2 norm of the measurement constraint (Candes and Wakin, 2008; 

Loris, 2008). The second class is based on „greedy“ algorithms such as orthogonal matching 

pursuit (Tropp and Gilbert, 2007) and iteratively, finds and removes elements of a discrete 

dictionary that are maximally correlated with the measurement.  

There is, however, a difficulty in applying these algorithms to CS recovery for a signal that 
consists of a few sinusoids of arbitrary frequency (Duarte & Baraniuk, 2010). The standard 
discrete Fourier transform (DFT), which one expects to sparsify a time series for the input 
signal, yields a sparse result only if the duration of the time series is an integer number of 
periods of each of the sinusoids. If there are N time steps in the time window, there are just 
N frequencies that are sparse under the DFT; we will refer to these frequencies as being on 
the frequency grid for the DFT just as the time samples are on the time grid. To recover 
signals that consist of frequencies off the grid, there are several alternative approaches: 1) 
decreasing the grid spacing so that more signal frequencies are on the grid by using an 
overcomplete dictionary, 2) windowing or apodization to improve sparsity by reducing the 
size of the sidelobes in the DFT of a time series for a frequency off the grid, and 3) scanning 
the DFT off integer values to find the frequency (Shaw & Valley, 2010). However, none of 
these approaches is really practical for obtaining high precision values of the frequency and 
amplitude of arbitrary sinusoids. As shown below in Section 6, calculations with time 
windows of more than 10,000 time samples become prohibatively slow; windowing distorts 
the signal and in many cases, does not improve sparsity enough for CS recovery algorithms 
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to work; scanning the DFT off integer values requires performing the CS recovery algorithm 
over and over again with an unknown sparse transform and becomes prohibitively 
expensive when the number of sinusoids in the signal exceeds 1.  
Here we present a new approach to recovering sparse signals to arbitrary accuracy when the 

parameters of the signal do not lie on a grid and the sparsifying transform is unknown. Our 

approach is based on orthogonal matching pursuit (OMP), which has been applied to 

recovering CS signals by many authors (Donoho et al., 2006; Tropp and Gilbert, 2007; Liu 

and Temlyakov, 2010; Huang and Zhu, 2011). The major difference between our work and 

previous work is that we add a nonlinear least squares (NLS) step to each OMP iteration. In 

the first iteration of conventional OMP applied to finding sinusoids, one finds the frequency 

that maximizes the correlation between the measurement matrix evaluated on an 

overcomplete dictionary and the CS measurement, solves a linear least squares problem to 

find the best estimate of the amplitude of the sinusoid at this frequency, and subtracts this 

sinusoid multiplied by the measurement matrix from the CS measurement. In the second 

iteration, one finds the frequency that maximizes the correlation between the measurement 

matrix and the residual measurement, solves a least squares problem for both frequencies to 

get new estimates of both amplitudes, and subtracts the sum of the two sinusoids multiplied 

by the measurement matrix from the previous residual. This process is described in detail in 

„Algorithm 3 (OMP for Signal Recovery)“ in the paper by Tropp and Gilbert (2007) and in 

our Table 1 in Section 3. Our approach proceeds in the same way as conventional OMP but 

we substitute a Nonlinear Least Squares step for the linear least squares step. In the NLS 

step, we use a minimizer to find better values for the frequencies without reference to a 

discrete grid. Because the amplitudes are extremely sensitive to the accuracy of the 

frequencies, this leads to a much better value for the amplitudes and thus to a much more 

accurate expansion of the input signal. Just as in conventional OMP, we continue our 

algorithm until a system level threshold in the residual is reached or until a known number 

of sinusoids is extracted. A related procedure for matching pursuit but not yet applied to 

compressive sensing or orthogonal matching pursuit is described by Jacques & De 

Vleeschouwer (2008). What we refer to as the NLS step appears in their Section V, eq. (P.2).  

Our approach to CS recovery differs from most methods presented to date in that we 

assume our signal (or image) is sparse in some model as opposed to sparse under some 

transform. Of course, for every sparse model there is some sparsifying transform, but it may 

be easier in some problems to find the model as opposed to the transform. Models 

inevitably involve parameters, and in most cases of practical interest, these parameters do 

not lie on a discrete grid or lie on a grid that is too large for efficient discrete processing 

techniques (see the discussion in Section 1 of Jacques & De Vleeschouwer, 2008). For 

instance, to recover the frequency of a sinusoid between 0 and 1 to precision of 10-16 would 

require 1016 grid points. While we first developed our method to find the frequency and 

amplitude of sinusoids, like OMP it is readily adaptable to signals that are the superposition 

of a wide range of other models. In Section 2, we present background material on the OMP, 

NLS and CS methods on which our method is based. In Section 3, we develop the model-

based OMP/NLS formulation. Sections 4 and 5 contains the application to signals that 

consist of a sum of a small number of sinusoids. Section 6 compares performance of our 

algorithm to conventional OMP using a linear least square step and to penalized ell-1 norm 

methods.  
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2. Background 

Our method and results rely heavily on work in three well-known areas: orthogonal 
matching pursuit, nonlinear least squares and compressive sensing.  

2.1 Compressive sensing 

In compressive sensing (Donoho, 2006; Candes & Tao, 2006; Baraniuk, 2007), a sparse vector 
s of dimension N can be recovered from a measured vector y of dimension M (M << N) after 

transformation by a sensing matrix  as shown in eq. (1) 

 y =  s + n  (1) 

where n is a noise vector. Often,  is factored into two matrices,  =  where  is a 

„random” mixing matrix and  is a Hermitian matrix with columns that form a basis in 
which the input vector is sparse. A canonical example is the case in which the input is a time 
series with samples taken from a single sinusoid with an integer number of periods in the 
time window. These data are not sparse but are transformed into a sparse vector by the 
discrete Fourier transform (DFT). Note that although  is not square and hence not 

invertible,  is both square and invertible. Work in compressive sensing has shown 
(Donoho, 2006; Candes & Tao, 2006; Baraniuk, 2007) that under quite general conditions, all 
N components of s may be recovered from the much smaller number of measurements of y. 
With no noise (n = 0) recovery proceeds by minimizing the ell-1 norm of a test vector s’ (the 
ell-1 norm of s‘ is given by the sum of the absolute values of the elements of s’) subject to the 
constraint y =  s’. In the presence of noise, recovery proceeds by minimizing a linear 
combination of the ell-1 norm of the target vector and the ell-2 norm of the residual vector 

given by y -  s  

 s’() = argmins(||s||1  + || y -  s ||2) (2) 

where the parameter  is chosen such that the signal is optimally recovered (Baraniuk, 2007; 
Loris, 2008). 

2.2 Orthogonal Matching Pursuit method  

Orthogonal matching pursuit (OMP) is an alternative method that can be used to find the 

target vector s from the measurement vector y. Matching pursuit has a rich history in signal 

processing long before CS and has appeared under many names (Mallat & Zhang, 1993; Pati 

et al., 1993; Davis et al., 1997). With the advent of CS, many variants of OMP have been 

applied to recovery including methods called MOMP, ROMP, CoSaMP, etc. (Needell and 

Tropp, 2008; Needell and Vershynin, 2009; Huang and Zhu, 2011) but with one exception 

(Jacques and De Vleeschouwer, 2008) discussed below, all of these methods recover 

frequencies (or other parameters) from discrete grids.  

The basic idea of all matching pursuit algorithms is to minimize a cost function to obtain 
frequencies of sinusoids present in the signal. First, take the frequency corresponding to the 
smallest value of the cost function and calculate the linear least squares estimate for the 
complex amplitude at this frequency. Second, mix this sinusoid with the known CS mixing 

matrix  and remove this mixed approximation to the first sinusoid from the CS 
measurement vector [y in eq. (1)]. This process is repeated until a known number of 
sinusoids is found or a system-defined threshold is reached. For frequencies not on the DFT 
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grid of the time series, OMP can be improved by evaluating the cost function on an 
overcomplete dictionary (Candes et al. 2011), but as in the ell-1 estimates discussed above, 
this step becomes computationally intractable long before machine precision can be 
obtained for arbitrary frequencies.  

2.3 Nonlinear Least Squares method 

Here we follow the development of nonlinear least squares (NLS) given by Stoica and 
Moses (1997). Their eq. (4.3.1) defines a cost function to be minimized as a function of the 
vectors   

 f() = t |y(t) - k kexp[i(kt+k)]|2 (3)  

where the sums are over the number of sinusoids present in the signal, k = 1 to K and the 
time points run from t = 0 to N-1. Stoica and Moses also show (see their eqs. 4.3.2-4.3.8), that 

the frequency vector  is the critical unknown and the amplitude and phase (or complex 

amplitude) are simply „nuisance“ parameters that are obtained from . While eq. (3) 
appears to require simultaneous solution for three real vectors, each of length K, Stoica and 
Moses (eqs. 4.3.2-4.3.8) show that the problem can be reduced to solving for just the 

frequency vector  and that the complex amplitude vector can be calculated directly from 
the frequency vector. We use a version of these equations below in eqs. (8) and (13).  
In principle, solution of the CS analog of eq. (3) could be performed to directly obtain the 
parameters of a sparse signal, but in practice, direct solution of eq. (3) is not computationally 
practical (Stoica and Moses, 1997). The difficulty is that even for a small K, eq. (3) is highly 
multimodal (see for example, Fig. 1 in Li et al., 2000) and the solution requires extremely 

good first guesses for the vector . Even with good initial values for , performance 
guarantees are difficult to find and continue to be the subject of intense investigation (Salzo 
and Villa, 2011 and references therein).  
Similar two-step model-based approaches to estimating the frequency and amplitude of real 
and complex sinusoids have been discussed previously in the literature (Stoica et al., 2000: 
Li et al., 2000; Chan and So, 2004; Christensen and Jensen, 2006). Stoica et al. discuss the use 
of NLS to obtain the amplitude for complex sinusoidal signals given the frequency; Li et al. 
and Chan and So discuss a combined matching pursuit NLS approach similar to ours for 
obtaining the frequencies of complex and real harmonic sinusoidal signals, respectively; and 
Christensen and Jensen use matching pursuit plus NLS to estimate frequencies in a signal 
that is the sum of arbitrary frequency real sinusoids. To the best of our knowledge, our 
paper is the first application of an OMP/NLS algorithm to estimate the frequency and 
amplitude from CS measurements.  

3. Formulation of OMP with an NLS step for CS  

3.1 Mathematical development 

Consider a continuous time signal X(t) consisting of K complex sinusoids of the form  

  
(4)

 

where ak is the complex valued amplitude and fk is the real valued frequency of the kth 
sinusoid. This signal model is broadly applicable [see Duarte and Baraniuk (2010) and 
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references therein]. We take fmin = 0 and fmax = 1 to set up our test problem; we sample X(t) 

at the Nyquist rate for complex signals, t = 1/fmax=1, to obtain the sampled time series XS 
of length N from t = 0 to t = N-1 where N is the number of time samples. As in all 
applications of compressive sensing, we make a sparsity assumption, K << N, and mix the 
input signal vector XS  plus sampled noise n down in dimension to the measured vector y of 
dimension M: 

 y = ( XS +n),  (5) 

where Φ is an M x N mixing matrix and K<M << N. Note that in eq. (5) n is added to XS  

prior to mixing. In other models noise is added to the mixed version of XS, ΦXS, or even to 

Φ itself. We generate the elements of Φ using the pseudo-random number functions in our 

software (Mathematica and Python) such that they are taken uniformly from the set of nine 

complex numbers: {-1 – i, -1, -1 + i, -i, 0, i, 1 – i, 1, 1 + i} or equivalently, the elements are 

taken from the sum of random integers drawn from {-1,0,1} plus i times different random 

integers drawn from {-1,0,1}. We use a complex mixing matrix because our signal model is 

complex. The noise is assumed to be independent and identically distributed (i.i.d.) 

Gaussian noise with standard deviation /21/2 and is added to the real and the imaginary 

part of each element of XS, so that the covariance of n is 2I , where I is the N x N identity 

matrix. If the frequencies lie on the DFT frequency grid associated with the time series t = 0 

to t = N-1, eq. (5) can be solved for the frequencies by writing s = DFT XS, substituting XS = 

IDFT s (IDFT = Inverse DFT) in eq. (5), and solving y = Φ(IDFT s+n) by minimizing the ell-

1 norm of s subject to the measurement constraint eq. (5) if n = 0 or by minimizing the ell-1  

norm penalized by an arbitrary fraction of the constraint (LASSO) in the presence of noise 

(Candes & Wakin, 2008; Loris, 2008). 

Although the noise is assumed to be i.i.d., the mixing matrix Φ colors the noise in the 
observation vector y. The covariance of y is given by 

 Cov[y] = 2ΦΦH, (6) 

and the standard maximum likelihood estimator requires definition of a weighting matrix W,  

 W = (ΦΦH)-1, (7) 

where the superscript H indicates the Hermitian conjugate (see Stoica et al., 2000 and Chan 
and So, 2004,  for a discussion of weighted estimators in NLS). If the inverse in eq. (7) is ill-
conditioned or does not exist, this indicates a poor choice of mixing matrix Φ and another 
one should be chosen. The maximum likelihood estimator (MLE) for XS, C(Z) is solved by 
finding the vector Z that minimizes the  weighted square of the residual given by 

 C(Z) = (ΦZ – y) H W (ΦZ – y): (8) 

Z is a vector taken from the linear subspace spanned by at most K complex sinusoids 
sampled over t = 0 to N-1 (see the corresponding equation for determining the amplitude 
and frequency of a sum of complex sinusoids in a system that does not have compressive 
sensing, Stoica and Moses, 1997, eq. 4.3.6). CS recovery is equivalent to determining the 
spectral support (that is, the K unknown frequencies) of the input signal XS, or equivalently 
determining the vector Z that minimizes eq. (8) (Duarte & Baraniuk, 2010). In the absence of 
noise, weighting with W is unnecessary because the solution is exact and both the weighted 
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and un-weighted residuals are zero. Finding the K sinusoids that solve eq. (8) is the 
standard NLS problem and if this were computationally tractable, the problem would be 
solved. But as pointed out by Li et al. (2000) [see also the discussion in Stoica & Moses 
(1997)], “the NLS cost function in (3) is usually multimodal with many local minima,” and 
“the minimization of the NLS cost function requires the use of a very fine searching 
algorithm and may be computationally prohibitive.”  
One way out of this dilemma is to use NLS in place of least squares within OMP. This has 
two advantages over using NLS by itself. First, the frequency band over which one has to 
search in NLS is reduced from the entire frequency band to the frequency grid spacing in 
the over-complete dictionary used in OMP. Second, the estimates of the frequencies at any 
given iteration are improved from the values on the grid by using NLS in the previous 
iteration (see the discussion of a similar continuous version of matching pursuit by Jacques 
& De Vleeschouwer, 2008). 
The first step in our formulation is to define the vector function of frequency, x(f), as the 
time series for a unity amplitude complex sinusoid at frequency f evaluated at integral 
sampling times t = 0 to t = N -1,   

 x(f) = [1, ei2πf , ei4πf, ... , ei2(N-1)πf].  (9) 

Note that the solution for XS in eq. (5) is a linear combination of K vectors x(fi), (i = 1,K). To 
use OMP, we need an over-complete dictionary (Candes et al., 2010) which means that  x(f) 
is evaluated on a fine grid oversampled by the factor Nf from the DFT grid. The second step 
is to define a function that can be evaluated on the fine grid to find a grid frequency close to 
one of the true frequencies in the input signal Xs. Here we use the function G(f, r) given by  

  

(10)

 

where initially r = y and subsequently, r equals the residual of y with 1 to K components 

removed as discussed below. We calculate the argmax of G(f,y) over f in the dictionary 

frequencies to make a first estimate of one of the frequencies present in the input signal X(t). 

If there is no noise and if there is only one sinusoid, this procedure provides the dictionary 

vector whose frequency is nearest that of the input sinusoid. If multiple sinusoids are 

present, the maximum of G(f,y) occurs at one of the dictionary vectors whose frequency is 

near one of the input sinusoids provided that the dictionary is sufficiently over-complete 

and that Φ possesses the restricted isometry property (Duarte and Baraniuk, 2010). Note 

that G(f,r)  is the inverse square of the distance between r and the linear span of x(f) in the 

W-normed inner product space (defined by < a , b > =  aHWb ). Thus finding the argmax of 

G(f,r) is equivalent to finding the argmax of the inner product of the residual with the 

product of Φ times the dictionary vectors x(fj) for all fj on the over-complete frequency grid 

(see Tropp and Gilbert, 2007, Algorithm 3, Step 2).  

Given estimates of the frequencies {f1,f2,…fK} present in the input signal, we can find 

estimates of the amplitudes of each sinusoid by using the least squares estimator A(U) for 

the amplitude vector {a1,a2,…aK} (see Stoica and Moses, 1997, eq. 4.3.8 and Stoica et al., 2000) 

 A(U) = (UHW U)-1 UH W y (11) 
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where U is the spectral support matrix given that depends on {f1,f2,…fK} through 

 U =   { x( f1),  x( f2),. . .x(fK)}   (12) 

Note that if there is no noise and if all frequencies are known exactly, eq. (11) can be 

verified by substituting y = U A(U), which is equivalent to eq. (5),  on the right hand side 

of eq. (11).  

Finally, starting from estimates of the frequencies and amplitudes from OMP as described 

above, apply weighted NLS to get better values. This is done by finding the frequency or set 

of frequencies f = { f1, f2,…fk } that minimize the functional R(f) given by 

 R(f) = |{A[U(f)]U(f) - y}H W {A[U(f)]U(f) - y}|, (13) 

which is the same as the weighted least squares estimator given by eq. (8) with the 

substitution of A[U(f)] defined by eq. (11) for the amplitude vector and U(f) defined by eq. 

(12) for the mixed sinusoids (see the analogous equations in Stoica and Moses, 1997, eqs. 

4.3.7 and 4.3.8). The product A[U(f)] U(f) in eq. (13) is the same as ΦZ in eq. (8). 

3.2 Algorithm description  

As described in Table 1, the first step in the first iteration of the Do loop is estimation of the 

first frequency in the spectral support of the signal Xs. This is given by the frequency of the 

sinusoid whose image after multiplication by Φ has the maximum correlation with the 

observation vector y (see, for example, Tropp and Gilbert, 2007 Algorithm 3, step 2). Here 

we use the equivalent form, the argmax of G(f, y) with respect to f to obtain the first estimate 

of the frequency of the first sinusoid f1 in eq. (4). At this point previous implementations of 

discrete OMP use the amplitude estimator eq. (11) to estimate the amplitude of the first 

sinusoid a1 = A[Φ x(f1)], multiply this amplitude estimate times x(f1), given by eq. (9), and  

by the measurement or mixing matrix Φ and subtract this vector from the measurement 

vector y to form the first residual r1.  

In our algorithm, we proceed differently by improving the precision of the frequency 
estimates using NLS before finding the amplitude estimate. We take the frequency f1 from 
the argmax of G(f, y) evaluated on a discrete set of frequencies and use that as the starting 
value to solve the NLS problem given by eq. (13). We have used several methods and 
several different software packages to solve the NLS problem. A simple decimation routine 

[i.e., tabulating R(f) from f1-f to f1+f (f is the over-complete grid spacing) in 10 steps, 

finding the argmin, decreasing f by a factor of 10, tabulating and finding the argmin of R(f) 
again until the specified precision is reached] works well but is not very efficient. Powell’s 
method in Python (“scipy.optimize.fmin_powell”) and one of the Newton methods, the 
PrincipalAxis method, and the Conjugate Gradient method in Mathematica’s minimizer 
“FindMinimum” all work and take less time than the decimation routine. A detailed 
investigation of minimizers for the NLS step in our version of OMP is beyond the scope of 
this chapter. The oversampling Nf required for our method and that required for 
conventional OMP are nearly identical as discussed below in Section 6.  
Given the better value of f1, we compute a1 from eq. (11) and a new value of the residual r 
with the NLS estimate of the first signal removed from y as in OMP  

 r1 = y – A(U1)U1 = y – a1 Φ x(f1).  (14) 
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where U1 =   x( f1). The argmax of G(f, r1) now yields a first estimate of the frequency of the 
second sinusoid, f2. Next improve the estimates of both f1 and f2 by again solving the NLS 
problem by minimizing the functional R(f) over f = {f1, f2}. Note that this overwrites the 
previous estimate of the first frequency f1. The amplitudes a1 and a2 are recalculated using 
(8) with U2 given by  

 U2 = [ Φx(f1), Φx(f2) ] (15) 

for the latest values of f1 and f2, Finally, in this iteration estimates of the first two sinusoids 
are removed from y:  

 r2 = y – A(U2) U2. (16) 

If K, the total number of sinusoids present in the signal, is known, this process is repeated K 
times until fK and aK are obtained. In the absence of noise, the sum of these sinusoids solves 
(5) exactly and rK = 0.  
 

 
Inputs:  
 CS Mixing Matrix Φ 
 Measured data y 
 Maximum number of sinusoids K or threshold T 
 fmin, fmax 
 Oversampling ratio for dictionary Nf 

Initialize  
 U = [ ] 
 r0 = y 
 KT = K 

 W = (ΦΦH)-1 

 f = (fmax-fmin)/(N Nf) 
Do i = 1 to K 

 fi = Argmax G(f, ri-1) over {fmin, fmin+f,…fmax-f,fmax} 
 {f1,f2,…fi} = Argmin[R(f) with initial value f = { f1, f2, …,fi} ] 
 U = {Φx(f1), Φx(f2)… Φx(fi)} 
 ri= y– A(U) U 
 If  ri

HWri < T: 
  KT = i 
  Break 
 End If 
End Do 
Output of Do:  
 KT 
 {f1, f2, …fKT} 
 {a1,a2,…aKT}= A [{ Φx (f1),  Φx (f2)…  Φx (fK) }] 
 
 
 

Table 1. OMP/NLS Algorithm. 
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There are two methods to handle the case where the actual number of sinusoids present is 

unknown, yet still smaller than K. The simpler method, applicable for high SNR ( small 
compared to the smallest signal amplitude), is to perform K iterations of the OMP/NLS 
algorithm, which will incur an additional noise folding penalty, by projecting the additional 
noise dimensions onto the solution. The second method is to stop when the residual can be 
explained by noise alone though hypothesis testing. At the solution, the weighted squared 

residual rHkW rk will display a -squared statistic with 2k degrees of freedom, where k is the 
actual number of sinusoids present in the signal. The hypothesis that the residual is caused by 

noise alone, is accepted when rk
HWrk < 2T for some threshold T and rejected otherwise. The 

value for T is dependent on a user selectable significance level, the probability of incorrectly 

rejecting the given hypothesis. For a significance level of , T = CDF-1(1-), where CDF is the 
cumulative distribution function of the chi-squared distribution with 2k degrees of freedom. 

We used  = 0.05 in our simulations, but  is an application-specific parameter.  

4. Results for sparse sinusoids without noise 

4.1 Signal composed of a single sinusoid  

Consider first a signal of the form given by eq. (4) with K = 1, f1 = 0.44681715350529533 and 
a1 = 0.8018794857541801. Fig. 1 shows a plot of G(f, y) for N = 1024, M = 4. Finding the 
argmax of G(f, y) evaluated for 32,768 frequencies between fmin and fmax (Nf = 32) yields an 
initial value for the frequency and amplitude of f1 = 0.446808 and a1 = 0.801070+0.026421i. 

Minimization of R[{x(f1)}] starting at f1 = 0.446808 yields a final value f1 equal to the input 
frequency f1 with error less than 1x10-16 (machine precision) and the amplitude a1 through 

A[{ x(f1)}] equal to the input amplitude with error less than 4x10-16.  
 

 

Fig. 1. G(f, y) as a function of frequency for a signal composed of a single sinusoid mixed 
with N = 1024x4. Note the appearance of a single strong peak in the estimator that serves as 
an excellent starting value for minimizing the functional R(f) given in eq. (13).  

4.2 Signal composed of a 20 sinusoids  

The algorithm also works for multiple frequencies. More than 20 independent tests were 
performed for an input signal composed of 20 independent frequencies randomly chosen 
between 0 and 1; all frequency components have amplitude of 1. In all tests our algorithm 
recovered the 20 frequencies to machine precision with a 128x1024 mixing matrix. For test 1, 
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shown in detail here, the closest frequency pairs in the signal are {0.2663, 0.2689} and 
{0.7715, 0.7736}, but while signals with nearly the same frequency are difficult cases, here the 
combined OMP/NLS recovers all the sinusoids to machine precision. Fig. 2 shows the initial 
calculation of G(f, y) for a 128x1024 mixing matrix and 8192 frequency points (Nf = 8). Note 
that most, but not all of the frequencies have peaks in the initial scan of G(f, y). Fig. 3 shows 
G(f, r19) during the 20th iteration of  the Do loop in the algorithm shown in Table 1. After 
refining the frequencies by finding the minimum of R(f) in (10), the frequency errors are 
reduced to less than 10-16 and the amplitude errors are reduced to 4x10-14. Our results 
compare favorably to those obtained using other recovery methods for a test problem with 
20 arbitrary frequency complex sinusoids, N = 1024, and variable numbers of measurements 
M (Duarte and Baraniuk, 2010).  
 

 

Fig. 2. The initial calculation of G(f, y) for a signal with 20 input frequencies mixed with a 
128 x 1024 matrix. The red dots indicate the input frequencies.  

 

 

Fig. 3. The next to last calculation of G(f, r19) for a signal with 20 input frequencies mixed 
with a 128x1024 matrix showing a large peak near the frequency of the only remaining 
sinusoid.  
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4.3 Signal composed of 2 sinusoids with large dynamic range  

For signals composed of 2 well separated frequencies but widely different amplitudes in the 
absence of noise, we recover the amplitude and frequency of the 2 sinusoids when a1 = 1 
and a2 is as small as 10-14 with an 8x1024 mixing matrix. For this case the amplitude and 
frequency of the large signal are recovered to machine precision while the frequency and 
amplitude error of the weak signal are 3x10-4 and 1%, respectively. Naturally, such 
performance is not found in the presence of noise as discussed below.  

4.4 Signal composed of 2 sinusoids with closely spaced frequencies  

We have also input a signal with 2 very closely spaced frequencies and unity amplitudes. 
For frequencies {0.3389, 0.3390} we recover the frequencies to machine precision with a 
16x1024 mixing matrix. Smaller values of M for the mixing matrix yield one root half way 
between the two frequencies. For frequencies {0.33899,0.33900} mixed with 16x1024 and 
32x1024 matrices the OMP part of our algorithm yields a signal with one frequency at 
0.338995 and an amplitude of 1.9996. Attempts to find a second frequency yield a badly 
conditioned matrix for UHWU and the inversion required to find the 2nd amplitude in eq. 
(11) fails. For a 64x1024 mixing matrix OMP finds two separated estimates of the frequencies 
and this allows NLS determination of both frequencies to an accuracy of a few parts in 105. 
These results are in contrast to those obtained using the “spectral compressive sensing” 
algorithms that use “a signal model that inhibits closely spaced sinusoids” (Duarte and 
Baraniuk, 2010).  

4.5 Dependence on dimensions of the mixing matrix  

We have investigated the requirements on M, the small dimension of the measurement 
matrix, to recover a signal composed of a small number of sinusoids using the OMP-NLS 
algorithm. Fig. 4 shows the fraction of failed recoveries as a function of M for a problem in 
which the signal is composed of 1,3,5, or 7 sinusoids and N = 128. For each value of K we 
performed 1000 trials so a failure fraction of 0.1 corresponds to 100 failures. The 
conventional relation between K, M, and N for recovery is given by M = C K log(N/K) 
(Baraniuk, 2007; Candes and Wakin, 2008). From Fig. 4 we see that the curves for K = 3,5 and 
7 are equispaced and correspond to C ~ 1.5.  
We have also investigated several different types of the measurement matrix as displayed in 

Fig. 5. The three curves correspond to three different measurement matrices. For the blue 

curve the mixing matrix is generated from the sum of random integers drawn from {-1,0,1} 

plus i times different random integers drawn from {-1,0,1}; for the red curve, complex 

numbers with the real and imaginary parts given by reals uniformly distributed between -1 

and 1 and i times uniformly distributed reals; for the magenta curve, the mixing matrix is 

generated from randomly chosen -1’s and 1’s. The magenta curve for a real mixing matrix 

made from 1’s and -1’s is inferior to the blue and red curves for the two complex mixing 

matrices. The differences between the red and blue curves in Fig. 5 appear to be random 

fluctuations and are in agreement with other CS results that Gaussian and Bernoulli 

measurement matrices perform equally well (Baraniuk, 2007; Candes and Wakin, 2008). Fig. 

6 compares calculations with the weighting matrix given by eq. (7) to calculations with the 

weighting matrix set to the identity matrix. One can see that the green curve with the 

weighting matrix set to the identity matrix is significantly worse in the important region of 

less than 1% failure.  
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Fig. 4. Fraction of failed recoveries as a function of the small dimension of the mixing matrix M 
for signals consisting of 1 (magenta), 3 (red), 5 (blue) and 7 (green) sinusoids. The large 
dimension of the mixing matrix is N = 128 and 1000 trials were performed for each value of M.  

 

 

Fig. 5. Fraction of failed recoveries as a function of the small dimension of the mixing matrix 
M. For the blue curve the mixing matrix is generated from the sum of random integers 
drawn from {-1,0,1} plus i times different random integers drawn from {-1,0,1}; for the red 
curve, complex numbers with the real and imaginary parts given by reals uniformly 
distributed between -1 and 1; for the magenta curve, the entries of the mixing matrix are 
randomly chosen from -1 and 1.  
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Fig. 6. Fraction of failed recoveries as a function of the small dimension of the mixing matrix 
M. The red curve is with the weighting matrix defined by eq. (7). The green curve has the 
weighting matrix set to the identity matrix.  

5. Results for sparse sinusoids with noise 

5.1 Signal composed of a single sinusoid with noise 
Figs. 7 (a) and (b) show the error in the recovery of a single-frequency, unity amplitude 
signal as a function of the small dimension M of an Mx1024 mixing matrix Φ with  = 10-2 

for 100 realizations of the noise. As M increases the standard deviations of the errors in both 
frequency and amplitude, f and a, decrease as expected since more measurements are 
made to average a given noise level. The decrease of about a factor of 3 in f and a for a 
factor of 10 increase in M is consistent with estimates based on SNR (Shaw and Valley, 2010; 
Davenport et al., 2006). Fig. 8 shows f and a as a function of s averaged over 20 different 
4x1024 mixing matrices. Both f and a are proportional to  with a about 2 to 3 orders of 
magnitude larger than f. 
 

  
(a) 
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(b) 

Fig. 7. Standard deviation of the errors in frequency and amplitude of sinusoids mixed by a 

mixing matrix  with dimensions M x 1024  recovered using OMP/NLS as a function of the 

small dimension M of the mixing matrix  for  = 10-2. The results are obtained from the 
average of 100 independent calculations. (a) Frequency, (b) amplitude error. 

 

 

Fig. 8. Standard deviation of the frequency and amplitude errors, f (lower red curve) and a 

(upper green curve), as a function of  averaged over 20 different 4x1024 mixing matrices. 

5.2 Signal composed of 2 sinusoids with 100:1 dynamic range  
Noise also affects the ability of our algorithm to recover a small signal in the presence of a 
large signal. Figs. 9 and 10 showf and a for a test case in which the amplitudes are given 
by {1.0, 0.01}, M = 10, N =1024 and the frequencies are well separated. These results are for a 
single realization of the mixing matrix and averaged over 20 realizations of the noise. Note 
that as expected, the frequency and amplitude of the large-amplitude component are much 
better recovered than those of the small-amplitude component. Knowledge of the 
parameters of the small component essentially disappears for  greater than about 0.005. 
Tests with the small amplitude equal to 0.001 and 0.0001 suggest that this threshold scales 
with the amplitude of the small signal.  
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Fig. 9. Standard deviation of the error in the recovered frequency f  as a function of noise 

standard deviation  for an input signal that consists of two complex sinusoids with 
amplitudes 1 and 0.01. The green, short dashed curve corresponds to the strong signal; the 
red, long dashed, to the weak signal. Each curve is averaged over 20 realizations of the 
noise.  

 

 

Fig. 10. Standard deviation of the amplitude error  as a function of noise standard 

deviation  for an input signal that consists of two complex sinusoids with amplitudes 1 and 
0.01. The green, short dashed curve corresponds to the strong signal; red, long dashed, to 
the weak signal. Each curve is averaged over 20 realizations of the noise.  

5.3 Signal composed of 2 sinusoids with closely spaced frequencies in noise 

We have also investigated the ability of our algorithm to separate two closely spaced 

frequencies in the presence of noise. Fig. 11 shows f and a for the case with input 
frequencies {0.3389, 0.3390}, unity amplitude and a 16x1024 mixing matrix. Note that 

significant amplitude error occurs at  > 10-4 compared to the single frequency results. The 

frequencies are roughly correct but are not separated for  > 10-2.  
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Fig. 11. Standard deviation in frequency f (red-lower curve) and amplitude a (green upper 
curve) for the case with input frequencies {0.3389, 0.3390}, unity amplitude and a 16x1024 
mixing matrix. 

6. Comparison with other recovery methods 

In this section we compare our version of OMP with an NLS optimization step for the 

sinusoid frequency and amplitude at each iteration to two common methods for CS 

recovery:  OMP with a  linear least squares amplitude estimator at each iteration and convex 

optimization based on the ell-1 norm of the sparse target vector plus the ell-2 norm of the 

measurement constraint given by eq. (2). It should be noted that most of the cases presented 

in the previous sections cannot be solved with OMP/LS or penalized ell-1 norm methods so 

it is necessary to pick a special case to even perform the comparison. Consider a noise-free 

signal that consists of 5 unity amplitude sinusoids at 5 different frequencies. We assume 

N=1024 time samples and an M=30 x N=1024 complex measurement matrix made up of the 

sum of random reals plus i times different random reals, both sets of reals uniformly 

distributed between -1 and 1.  

6.1 Baseline case OMP-NLS 

We performed 100 different calculations with the frequencies chosen by a pseudo-random 
number generator. In order to control the number of significant figures, we took the 
frequencies from rational numbers uniformly distributed between 0 and 1 in steps of  10-6. 
Table 2 shows the fraction of failed recoveries and the average standard deviation in the 
value of the recovered frequency as a function of the oversampling ratio.  

6.2 OMP with Linear Least Squares 

We performed the same 100 calcuations using conventional OMP in which the NLS step is 

replaced by LS as in Tropp and Gilbert (2007). Note that the number of failed recoveries is 
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about the same as the baseline OMP-NLS but the frequency error is huge by comparison. 

This is the natural result of the frequency grid, which is the limit on the OMP resolution. 

Timing comparisons with our software show that OMP-NLS takes about 50% longer than 

conventional OMP. We have also windowed the OMP calculations in order to reduce 

„spectral leakage“ and hopefully achieve better performance. Aside from the lowered 

failure fraction for Nf = 2, windowing OMP appears to have no statistically significant 

effect.  

  

Method\ Nf 1 2 4 8 

OMP with NLS 95 41 11 6 

OMP 96 35 11 6 

OMP with window 93 19 9 10 

 

(a) 

 

Method\ Nf 1 2 4 8 

OMP with NLS 3.9 10^-15 3.9 10^-15 3.5 10^-15 3.7 10^-15 

OMP 0.000150 0.000136 0.000085 0.000060 

OMP with window 0.000168 0.000141 0.000084 0.000059 

 

(b) 

 

Table 2. Comparing OMP with NLS to OMP and OMP with windowing for 4 values of the 
overcomplete dictionary Nf = 1,2,4,8. (a) failure fraction, %. (b) rms error in recovered 
frequencies.  

We have also compared windowed OMP to OMP/NLS in the presence of noise. Fig. 12 

shows the frequency and amplitude errors, f and a,  as a function of the noise standard 

deviation  for OMP (blue) and OMP-NLS (red) for a signal composed of two sinusoids 

with N = 128, M = 20 and Nf = 4 averaged over 100 trials with randomly chosen input 

frequencies. Note that the OMP frequency error drops to an asymptote of about 6 x 10-4 and 

the OMP amplitude error to about 0.23 for  < 0.1 while the OMP-NLS errors continue to 

drop linearly proportional to  for  < 0.1.  

6.3 Convex optimization 

We have performed the same calculations with a penalized ell-1 norm code (Loris, 2008). 

None of these calculations returns reliable estimates of frequencies off the grid. Windowing 

helps recover frequencies slightly off the grid but not arbitrary frequencies. Subdividing the 

frequency grid allows finer resolution in the recovery but only up to the fine frequency grid. 

www.intechopen.com



 
Applications of Digital Signal Processing 

 

186 

 
 

 
 

(a) 

 

 
 

(b) 

 

Fig. 12. Frequency and amplitude errors,f and a, as a function of the noise standard 

deviation  for OMP (blue) and OMP-NLS (red) for a signal composed of a two sinusoids 
with N = 128, M = 20 and Nf = 4 averaged over 100 trials with randomly chosen input 
frequencies. (a) Frequency error. (b) Amplitude error. 

www.intechopen.com



Applications of the Orthogonal Matching Pursuit/ Nonlinear  
Least Squares Algorithm to Compressive Sensing Recovery 

 

187 

The ell-1 norm code used in our studies (Loris, 2008) can be used with the frequency grid 

subdivided by 8 or more, but the results are not sparse for the test case described above.  

More frequencies are returned than in the input signal. Good approximations (consistent 

with the OMP estimates) can be obtained by precisely thresholding the recovered vector s in 

eq. (2), but the threshold is dependent on the oversampling ratio and on the random seed 

used to generate the frequencies.  

7. Performance estimates 

As discussed above, this study is based on experimental or empirical evaluation (i.e. 

numerical simulations) of a proposed technique for recovering compressively sensed 

signals. The weakness of such a study is that calculations alone do not provide performance 

guarantees while the strength of such a study is that calculations can evaluate practical cases 

that would be encountered in real applications. Regardless, it is necessary to know when 

and how an algorithm fails for it to be of much use, and we can use prior work on 

performance guarantees for CS, OMP and NLS to help us.  

Consider first the noise-free case in which the number of sinusoids is known. Here the 

difference between success and failure is computationally obvious. If the recovery is 

successful, the residual after extraction of the known number of sinusoids collapses to near 

the machine precision. If it fails, the residual remains at about the level of the initial 

measurement vector y. In the presence of noise the situation is similar except the collapse is 

to the system noise level. If the number of sinusoids is unknown, then recovery proceeds 

until the system noise level is reached, but statistical testing must be used to determine if the 

residual at this threshold is due to noise or incorrectly recovered signals.  

Practical use of the OMP/NLS algorithm requires at a minimum empirical knowledge of 

where the algorithm fails and ultimately, performance guarantees and complexity estimates 

(operation counts). Since this algorithm couples two well known algorithms, in principle we 

can rely on previous work. The problem can be divided into 3 parts. First, one has to assess 

the compressive sensing part of the problem. Does the mixing matrix Φ satisfy the 

appropriate conditions?  Is the value of M large enough to recover the K unknowns?  Are 

the measurements really sparse in the chosen model or even is the model applicable to the 

signal of interest?  Our empirical observations suggest that it is difficult for a random 

number generator to pick a bad mixing matrix. Observations also suggest that the 

requirement on M for recovery is on the same order as that derived for grid-based CS, M ~ 

K log(N/K). Second, the sampling in the overcomplete dictionary must be fine enough that 

the first frequency found by the argmax of G(f,r) in (7) is near a true solution. If this is not 

the case due to insufficient granularity, multiple frequencies too close together, or high noise 

levels, the OMP cannot start. This issue is not restricted to our work but common to all 

matching pursuit algorithms. While we do not have performance guarantees here, we have 

noted empirically that lack of convergence is very easy to determine for a known number or 

sinusoids and known noise floor. Finally, the NLS must be able to converge. Here we can 

rely on the results given by (Stoica et al., 2000; Li et al., 2000; Chan and So, 2004; Christensen 

and Jensen, 2006) that the NLS achieves the Cramer Rao Bound. Empirically, we observe 

that the dictionary must be sufficiently overcomplete that the NLS is looking for a frequency 

solution in one local minimum.  
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8. Conclusion  

The work reported in this chapter started with our work on compressive sensing for 

direction of arrival (DOA) detection with a phased array (Shaw and Valley, 2010). In that 

work, we realized that most work in compressive sensing concerned recovering signals on a 

sparse grid. In the DOA domain, that meant that targets had to be on a set of grid angles, 

which of course never happens in real problems. We found a recovery solution for a single 

target in that work by scanning the sparsifying DFT over an offset index that was a measure 

of the sine of the target angle but the solution was time consuming because the penalized 

ell-1 norm recovery algorithm had to be run multiple times until the best offset and best 

sparse solution was found and the procedure was not obviously extendable to multiple 

targets. This work led us to the concepts of orthogonal matching pursuit and removing one 

target (or sinusoid) at a time. But we still needed a reliable method to find arbitrary 

frequencies or angles not on a grid. The next realization was that nonlinear least squares 

could be substituted for the linear least squares used in most versions of OMP. This has 

proved to be an extremely reliable method and we have now performed 10’s of thousands of 

calculations with this method. Since OMP is not restricted to finding sinusoids, it is natural 

to ask if OMP with NLS embedded in it works for other functions as well. We have not tried 

to prove this generally, but we have performed successful calculations using OMP-NLS with 

signals composed of multi-dimensional sinusoids such as would be obtained with 2D 

phased arrays (see also Li et al., 2001), signals composed of multiple sinusoids multiplied by 

chirps (i.e. sums of terms of the form akexp(ikt+bkt2 ) and multiple Gaussian pulses within 

the same time window.  
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