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1. Introduction

The recent progress in wireless technology and growing spread of smart phones equipped
with various sensors make it possible to record real-world rich-content data and compliment
it with on-line processing. Depending on the application, mobile data processing could

help people to enrich their social interactions and improve environmental and personal
health awareness. At the same time, mobile sensing data could help service providers to
understand better human behavior and its dynamics, identify complex patterns of users’
mobility, and to develop various service-centric and user-centric mobile applications and
services on-demand. One of the first steps in analysis of rich-content mobile datasets is to find
an underlying structure of users’ interactions and its dynamics by clustering data according
to some similarity measures.
Classification and clustering (finding groups of similar elements in data) are well-known
problems which arise in many fields of sciences, e.g., (Albert & Barabási, 2002; Flake et al,
2002; Wasserman & Faust, 1994). In cases when objects are characterized by vectors of
attributes, a number of efficient algorithms to find groups of similar objects based on a metric
between the attribute vectors are developed. On the other hand, if data are given in the
relational format (causality or dependency relations), e.g., as a network consisting of N nodes
and E edges representing some relation between the nodes, then the problem of finding
similar elements corresponds to detection of communities, i.e., groups of nodes which are

interconnected more densely among themselves than with the rest of the network.
The growing interest to the problem of community detection was triggered by the introduction
of a new clustering measure called modularity (Girvan & Newman, 2002; 2004). The
modularity maximization is known as the NP-problem and currently a number of different
sub-optimal algorithms are proposed, e.g., see (Fortunato, 2011) and references within.
However, most of these methods address network partitions into disjoint communities.
On the other hand, in practice communities are often overlapping. It is especially visible
in social networks, where only limited information is available and people are affiliated
to different groups, depending on professional activities, family status, hobbies, and etc.
Furthermore, social interactions are reflected in multiple dimensions, such as users activities,
local proximities, geo-locations and etc. These multi-dimensional traces may be presented as
multi-layer graphs. It raises the problem of overlapping communities detection at different
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hierarchical levels at single and multi-layer graphs.
In this chapter we present a framework for multi-membership communities detection
in dynamical multi-layer graphs and its applications for missing (or hidden) link
predictions/recommendations based on the network topology. In particular, we use
modularity maximization with a fast greedy search (Newman, 2004) extended with a random
walk approach (Lambiotte et al, 2009) to detect multi-resolution communities beyond and
below the resolution provided by max-modularity. We generalize a random walk approach
to a coupled dynamic systems (Arenas et al, 2006) and then extend it with dynamical links
update to make predictions beyond the given topology. In particular, we introduce attractive
and repulsive coupling that allow us to detect and predict cooperative and competitive
behavior in evolving social networks.
To deal with overlapping communities we introduce a soft community detection and
outline its possible applications in single and multi-layer graphs. In particular, we
propose friend-recommendations in social networks, where new link recommendations
are made as intra- and inter-clique communities completion and recommendations are

prioritized according to topologically-based similarity measures (Liben-Nowel & Kleinberg,
2003) modified to include multiple-communities membership. We also show that the
proposed prediction rules based on soft community detection are in line with the network
evolution predicted by coupled dynamical systems. To test the proposed framework we
use a benchmark network (Zachary, 1977) and then apply developed methods for analysis
of multi-layers graphs built from real-world mobile datasets (Kiukkonen et al, 2010). The
presented results show that by combining information from multi-layer graphs we can
improve reliability measures of community detection and missing links predictions.
The chapter is organized as follows: in Section 2 we outline the dynamical formulation of
community detection that forms the basis for the rest of the paper. Topology detection using
coupled dynamical systems and its extensions to model a network evolution are described
in Section 3. Soft community detection for networks with overlapping communities and its
applications are addressed in Section 4, followed by combining multi-layer graphs in Section
5. Evaluation of the proposed methods in the benchmark network are presented in Section
6. Analysis of some real-world datesets collected during Nokia data collection campaign is
presented in Section 7, followed by conclusions in Section 8.

2. Community detection

2.1 Modularity maximization

Let’s consider the clustering problem for an undirected graph G = (V, E) with |V| = N
nodes and E edges. Recently Newman et al (Girvan & Newman, 2002; 2004) introduced a new
measure for graph clustering„ named a modularity, which is defined as a number connections
within a group compared to the expected number of such connections in an equivalent null
model (e.g., in an equivalent random graph). In particular, the modularity Q of a partition P
may be written as

Q =
1

2m ∑
i,j

(

Aij − Pij

)

δ(ci , cj) , (1)

where ci is the i-th community., Aij are elements of graph adjacency matrix; di is the i-th
node degree, di = ∑j Aij; m is a total number of links m = ∑i di/2; Pij is a probability that
nodes i and j in a null model are connected; if a random graph is taken as the null model, then

52 Applications of Digital Signal Processing

www.intechopen.com



Multiple-Membership Communities Detection and its Applications for Mobile Networks 3

Pij = didj/2m.
By construction |Q| < 1 and Q = 0 means that the network under study is equivalent to
the used null model (an equivalent random graph). Case Q > 0 indicates a presence of a
community structure, i.e., more links remain within communities than would be expected
in an equivalent random graph. Hence, a network partition which maximizes modularity
may be used to locate communities. This maximization is NP-hard and many suboptimal
algorithms are suggested, e.g., see (Fortunato, 2011) and references within.
In the following we use the basic greedy search algorithm (Newman, 2004) extended with a
random walk approach, since it gives a reasonable trade-off between accuracy of community
detection and scalability.
Greedy Search Algorithm

Input: a weighted graph described by N × N adjacency matrix A.

Initialize each node i as a community ci with modularity Q(i) = −

(

di

2m

)2

.

Repeat until there is an increase in modularity:
for all nodes i do:

- remove i from its community ci;
- insert i sequentially in neighboring communities cj for all j with Aij > 0;

- calculate modularity Q(c
(i→cj)
j );

- select a move (if any) of i-th node to community c∗j with max modularity

Q(c
(i→c∗j )

j ) = max
j∈N(i)

Q(c
(i→cj)
j );

Stop when (a local) maximum is reached.

2.2 Communities detection with random walk

It is well-known that a network topology affects a system dynamics, it allows us to
use the system dynamics to identify the underlying topology (Arenas et al, 2006; 2008;
Lambiotte et al, 2009). First, we review the Laplacian dynamics formalism recently developed
in (Evans & Lambiotte, 2009; Lambiotte et al, 2009).
Let’s consider N independent identical Poisson processes defined on every node of a graph
G(V, E), |V| = N, where random walkers are jumping at a constant rate from each of the
nodes. We define pn as the density of random walkers on node i at step n, then its dynamics
is given by

pi,n+1 = ∑
j

Aij

dj
pj,n . (2)

The corresponding continuous-time process, described by (3),

dpi

dt
= ∑

j

Aij

dj
pj − pi = ∑

j

(

Aij

dj
− δij

)

pi (3)
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is driven by the random walk operator
Aij

dj
− δij, which in case of a discrete time process

is presented by the random walk matrix Lrw = D−1L = I − D−1A, where L = D − A is a
Laplacian matrix, A is a non-negative weighted adjacency matrix, D = diag{di}, i = 1, . . . , N.
For an undirected connected network the stationary solution of (2) is given by p∗i = di/2m.
Let’s now assume that for an undirected network there exist a partition P with communities
ck ∈ P , k = 1, . . . , Nc. The probability that initially, at t0, a random walker belongs to a
community ck is Pr (ck, t0) = ∑

j∈ck

dj/2m. Probability that a random walker, which was initially

in ck, will stay in the same community at the next step t0 + 1 is given by

Pr (ck, t0, t0 + 1) = ∑
j∈ck

∑
i∈ck

(

Aij

dj

)

(

dj

2m

)

. (4)

The assumption that dynamics is ergodic means that the memory of the initial conditions are
lost at infinity, hence Pr(ck, t0, ∞) is equal to the probability that two independent walkers are
in ck,

Pr(ck, t0, ∞) =

(

∑
i∈ck

di

2m

)

⎛

⎝∑
j∈ck

dj

2m

⎞

⎠ . (5)

Combining (4) and (5) we may write

∑
ck∈P

(Pr (ck, t0, t0 + 1)− Pr(ck, t0, ∞)) =
1

2m ∑
i,j

(

Aij −
didj

2m

)

δ(ci, cj) = Q . (6)

In general case, using (3), one may define a stability of the partition P as (Evans & Lambiotte,
2009; Lambiotte et al, 2009)

RP (t) = ∑
ck∈P

Pr (ck, t0, t0 + t)− Pr(ck, t0, ∞) (7)

= ∑
ck∈P

∑
i,j∈ck

(

(

et(Â−I)
)

ij

dj

2m
−

didj

4m2

)

, where Âij =
Aij

dj
. (8)

Then, as the special cases of (8) at t = 1, we get the expression for modularity (6).
Note that RP (t) is non-increasing function of time: ȧt t = 0 we get

RP (0) = 1 − ∑
ck∈P

∑
i,j∈ck

didj

4m2
(9)

and max
P

R(0) is reached when each node is assigned to its own community. Note that (9)

corresponds to collision entropy or Rényi entropy of order 2.
On the other hand, in the limit t → ∞, the maximum of RP (t) is achieved with Fiedler
spectral decomposition into 2 communities. In other words, time here may be seen as a
resolution parameter: with time t increasing, the max

P
R(t) results in a sequence of hierarchical
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partitions {Pt} with the decreasing numbers of communities.
Furthermore, as shown in (Evans & Lambiotte, 2009), we may define a time-varying
modularity Q(t) by linear terms in time expansion for R(t) at t ≈ 0,

R(t) ≈ (1 − t) · R(0) + t · Q = Q(t) , (10)

which after substitution (6) and (9) gives

Q(t) = (1 − t) + ∑
ck∈P

∑
i,j∈ck

(

Aij

2m
t −

didj

4m2

)

. (11)

In the following we apply time-dependent modularity maximization (11) using the greedy
search to find hierarchical structures in networks beyond modularity maximization Qmax in
(1). This approach is useful in cases where maximization of (1) results in a very fragmental

structure with a large number of communities. Also it allows us to evaluate the stability of
communities at different resolution levels. However, since the adjacency matrix A is not time
dependent, the time-varying modularity (11) can not be used to make predictions beyond the
given topology.

3. Topology detection using coupled dynamical systems

3.1 Laplacian formulation of network dynamics

Let’s consider an undirected weighted graph G = {V, E} with N nodes and E edges, where
each node represents a local dynamical system and edges correspond to local coupling.
Dynamics of N locally coupled dynamical systems on the graph G is described by

ẋi(t) = qi(xi(t)) + kc

N

∑
j=1

Aijψ
(

xj(t)− xi(t)
)

, (12)

where qi(xi) describes a local dynamics of state xi; Aij is a coupling strength between nodes i
and j; ψ(·) is a coupling function; kc is a global coupling gain.
In case of weakly phase-coupled oscillators the dynamics of local states is described by
Kuramoto model (Acebron et al, 2005; Kuramoto, 1975)

θ̇i(t) = ωi + kc

N

∑
j=1

Aij sin
[

θj(t)− θi(t)
]

. (13)

Linear approximation of coupling function sin(θ) ≃ θ in (13) results in the consensus model

(Olfati-Saber et al, 2007)

θ̇i(t) = kc

N

∑
j=1

Aij

[

θj(t)− θi(t)
]

, (14)

which for a connectivity graph G may be written as

Θ̇(t) = − kcL Θ(t) , (15)
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where L = A − D is the Laplacian matrix of G. The solution of (15) in the form of normal
modes ωi(t) may be written as

ωi(t) = kc

N

∑
j=1

Vijθj(t) = kc ωi(t0)e
−λit , (16)

where λ1, . . . , λN are eigenvalues and V is the matrix of eigenvectors of L. Note that (16)
describes a convergence speed to a consensus for each nodes. Let’s order these equations
according to the descending order of their eigenvalues. Then it is easy to see that nodes are
approaching the consensus in a hierarchical way, revealing in the same time a hierarchy of
communities in the given network G.
Note that (15) has the same form as (3), with the difference that the random walk process (3)
is based on Lrw = D−1 L. It allows us to consider random-walk-based communities detection
in the previous section as a special case of coupled oscillators synchronization.
Similarly to (15), we may derive the Laplacian presentation for locally coupled oscillators (13).
In particular, the connectivity of a graph may be described by the graph incidence (N × E)
matrix B: {B}ij = 1 (or −1) if nodes j and i are connected, otherwise {B}ij = 0. In case of

weighted graphs we use the weighted Laplacian defined as

LA � BDABT . (17)

Based on (17) we can rewrite (13) as

Θ̇(t) = Ω − kcBDA sin
(

BTΘ(t)
)

, (18)

where vectors and matrices are defined as follows:
Θ(t) � [θ1(t), · · · , θN(t)]

T; Ω(t) � [ω1(t), · · · , ωN(t)]
T; DA � diag {a1, . . . , aE}, a1, ..., aE

are weights Aij indexed from 1 to E.
In the following we use (18) to describe different coupling scenarios.

3.2 Dynamical structures with different coupling scenarios

Let’s consider local correlations between instant phases of oscillators,

rij(t) = 〈cos
[

θj(t)− θi(t)
]

〉, (19)

where the average is taken over initial random phases θi(t = 0).
Following (Arenas et al, 2006; 2008) we may define a dynamical connectivity matrix Ct(η),
where two nodes i and j are connected at time t if their local phase correlation is above a given
threshold η,

Ct(η)ij = 1 if rij(t) > η

Ct(η)ij = 0 if rij(t) < η . (20)

We select communities resolution level (time t) using a random walk as in Section 2. Next,
by changing the threshold η, we obtain a set of connectivity matrices Ct(η) which reveal
dynamical topological structures for different correlation levels. Since the local correlations
rij(t) are continuous and monotonic functions in time, we may also fix η and express
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dynamical connectivity matrix (20) in the form Cη(t) to present the evolution of connectivity
in time for a fixed correlation threshold η. Using this approach we consider below several
scenarios of networks evolution with dynamically changing coupling.

B.1. Attractive coupling with dynamical updates

As the first step, let’s introduce dynamics into static attractive coupling (13). Using the
dynamical connectivity matrix (20) we may write

θ̇i(t) = ωi + kc

N

∑
j=1

F
(η)
ij (t) sin

[

θj(t)− θi(t)
]

, (21)

where matrix F(η)(t) describes dynamical attractive coupling, F
(η)
ij (t) = AijCη(t)ij ≥ 0. Then,

similar to (18), the attractive coupling with a dynamical update may be described as

Θ̇(t) = Ω − kcB(t)DF(t) sin
(

B(t)TΘ(t)
)

, (22)

where initial conditions are defined by Aij; DF(t) is formed from DA with elements {ak}
scaled according to Cη(t).

B.2. Combination of attractive and repulsive coupling with dynamical links update

Many biological and social systems show a presence of a competition between conflicting
processes. In case of coupled oscillators it may be modeled as the attractive coupling (driving

oscillators into the global synchronization) combined with the repulsive coupling (forcing
system into a chaotic/random behavior). To allow positive and negative interactions we use
instant correlation matrix R(t) = R+(t) + R−(t), and separate attractive and repulsive parts

θ̇i(t) = ωi + kc

N

∑
j=1

r+ij (t) Aij sin
[

θj(t)− θi(t)
]

− kc

N

∑
j=1

|r−ij (t)| Aij sin
[

θj(t)− θi(t)
]

, (23)

where superscripts denote positive and negative correlations 1.
Note that the total number of links in the network does not change, at a given time instant
each link performs either attractive or repulsive function.
To obtain the Laplacian presentation we define a dynamical connectivity matrix F(t) as
element-by-element matrix product

F(t) = R(t) ◦ A = F+(t) + F−(t), (24)

and present dynamic Laplacian as the following

LF(t) = B(t)(DF+ (t) + DF− (t))BT(t). (25)

It allows us to write

θ̇i(t) = ωn + kc

N

∑
m=1

F+
ij (t) sin

[

θj(t)− θi(t)
]

− kc

N

∑
m=1

F−
ij (t) sin

[

θj(t)− θi(t)
]

, (26)

1 For presentation clarity we omit here the correlation threshold η.
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or in matrix form

Θ̇(t) = Ω − kcB(t)DF+ (t) sin
(

BT(t)Θ(t)
)

+ kcB(t)DF− (t) sin
(

BT(t)Θ(t)
)

. (27)

B.3. Combination of attractive and initially neutral coupling with dynamical links update

Negative correlations (resulting in repulsive coupling) are typically assigned between nodes
which are not initially connected. However, in many cases this scenario is not realistic.
For example, in social networks, the absence of communications between people does not
necessary indicate conflicting (negative) relations, but often has a neutral meaning. To take

this observation into account we modified second term in (23) such that it sets neutral initial
conditions to unconnected nodes in adjacency matrix A. In particular, system dynamics with
links update (24) and initially neutral coupling is described by

θ̇i(t) = ωi + kc

N

∑
j=1

F+
ij (t) sin

[

θj(t)− θi(t)
]

+ kc

N

∑
j=1

F−
ij (t) cos

[

θj(t)− θi(t)
]

, (28)

or in the matrix form

Θ̇(t) = Ω − kcB(t)DF+ (t) sin
(

BT(t)Θ(t)
)

− kcB(t)DF− (t) cos
(

BT(t)Θ(t)
)

. (29)

Then a dynamical interplay between the given network topology and local interactions drives
the connectivity evolution. We evaluated the scenarios above using different clustering
measures (Manning et al, 2008) and found that scenario B.3 shows the best performance.
In the following we use coupled system dynamics approach to predict networks’ evolution
and to make missing links predictions and recommendations. Furthermore, the suggested

approach allows us also to predict repulsive relations in the network based on the network
topology and links dynamics.

4. Overlapping communities

4.1 Multi-membership

In social networks people belong to several overlapping communities depending on their
families, occupations, hobbies, etc. As the result, users (presented by nodes in a graph)
may have different levels of membership in different communities. This fact motivated us
to consider multi-community membership as edge-weights to different communities and
partition edges instead of clustering nodes.

As an example, we can measure a membership gj(k) of node k in j-th community as a
number of links (or its weight for a weighted graph) between the k-th node and other nodes
within the same community, gj(k) = ∑i∈cj

wki Then, for each node k we assign a vector

g(k) = [g1(k), g2(k), . . . , gNc
(k)], k ∈ {1, . . . , N} which presents the node membership (or

participation) in all detected communities {c1, . . . , cNc
}. In the following we refer g(k) as a

soft community decision for the k-th node.
To illustrate the approach, overlapping communities derived from benchmark karate club

social network (Zachary, 1977) and membership distributions for selected nodes are depicted
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at Fig.1 and Fig.2, respectively. Modularity maximization here reveals 4 communities shown
by different colors. However, the multi-communities membership results in overlapping
communities illustrated by overlapping ovals (Fig.1). For example, according to modality
maximization, the node 1 belongs to community c2, but it also has links to all other
communities indicated by blue bars at Fig.2.
Participation of different nodes in selected communities is presented at Fig.3 and Fig.4. These
graphs show that even if a node is assigned by some community detection algorithm to a
certain community, it still may have significant membership in other communities. This
multi-communities membership is one of the reasons why different algorithms disagree
on communities partitions. In practice, e.g., in targeted advertisements, due to the "hard"
decision in community detection, some users may be missed even if they are strongly related
to the targeted group. For example, user ’29’ is assigned to c3 (Fig.1), but it also has equally
strong memberships in c2 and c4 (Fig.3). Using soft community detection user ’29’ can also be
qualified for advertisements targeted to c2 or c4.

Fig. 1. Overlapping communities in karate club.

Fig. 2. Membership weight distribution for selected users in karate club social network.

59Multiple-Membership Communities Detection and Its Applications for Mobile Networks
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Fig. 3. Karate club: participation of users in communities c2, c4.

Fig. 4. Karate club: participation of users in communities c1, c3.

4.2 Application of soft community detection for recommendation systems

In online social networks a recommendation of new social links may be seen as an attractive
service. Recently Facebook and LinkedIn introduced a service "People You May Know", which
recommends new connections using the friend-of-friend (FoF) approach. However, in large
networks the FoF approach may create a long and often not relevant list of recommendations,
which is difficult (and also computationally expensive, in particular in mobile solutions) to
navigate. Furthermore, in mobile social networks (e.g., Nokia portal Ovi Store) these kinds
of recommendations are even more complicated because users’ affiliations to different groups
(and even its number) are not known. Hence, before making recommendations, communities
are to be detected first.

Recommendations as communities completion

Based on soft communities detection we suggest to make the FoF recommendations as follows:

(i) detect communities, e.g., by using one of the methods described above;

(ii) calculate membership gj(k) in all relevant communities for each node k;

(iii) make new recommendations as communities completion following the rules below;

(iv) use multiple-membership to prioritize recommendations.

To make new link recommendations in (iii) we suggest the following rules:

60 Applications of Digital Signal Processing
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Multiple-Membership Communities Detection and its Applications for Mobile Networks 11

• each new link creates at least one new clique (the FoF concept);

• complete cliques within the same community (intra-cliques) using the FoF concept;

• complete cliques towards to the fully-connected own community if there is no FoF links;

• complete inter-cliques (where nodes belong to different communities);

• prioritize intra-clique and inter-clique links completion according to some measure based
on multi-membership.

To assign priorities we introduce several similarity measures outlined below. We will show in
next sections that these rules are well in line with link predictions made by coupled dynamical
systems described in Section 3.

Modified topology-based predictors

Let’a define sets of neighbors of node k, which are inside and outside of community ci

as Γi(k) = {Γ(k) ∈ ci} and Γ\i(k) = {Γ(k) /∈ ci}, respectively. This allows us to
introduce a set of similarity measures by modifying topology-based base-line predictors
listed in (Liben-Nowel & Kleinberg, 2003) to take into account the multiple-membership in

overlapping communities.
As an example, for the intra-clique completion we may associate a quality of missing link
prediction (or recommendation) between nodes k and n within ci community by modifying
the base-line predictor scores as follows:

- Preferential attachment: S
(i,i)
PA (k, n) = |Γi(k)| · |Γi(n)|;

- Jaccards score: S
(i,i)
JC (k, n) = |Γi(k) ∩ Γi(n)|/|Γi(k) ∪ Γi(n)|;

- Adamic/Adar score: S
(i,i)
AA

(k, n) = ∑z∈Γi(k)∩Γi(n) (log|Γ(z)|)−1;
- Katz score (intra-community):

S
(i,i)
KC

(k, n) =
∞

∑
l=1

βl |path(k, n)(l)| =
{

(I − βA(i))−1 − I
}

(k,n)
,

where |pathi(k, n)(l)| is number of all paths of length-l from k to n within ci; I is the identity
matrix, A(i) is the (weighted) adjacency matrix of community ci, β is a dumping parameter,
0 < β < 1, such that ∑ij βAij < 1.
Additionally to the base-line predictors above, we also use a community connectivity

measure, S
(i,i)
CC

(k, n) ∼ σ2(Li), which characterizes a convergence speed of opinions to
consensus within a community ci when a link between nodes k and n is added inside the
community; here σ2(L) is the 2nd smallest eigenvalue of the graph Laplacian Li of community
ci (or the normalized Laplacian for weighted graphs, based on (17)).
The measures above consider communities as disjoint sets and may be used as the 1st order
approximation for link predictions in overlapping communities. To take into account both
intra- and inter-community links we use multi-community membership for nodes, gi(k). In
general, for nodes k ∈ ci and n ∈ cj, the inter-community relations may be asymmetric,
gj(k) �= gi(n). In the case of undirected graphs we may use averaging and modify the
base-line predictors S(k, n) as

S(i,j)(k, n) =
gj(k) + gi(n)

2m
S(k, n) . (30)
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For example, modified Jaccards and Katz scores which take into account multi-communities
membership are defined as

S
(i,j)
JC (k, n) =

gj(k) + gi(n)

2m

|Γ(k) ∩ Γ(n)|

|Γ(k) ∪ Γ(n)|
, (31)

S
(i,j)
KC

(k, n) =
gj(k) + gi(n)

2m

{

(I − βA(Cn,k))−1 − I
}

(k,n)
, (32)

where k ∈ ci, n ∈ cj; A(Cn,k) is an adjacency matrix formed by all communities relevant to
nodes n and k.
Recommendations also may be made in the probabilistic way, e.g., to be picked up from
distributions formed by modified prediction scores.

5. Multi-layer graphs

In analysis of multi-layer graphs we assume that different network layers capture different

modalities of the same underlying phenomena. For example, in case of mobile networks
the social relations are partly reflected in different interaction layers, such as phone and
SMS communications recorded in call-logs, people "closeness" extracted from the bluetooth
(BT) and WLAN proximity, common GPS locations and traveling patterns and etc. It may
be expected that a proper merging of data encoded in multi-graph layers can improve the
classification accuracy.
One approach to analyze multi-layer graphs is first to merge graphs according to some
rules and then extract communities from the combined graph. The layers may be combined
directly or using some functions defined on the graphs. For example, multiple graphs may
be aggregated in spectral domain using a joint block-matrix factorization or a regularization
framework (Dong et al, 2011). Another method is to extract spectral structural properties from
each layer separately and then to find a common presentation shared by all layers (Tang et all,
2009).
In this paper we consider methods of combining graphs based on modularity maximization

max Q = max
ci,cj

1

2m ∑
i,j

(

Aij −
didj

2m

)

δ(cj, cj) . (33)

Let’s define a modularity matrix M with elements Mij = Aij −
didj

2m
. Then the modularity in

(33) may be presented as

Q =
1

2m
Tr

(

GT(A −
ddT

2m
)G

)

=
1

2m
Tr(GTMG) , (34)

where columns of N × Nc matrix G describes community memberships for nodes, gj(i) =
gij ∈ {0, 1}, gij = 1 if the i-th node belongs to the community cj; Nc is a number of

communities; d is a vector formed by degrees of nodes, d = (d1, · · · , dN)T.
Let’s consider a multi-layer graph G = {G1, G2, . . . , GL} with adjacency matrices A =
{A1, A2, . . . , AL}, where L is a number of layers. Before combining. the graphs are to be
normalized. In case of modularity maximization (33) it is natural to normalize each layer
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according its total weight m.
The simplest method to combine multi-layer graphs is to make the average of all layers:

Ā =
1

L

L

∑
l

Al ; d̄ =
1

L

L

∑
l

dl ; m̄ =
1

L

L

∑
l

ml ; max Q = max
G

1

2m̄
Tr(GTM̄G) (35)

Then the community membership matrix G may be found by one of community detection
methods described before. By taking into account degree distributions of nodes at each graph
layer, the total modularity across all layers may maximized as (Tang et all, 2009)

max Q =
1

L

L

∑
l

Ql = max
G

1

2L

L

∑
l

Tr

(

GT(Al −
dld

T
l

2ml
)G

)

= max
G

1

L

L

∑
l

Tr(GT Ml

2ml
G) , (36)

Similar approach, but applied to graph Laplacian spectra and extended with a regularization,
is used in (Dong et al, 2011).
Typically networks describing social relations are often undersampled, noisy and contain
different amount of information at each layer. As the result, a noisy or an observable part(s) in
one of the layers after averaging in (35) and (36) may deteriorate the total accuracy. A possible
solution for this problem is to apply weighted superposition of layers. In particular, the more
informative the layer l is, the larger weight wl it should be given. For example, we may weight
the layer l according to its modularity Ql , hence

Āw =
1

L

L

∑
l

wlAl =
1

L

L

∑
l

QlAl ; (37)

Another method to improve the robustness of nodes classification in multi-layer graphs
is to extract structural properties Gl at each layer separately and then merge partitions
(Strehl & Ghosh, 2002). The more advanced approach of processing of multi-dimensional data
may be based on presenting multi-layer graphs as tensors and apply tensor decomposition
algorithms (Kolda & Bader, 2009) to extract stable communities and make de-noising by
lower-dimension tensor approximation. These methods are rather involved and will be
considered elsewhere.

6. Simulation results for benchmark networks

To test algorithms described in the previous sections we use the karate club social network
(Zachary, 1977). As mentioned before, to get different hierarchical levels beyond and below
the resolution provided by max-modularity, we use the random walk approach. A number
of detected communities in the karate club at different resolution levels is presented at Fig.5.
As one can see, the max-modularity algorithm does not necessary result in the best partition
stability. The most stable partition in case of the karate club corresponds to 2 communities
(shown by squares and circles at Fig.1), which is in line with results reported by (Zachary,
1977).
Comparison of coupling scenarios B.2 and B.3 is presented at Fig.6 and Fig.7. Pair-wise
correlations between oscillators at t = 1 for coupling scenarios B.2 and B.3 are depicted at

Fig.6. Scenario B.3 reveals clearly communities structure, while in case of B.2 the negative
coupling overwhelms the attractive coupling and forces the system into a chaotic behavior.
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Dynamical connectivity matrices reordered by communities for the attractive-neural coupling
B.3 at t = 1 (on the left) and t = 10 (on the right) are depicted at Fig.7. In case B.3 one
can see (also cf. Fig.8) that number of connections with the attractive coupling is growing in
time, while the strength of the repulsive connections is decreasing, which finally results in the
global synchronization. For the scenario B.2 there is a dynamical balance between attractive
and repulsive coupling with small fluctuations around the mean (Fig.8). Note that even the
averaged strength of the repulsive connections is less than the attractive coupling, the system
dynamics shows a quasi-chaotic behavior.
Fig.9 shows the adjacency matrix for Zachary karate club (red circles), detected communities
by pink squares, predicted links are shown by blue dots. As expected, the dynamical methods
for links prediction tend to make more connections within the established communities first,
followed by merging communities and creating highly overlapped partitions at the higher
hierarchical levels (the upper part at Fig.9). In case of Katz predictor (32), by increasing the
dumping parameter β we take into account the larger number of paths connecting nodes in the
graph, which in turn results into the larger number of suggested links above a fixed threshold.

Following the concept of dynamical connectivity matrix (20), the process of growing number
of links may be seen as the hierarchical community formation predicted by (32) at different
values of β. This process is illustrated at Fig.9, the bottom part. Note that in case of Katz
predictor, the connected graph is also approaching the fully connected graph, but the network
evolution may take a different trajectory compared to the coupled dynamical systems. In
particular, at small values of t and β, the network evolution is similar for both cases (cf.
Fig.9(b) and Fig.9(e)), but with the time the evolution trajectories may follow different paths
(cf. Fig.9(c) and Fig.9(f)), which in turn results in different predictions.
Note that in all cases of the network evolution, we may prioritize the recommended
links based on the soft communities detection (Katz predictor) or the threshold η (coupled
dynamical systems). We address this issue below in Section 7.

Fig. 5. Karate club: number od communities at different resolution levels.

7. Applications for real wold mobile data

7.1 Community detection in Nokia mobile datasets

To analyze mobile users behavior and study underlying social structure, Nokia Research
Center/Lausanne organized mobile data collection campaign at EPFL university campus
(Kiukkonen et al, 2010). Rich-content datasets (including data from mobile sensors, call-logs,
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(a) (b)

Fig. 6. Karate club: averaged pair-wise correlations (scaled by 5) between oscillators at t = 1
re-ordered according to communities. Coupling scenarios: (a) attractive-repulsive B.2; (b)
attractive-neutral B.3.

bluetooth (BT) and WLAN proximity, GPS coordinates, information on mobile and
applications usage and etc) are collected from about 200 participants for the period from
June 2009 till October 2010. Besides the collected data, several surveys before and after the
campaign have been conducted to profile participants and to form a basis for the ground truth.
In this section we consider social affinity graphs constructed from call-logs, GPS locations and

users proximity.
Fig.10 shows a weighted aggregated graph of voice-calls and SMS connections derived from
corresponding datasets. This graph depicts connections among 136 users, which indicates
that about 73% of participants are socially connected within the data collection campaign.
To find communities in this network we first run the modularity maximization algorithm,
which identifies 14 communities after the 3d iteration (Fig.10). To get the higher hierarchical
levels one could represent each community by a single node and continue clustering with
the new aggregated network. However, this procedure would result in a loss of underlaying
structure. In particular, the hierarchical community detection with the nested communities
structure poses additional constrains on the maximization process and may lead to incorrect
classification at the higher layers. For example, after the 3d iteration the node "v146",
shown by red arrow at Fig.10, belongs (correctly) to a community shown by white circles
(3 intra-community edges and single edges to other 6 communities). After agglomeration, the
node "v146" will be assigned to the community shown by white circles on the left side of the
graph. However, it is easy to verify that when communities on the right are merged, the node
"v146" is to be re-assigned to the community on the right side of the network. Dynamical

formulation of modularity extended with the random walk allows different (not necessarily
nested) allocations of nodes at different granularity (resolution) levels and helps to resolve
this problem.
Fig.11 presents a number of communities at different hierarchical levels detected by the
random walk for the network shown at Fig.10. As one can see, the max-modularity partition
with 14 communities is clearly unstable and hardly could be used for reliable predictions, the
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(a) (b)

Fig. 7. Karate club: examples of dynamical connectivity matrices for attractive (shown on the
top in red color) and repulsive (shown at the bottom in blue color) coupling at t = 1 (a) and
t = 10 (b). Nodes are ordered according to communities. Coupling scenarios:
attractive-neutral B.3.

Fig. 8. Karate club: evolution of averaged attractive wp and repulsive wn weights for
different coupling scenarios B.2 and B.3; the average is made over 100 realizations.
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Karate club: adjacency matrix is shown by red circles, detected communities by pink
squares, predicted links are shown by blue dots. The upper part (a)-(c): predictions made by
dynamical systems at different time scales. The bottom part (d)-(f): recommendations made
by the modified Katz predictor at different values of β.

Fig. 10. Community detection based on SMS and call-logs: communities are coded by colors.
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Fig. 11. Stability of communities at different resolution levels.

stable partitions appear at the higher hierarchical levels starting from 8 communities. In the

following we rely on this fact to build the ground truth references for evaluation of clustering.

7.2 Applications for multi-layer graphs

Besides phone and SMS call-logs, the social affinity of participants may also be derived from
other information layers, such as a local proximity of users (BT and WLAN layers) and their
location information (GPS). In this case the soft communities detection may be extended to
include multiple graph layers. In particular, we found that users’ profiles may significantly
vary across the layers. For example, a user may have dense BT connections with a multiple
communities participation, while his phone call activities may be rather limited. Combining
information from several graph layers can be used to improve the reliability of classification.
Below we show some preliminary results, more detailed analysis of multi-layer graphs built
from mobile datasets may be found in (Dong et al, 2011).
To make verification of detected communities we select a subset of 136 users with known
email affiliations as the ground truth. In our case these users are allocated into 8 groups. To
get the same number of communities in social affinity multi-layer graphs, we use the random
walk (11) to obtain the more course resolution than provided by the modularity maximization.

Fig 12 depicts communities (color coded) derived from the phone-calls graph. Single nodes
here indicate users which did not make phone calls to other participants of the data collection
campaign. Communities derived from the BT-proximity graph and mapped on the phone-call
graph are shown at Fig.13. As expected, multi-layers graphs help us to classify users based
on the additional information found in other layers. For example, users which can not be
classified based on phone calls (Fig.12) are assigned to communities based on the BT proximity
(Fig.13). Fig.14 shows communities detected in the combined graph formed by the BT and
phone-call networks and then mapped on the phone-call network.
Next, we consider communities detected at single and combined layers with different
strategies (35)-(37) described in Section 5 and compare them to the ground truth. To evaluate
accuracy of community detection we use the normalized mutual information (NMI) score,
purity test and Rand index (RI) (Manning et al, 2008). We found that the best graph combining
is provided by weighted superposition (37) according to the max-modularity of layers Q.
Results of the comparison are summarized in Table 1. As expected, different graph layers have
a different relevance to the email affiliations and do not have fully overlapped community
structures. In particular, the local proximity seems to be more relevant to professional relations
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Fig. 12. Community detection using random walk in the phone-calls network.

Fig. 13. Communities detected in the BT proximity network and mapped on the phone-calls
network.
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indicated by email affiliations, while phone calls seem to reflect more friendship and family
relations. However, the detected structures are still rather close to each other (cf. columns
in Table 1) reflecting underlaying social affinity. As one can see, by properly combining
information from different graph layers we can improve the reliability of communities
detection.

Fig. 14. Communities detected in the combined BT & phone-calls network and mapped on
the phone-calls network.

NMI Purity RI Q
Phone calls 0.262 0.434 0.698 0.638
BT proximity 0.307 0.456 0.720 0.384
GPS 0.313 0.471 0.704 0.101
Phone + BT 0.342 0.427 0.783

Table 1. Evaluation of community detection in multi-layer graphs.

7.3 Application for recommendation systems

As discussed in Section 4, one of applications of the soft communities detection and coupled
systems dynamics may be seen in recommendation systems. To illustrate the approach we
selected the user "129" (marked by oval) in the phone-calls network at Fig.12 and calculated

proposed prediction scores for different similarity measures.
First, we consider intra-community predictions made by coupled dynamical systems.
Fig.15(a) depicts pair-wise correlations (scaled by 5) between oscillators at t = 10 for
the sub-network at Fig.12 forming the intra-community of the user "129". By changing
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(a) (b) (c)

Fig. 15. Community of the user "129" (shown by pink color at Fig.12): averaged (scaled by 5)
pair-wise correlations between oscillators at t = 10 (a). Intra-community adjacency matrix
(red circles) and links predicted by dynamics (blue dots) at different resolution levels: t = 15
(b) and t = 25 (c).

the threshold η for the dynamical connectivity matrix Ct(η) (which is linked to time
resolution t) we obtain different connectivity matrices Cη(t) presenting the network evolution.
Connectivity matrices (blue points) corresponding to η = 3 (t = 15) and η = 2.3 (t = 25) are
shown at Fig.15(b) and Fig.15(c), respectively. The community adjacency matrix is marked
on the same figures by red circles. As one can see, dynamical systems first reliably detect
the underlaying topology and then form new links as the result of local interactions and
dynamical links update. It can be easily verified that practically all new links (e.g., 12 out of 13
at Fig.15(b)) create new cliques, hence we can interpret these new links as the Friend-of-Friend

recommendations.
Calculated scores S

(i,i)
DC

(k, n) for dynamical systems together with the Friend-of-Friend
intra-community recommendations for two predictors based on the soft community detection

(Katz predictor and convergence speed to consensus, S
(i,i)
CC

(k, n)) are summarized in Table 2.
Here we list all new links together with their normalized prediction scores for the user "129"
which create at least one new clique within its community (shown by pink color at Fig.12).

source destination S
(i,i)
KC

(s, d), % S
(i,i)
CC

(s, d), % S
(i,i)
DC

(s, d), %

129 51 10.5 22.6 18.6
129 78 11.1 16.3 20.8
129 91 47.1 15.4 11.6
129 70 11.3 15.3 18.9
129 92 9.6 15.3 18.8
129 37 10.5 15.1 11.4

Table 2. Scores for the FoF intra-community recommendations for user 129 according to
different similarity measures for the phone-calls network at Fig.12.

Recall that both S
(i,i)
CC

(k, n) and S
(i,i)
DC

(k, n) are based on the network synchronization with

closely related Laplacians. As the result, the distribution of prediction scores S
(i,i)
CC

(k, n) and

S
(i,i)
DC

(k, n) are rather close to each other, compared to the the distribution of the routing-based

Katz score S
(i,i)
KC

(k, n). Convergence of opinions to a consensus within communities in many
cases is the important target in social science. As an example, the best intra-community
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recommendation in the phone-calls network according S
(ii)
CC

(k, n) is shown by the blue arrow
at Fig.12. Scaled pair-wise correlations between oscillators for the whole phone-call network

Fig. 16. Phone-call network: averaged pair-wise correlations (scaled by 10) between
oscillators at t=10, coupling scenario B.3.

Fig. 17. Phone-call network: averaged pair-wise correlations re-ordered according to
detected communities.

at Fig.12 are shown at Fig.16. Correlations between nodes, re-ordered according to one of the
stable partitions detected by the random walk at t=10, reveal clearly the community structure
(Fig.17). The phone-calls adjacency matrix (red circles) and all possible intra-community links
(yellow squares) for the stable communities at t = 10 are depicted at Fig.18 (a). Links
predicted by system dynamics (blue dots) inside and outside of yellow squares indicate
predicted intra-community and inter-communities connections at different resolution levels
and show the priority of the intra-community connections (Fig.18 (b) – Fig.18(c) ). As the
whole, the presented results for the coupled dynamical systems provide the formal basis for
the recommendation rules formulated in Section 4.2.
As it is shown in Section 3, the dynamical process of opinions convergence may be seen as

the first-order approximation of the network synchronization. At the same time, S
(i,i)
CC

(k, n)
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(a) (b) (c)

Fig. 18. Phone-call network: (a) adjacency matrix is marked by red dots, all possible
intra-communities links are shown by yellow squares. Links predicted by dynamics (blue
dots) tend to concentrate within communities: (b) t = 10; (c) t = 15.

has the lower computational complexity than S
(i,i)
DC

(k, n), it makes S
(i,i)
CC

(k, n) more suitable for
large networks. Prediction scores SCC(129, n) and SKC(129, n) calculated according to (32)
for cases with intra- and inter-communities links in the phone-call network are depicted at
Fig.19. Here the scores are normalized as probabilities and sorted according to its priority;
destination nodes n are listed along the x-axis; corresponding random-link probabilities,
pkn = (dkdn)/2m, are shown as the reference. Note that the link with the highest priority,

{129,51} for S
(i,i)
CC

(k, n), is the same as in the intra-community recommendation (cf. Table 2).
However, the presence of inter-community links modifies priorities of other recommendations
according to (30). To make verification we compare the predicted links at the phone-call
network with links observed for the user "129" at the BT proximity layer. This comparison
shows a good fit: 16 out of 18 predicted links are found at the BT proximity layer.
Results for the combined BT and phone-calls networks are presented at Fig.20. Pair-wise
correlations between nodes obtained by dynamical systems approach are shown at Fig.20 (a).
These correlations may be interpreted as probabilities for new links recommendations. Fig.20
(b) depicts recommended links based on the modified Katz predictor (blue circles) beyond the

Fig. 19. Priorities of the FoF recommendations for the user 129 at Fig.12 to be connected to
destination nodes shown along x-axis over all relevant communities.
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given topology (red dots). We found that both recommenders mostly agree on the priority of
intra-community links, but put different weights on inter-community predictions.
Depending on a purpose of recommendation we may select different prediction criteria. Since
new links change topology, which in turn affects dynamical properties of the network, the
recommendations may be seen as a distributed control driving the network evolution.
In general, the selection of topology-based recommendation criteria and their verifications
are the open problems. Currently we are running experiments to evaluate different
recommendation criteria and its acceptance rates.

(a) (b)

Fig. 20. Combined BT and phone-call networks, nodes are ordered according to detected
communities: (a) color-coded pair-wise correlations using dynamical systems; (b) links
recommendations using modified Katz predictor (blue circles), adjacency matrix is marked
by red dots, all possible intra-community links are shown by yellow squares.

8. Conclusions

In this chapter we present the framework for multi-membership communities detection in
dynamical multi-layer graphs and its applications for links predictions/recommendations
based on the network topology. The method is based on the dynamical formulation of
modularity using a random walk and then extended to coupled dynamical systems to detect
communities at different hierarchical levels. We introduce attractive and repulsive coupling
and dynamical link updates that allow us to make predictions on a cooperative or a competing
behavior of users in the network and analyze connectivity dynamics.
To address overlapping communities we suggest the method of soft community detection.
This method may be used to improve marketing efficiency by identifying users
which are strongly relevant to targeted groups, but are not detected by the standard
community detection methods. Based on the soft community detection we suggest
friend-recommendations in social networks, where new link recommendations are made

as intra- and inter-clique communities completion and recommendations are prioritized
according to similarity measures modified to include multiple-communities membership.
This developed methods are applied for analysis of datasets recorded during Nokia
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mobile-data collection campaign to derive community structures in multi-layer graphs and
to make new link recommendations.

9. Appendix: Clustering evaluation measures

Let’s define C = {c1, . . . , cM} and Ψ = {ψ1, . . . , .ψM} as partitions containing detected clusters
ci and the ground truth clusters ψi, respectively. Quality of clustering algorithms may be

evaluated by different measures (Manning et al, 2008), in particular:

• Rand index:

RI =
TruePositive + TrueNegative

TruePositive + FalsePositive+ FalseNegative+ TrueNegative
; (38)

• Purity test:

Purity(Ψ, C) =
1

n

M

∑
m=1

max
j

|ψm ∩ cj|; (39)

• Normalized mutual information:

NMI(C, Ψ) =
2 I(Ψ, C)

H(Ψ) + H(C))
, (40)

where the mutual information I(C1, C2) between the partitions C1 and C2 and their
entropies H(Ci) are

I(C2, C2) =
M

∑
m1

M

∑
m2

cm1,m2

n
log

(

n cm1,m2

nm1 nm2

)

, H(Ci) = −
M

∑
mi

nmi

n
log

(nmi

n

)

; (41)

n is total number of data points; cm1,m2 is the number of common samples in the m1-th
cluster from C1 and the m2-th cluster in the partition C2; nmi

is the number of samples in
the mi-th cluster in the partition Ci . According to (41), max NMI(C1, C2) = 1 if C1 = C2 .
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