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1. Introduction 

In Mexico, in 70% of cases, the prostate cancer (PCa) is found in advanced stage. PCa 
currently occupies second place in frequency of cancer in men, surpassed only by skin 
cancer, and is the second principal cause of death in men after of lung cancer (Hall et al., 
2005). 

Reactive oxygen species (ROS) such as superoxide (O2
−) and hydrogen peroxide (H2O2) are 

found in a large number of tumors and in high levels they induce cell death, apoptosis, 
senescence and angiogenesis (Ushio-Fukai & Nakamura, 2008). 
One of the major sources of ROS is NADPH oxidase (NOX). The NOX are a family of 
enzymes that are found in various tissues. The NOX receives an electron from NADPH 

generating O2
(Bánfi  et al., 2001). Xia et al, Lim et al. and Brar et al. found that some NOX 

isozymes increase in association with ROS-production and tumor progression in ovarian 
and human colon cancer and in DU-145 cells of PCa, respectively (Brar et al., 2003; Lim et 
al., 2005; Xia et al., 2007). 
Cells have different antioxidant systems including low molecular weight antioxidant 
molecules and various antioxidant enzymes. Superoxide dismutase (SOD) catalyses the 

dismutation of O2
 into H2O2 that can be transformed into H2O and O2 by catalase (CAT) 

(Genkinger et al., 2006). Mn-SOD is the major antioxidant in the mitochondria and is 
essential to the vitality of mammalian cells. In many types of tumor cells has been found to 
contain high levels of Mn-SOD, Cu/Zn-SOD or CAT expression compared to their 
nonmalignant counterpart such as in human tumor cancer cells of esophageal, gastric, 
ovary, breast, neuroblastoma, osteosarcoma, melanoma, pleura and leukemia (Grigolo  et 
al., 1998; Janssen et al., 2000; Starcevic et al., 2003; Qian  et al., 2005, López Laur  et al., 2008). 
However, the role of these enzymes in carcinogenesis remains unclear. 
On the other hand, iNOS or NOS-2 is an inducible isoform of nitric oxide synthases (NOS). 

All isoforms of NOS catalyze the reaction of L-arginine, NADPH and oxygen to nitric oxide 

(NO), L-citrulline and NADP. NO is a lipophilic physiological messenger wich regulate a 

variety of cellular responses and may exert its cellular action by cGMP-dependent as well as 

by cGMP-independent pathways (Stamler, 1994). The expression of  iNOS has been found to 

be increased in a variety of human cancers such as colon, stomach, brain and breasts cancers 

(Alderton et al., 2001; Church & Fulton, 2006) by multiple mechanisms that control their 

activity (Stamler, 1994; Friebe & Koesling, 2003). 
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Ciclooxygenase-1 and 2 (COX-1/2) catalyze the initial step in the formation of 
prostaglandins (Smith & Langenbach, 2001). Very recently their role in carcinogenesis has 
become more evident. They influence apoptosis, angiogenesis, and invasion, and play a key 
role in the production of carcinogens. Usually, a high level of COX expression is found in 
cancer cells (Dannenberg & Zakim, 1999). The role of COX-2 in carcinogenesis has been 
recently described. Multiple lines of evidence confirm that selective COX-2 inhibitors reduce 
prostaglandin production and the risk of colorectal, skin and other neoplasias (Sonoshita et 
al., 2001). COX-2 is related to the formation of carcinogens, tumor promotion and inhibition 
of apoptosis, angiogenesis and the metastatic process (Ebehart et al.,1994; Uefuji et al., 2000). 
However, the interactions and links between lipid metabolism and cancer progression 
remain to be elucidated. 
Therefore, in the present study, we decided to evaluate and compare, for the first time, the 
pattern protein expression of p22 phox subunit of NOX, Mn-SOD, Cu/Zn-SOD, CAT, iNOS 
and COX-2 protein expression in patients with PCa and with BPH. 

2. Patients and methods  

We obtained 62 samples of prostate tissue through of various surgical procedures 
(transurethral resection and biopsy transrectal). Approval was obtained from the local research 
and ethics committee for use of tissue. Of these samples, 30 patients (48.4%) had a diagnosis of 
PCa, while as 32 patients (51.6%) had a diagnosis of BPH (Department of Medical Urology, 
Hospital Central Militar, Mexico). The sample collection was conducted from January 2006 to 
December 2009 and was considered inclusion, exclusion and elimination criteria. 
In the PCa group the average age was of 65.3 years and the concentration of preoperative 
PSA was of 8.6 ng/mL. In this group, the patients were classified according to Gleason scale. 
The score was of 4 in 1 case (3.3%), 6 in 19 cases (63.3%), 7 in 9 cases (30%) and 8 in 1 case 
(3.3%). None of the patients had undergone chemotherapy or radiotherapy before surgery. 
In the BPH group the average age was of 66.5 years and the concentration of preoperative 
PSA was of 8.7 ng/mL. 
Tissues obtained (500 mg) were stored at -83°C (Revco® Legaci ULT2186 3-35 Dupont SVVA 
Refrigerants) until further processing. 

2.1 Immunohistochemistry 
For light microscopy, tissue samples of PCa and BPH were fixed by immersion in formalin 
(pH 7.4) and embedded in paraffin. Serial cuts of 3 mm of thickness were mounted on poli-
L-lisina coated slides (Sigma, St Louis, MO). Sections were initially deparaffinized by 
washing in xylene and decreasing ethanol concentrations and boiled in Declere (Cell 
Marque, Hot Springs, AR) to unmask antigen sites. Slides were washed in phosphate buffer 
saline (PBS). Endogenous peroxidase activity was blocked by exposing slides to 0.6% H2O2 
in PBS for 30 min. 
After of washing in PBS, nonspecific binding was avoided by incubation with 5% blocking 
solution (5% normal goat serum in PBS) for 20 min. Sections were incubated overnight (16 h) 
with primary anti-p22 phox subunit NOX, anti-Mn-SOD, anti-Cu/Zn-SOD, anti-CAT, anti-
iNOS and anti-COX-2 antibody (1:100 for each one). Following removal of the antibodies 
and repetitive rinsing with PBS, slides were incubated with a biotinylated goat anti-IgG 
secondary antibodies (1:500 fur each one) (Jackson ImmunoReseach, West Grove, PA). 
Immunocytochemical identification of positive cells was performed by the use of an avidin-
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biotinylated peroxidase complex (ABC-kit Vectastain, Vector Laboratories, Burlingame, CA) 
and diaminobenzidine (Vector Laboratories, Burlingame, CA). After of intensive washing in 
PBS, slides were counterstained with hematoxylin. Sections were dehydrated in graded 
alcohols, treated with xylene and subsequently mounted. All specimens were examined by 
light microscopy (Axiovert 200 M, Carl Zeiss, Germany), photographs were taken with a 
digital camera (Axiocam HRC, Carl Zeiss, Germany). The number of positive cells (brown) 
was determined with a computerized image analyzer KS-300 3.0 (Carl Zeiss, Germany). The 
percentage of damaged area with histopathological alterations was obtained (400x 

magnification). Five random fields were studied (total area 1,584,000 2). The results were 
expressed as a percentage. 

2.2 Statistics 
Findings were expressed as the mean ± SD. The statistical significance of the protein 
expression levels of p22 phox subunit of NOX, Mn-SOD, Cu/Zn-SOD, CAT, iNOS and COX-
2 between PCa and BPH groups glands or stroma, was determined using the software Prism 
version 3.32 (GraphPad Prism 4.0 Software, San Diego, CA, USA) with “student t-test”. It 
was considered a p <0.05 as statistical difference between groups. 

3. Results 

The results obtained in PCa and BPH groups are summarized in Table 1. NOX, Mn-SOD, 
Cu/Zn-SOD and CAT protein immunohistochemistry were significantly higher (1.76, 1.7, 
1.78 and 5.88 fold, respectively) in stroma and were significantly higher (3.74, 1.69, 4.76 and 
1.59 fold ,respectively) in gland of patients with PCa than that in patients with BPH. 
Moreover, NOX, Mn-SOD and CAT protein expressions were significantly higher in gland 
than in stroma, while as Cu/Zn-SOD protein expression was significantly higher in stroma 
than in gland in patients with BPH. NOX and Mn-SOD protein expression were significantly 
higher in gland than in stroma in patients with PCa. 
However, iNOS and COX-2 protein expressions were significantly higher in stroma and 
gland of BPH (1.47 and 2.9 fold, respectively) in comparison with PCa. 
 

Parameters 
BPH (n=32) 

Gland 
PCa (n=30) 

Gland 
Stroma Stroma 

NOX 4.8 ± 1.9 6.7 ± 2a 8.45 ± 1.7c 25.08 ± 3.5d,b 

Mn-SOD 11.97 ± 1.6 14.73 ± 1.4c 20.45 ± 2.1c 24.83 ± 1.7d,b 

Cu/Zn-SOD 30.3 ± 6.6d 11.1 ± 1.9 54.1 ± 14.6c 52.8 ± 8.8d 

CAT 9.8 ± 1.5 37.9 ± 4.5c 57.6 ± 15.5c 60.1 ± 4.5d 

iNOS 23.3 ± 8.8e 24.6 ± 6.3f 15.9 ± 7.1 16.3 ± 4.6 

COX-2 12.1 ± 1.3g 14.8 ± 2.1h 7.4 ± 0.9 5.12± 0.7 

aP=0.0002 vs stroma BPH; bP<0.0001 vs stroma PCa; cP<0.0001 vs stroma BPH; dP<0.0001 vs gland BPH; 
eP=0.0072 vs stroma PCa; fP=0.0016 vs gland PCa; gP=0.0314 vs stroma PCa; hP=0.0072 vs gland PCa 

Table 1. Mean ± SD NOX, Mn-SOD, Cu/Zn-SOD, CAT, iNOS and COX-2 protein 
expressions (%) in PCa and BPH group. 
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Fig. 1. Immunohistochemical determination of p22 phox subunit of NOX and Mn-SOD in 
BPH and PCa. (A) y (B) gland of BPH of NOX and Mn-SOD. (C) y (D) gland of PCa of NOX 
and Mn-SOD. In both groups was determined % area marked by field (400x) and was 
analized the values with significative increase in gland PCa immunoreactivity. 

 

 

Fig. 2. Immunohistochemical determination of Cu/Zn-SOD and CAT in BPH and PCa. (A) y 
(B) gland of BPH of Cu/Zn-SOD and CAT. (C) y (D) gland of PCa of Cu/Zn-SOD and CAT. 
In both groups was determined % area marked by field (400x) and was analized the values 
with significative increase in gland PCa immunoreactivity. 
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Fig. 3. Immunohistochemical determination of iNOS and COX-2 in BPH and PCa. (A) y (B) 
gland of BPH of iNOS and COX-2. (C) y (D) gland of PCa iNOS and COX-2. In both groups 
was determined % area marked by field (400x) and was analized the values with 
significative increase in gland PCa immunoreactivity. 

4. Discussion 

Recently, a new hypothesis has been proposed for prostate carcinogenesis. It suggested that 

exposure to environmental factors such as infectious agents and dietary carcinogens, and 

hormonal imbalances lead to injury of the prostate and to the development of chronic 

inflammation and regenerative ‘risk factor’ lesions, referred to as proliferative inflammatory 

atrophy (PIA). PCa is associated with oxidative stress, which stimulates the production of 

reactive oxidative species (ROS) and reactive nitrogen species. Oxidative stress derived from 

endogenous and exogenous sources are associated with DNA damage that occurs with 

aging and plays a role in carcinogenesis (Klein et al., 2006). 

The results obtained, for the first time, in this study showed an increased in the expression 

of p22 phox subunit of NOX, Mn and Cu/Zn-SOD and CAT in stroma and gland of PCa. 
In previous studies concluded that NOX has a role as a signaling mechanism that regulates 
the cell growth and apoptosis in PCa (Vignais, 2002). The exact signaling pathways of NOX 
are uncertain and may be tissue specific. 
Angiotensin II stimulates the activity of NOX in vascular smooth muscle via protein kinase 

and NF-B in the airways and in melanomas (Arnold et al., 2001). Arbiser et al. 

demonstrated that NOX-1-induced vascular endothelial growth factor (VEGF) and VEGF 

receptor expression promoting the angiogenesis and rapid expansion of the tumors (Arbiser 

et al., 2002). Babior BM found that the high levels of ROS are produced spontaneously in 

PCa and in ovarian cancer. This high production of reactive species was inhibited using an 

inhibitor of NOX, the diphenyl iodonium (DPI) and the inhibitor of mitochondrial electron 
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chain, rotenone (Babior, 1999). This suggest that NOX could promote angiogenesis in the 

early stages of PCa. 

By controlling O2
─/H2O2 levels, SOD appears to be a critical enzyme in cancer progression. 

Bravard et al and St Clair et al suggested to the Mn-SOD as a potential tumoral suppressor 

that might also be involved in cellular differentiation (Zhao  et al., 2001). 

We suggested that any mutation or epigenetic changes in Mn-SOD gene are the cause of the 

high level found in the Mn-SOD expression in PCa in the mitochondria. This could have 

potential effects on survival and proliferation of tumor cells, a fact which has been found in 

other tumors with aggressive behavior and with a poor prognosis for the patient. 

MnSOD polymorphisms have been investigated in several types of malignancies, such as 

lung, breast and skin cancer (Liu et al., 2004; Han et al., 2007; Bewick  et al., 2008). There are 

at least two functional validated single nucleotide polymorphisms in Mn-SOD. One of these 

variants is a change in the amino acid codon 9 from valine (GTT) to alanine (GCT) and 

another is a change in the amino acid codon 16 from valine (GTT) to alanine (GCT) (Tugcu 

et al., 2007). These changes alter the secondary structure of the protein, affect the transport of 

the enzyme into mitochondria and reduce the enzymatic activity of Mn-SOD, leaving the 

cell vulnerable to oxidative damage. 

Our results suggest that Mn-SOD probably plays an important role in resistance to 
treatment of various tumors or in the evolution of invasive tumors.  

Brown et al demonstrated an essential role of O2
 in the posttranslational activation of 

Cu/Zn-SOD and in the ratio of active to inactive Cu/Zn-SOD, which may be relevant to 

various diseases, including cancer (Brown et al., 2004). Therefore, O2
 production by NOX 

could be induce protein over-expression of Cu/Zn-SOD in PCa.  

 CAT plays an integral role in the primary defense against oxidative stress by converting 

H2O2 into H2O and O2. Genetic polymorphisms of CAT can change expression levels of the 

protein. A −262C → T polymorphism in the promoter region of the CAT gene is associated 

with risk of several conditions related to oxidative stress. A transcription factor binding site 

search indicates that the -262 C allele is located in close proximity to several binding sites for 

transcription factors and could potentially influence rates of transcription. Forsberg et al. 

previously showed that the T allele was associated with greater CAT protein levels in some 

tissues than the C allele (Forsberg et al., 2001). However, different regulatory mechanism of 

CAT in PCa should be explained. 

Our results showed different expressions in NOX, Mn-SOD, Cu/Zn-SOD and CAT in 
stroma and gland in PCa and BPH groups. The increase of NOX and Mn-SOD expression 

in gland of PCa and BPH group may have been due to excessive O2
 and H2O2 

production that stimulate migration, invasion and angiogenesis of the tumor cells in 
response to the intracellular changes in ROS levels in this prostate component. The 
differences in the architecture of the prostate are most likely related to changes in the 
tumor invasion process 
Furthermore our results suggest that exist alterations in the prooxidative-antioxidative 

balance in PCa, this imbalance is known to alter cellular redox processes, growth, and 

proliferation and cell cycles, since it is known that certain free radicals mediate the 

activation of cellular transduction, of transcription factors such as Fos, Jun and nuclear 

factor kB and an increase in mitochondrial activity in the cells. Moreover, transcription 

factors such as Rac1, Ref-1 and p53 regulated by ROS are involved in angiogenesis (Ushio-

Fukai & Nakayama, 2008). 
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NO is synthesized by three differentially gene-encoded NOS in mammals: neuronal NOS 

(nNOS or NOS-1), inducible NOS (iNOS or NOS-2) and endothelial NOS (eNOS or NOS-3). 

All three isoforms present similar structures and catalytic modes. The expression of NOS-2 

is induced by inflammatory stimuli while NOS-1 and NOS-3 are more or less constitutively 

expressed. The active form of NOS-1 and -3 requires two NOS monomers associated with 

two Ca2+-binding protein calmodulin and cofactors such as (6R)-5,6,7,8-tetrahydrobiopterin 

(BH4), FAD, FMN and haem group and catalyze the reaction of L-arginine, NADPH and 

oxygen to NO, L-citrulline and NADP (Alderton et al., 2001; Stuehr et al., 2004). NOS 

isoforms are differentially regulated at transcriptional, translational and post-translational 

levels. The intracellular localization is relevant for NOS activity. Evidence indicates that 

NOS are present in plasma membrane, Golgi, cytosol, nucleus and mitochondria (Oess et al., 

2006; Iwakiri et al., 2006). The expression of iNOS can be transcriptionally regulated by 

factors such as cytokines (e.g. interferon-Ǆ (IFN- Ǆ), interleukin-1ǃ (IL-1 ǃ) and tumour 

necrosis factor-ǂ (TNF-ǂ), bacterial endotoxin (LPS) and oxidative stress (e.g. under 

conditions encountered during hypoxia)(Xu & Liu, 1998). 

An initial study on iNOS expression in human breast cancer suggested that iNOS activity 
was higher in less differentiated tumours in a panel of 15 invasive breast carcinomas 
(Thomsen et al., 1995). Reveneau et al reported NOS activity in 27 of 40 tumours studied 

(Reveneau et al., 1999). Vakkala et al showed that carcinomas with both iNOS positive 
tumour and stromal cells had a higher apoptotic index and a higher calculated microvessel 
density index (Vakkala et al., 2000). Loibl et al further demonstrated that while none of the 
benign lesions were positive for iNOS, 67% in situ carcinomas and 61% invasive lesions 
showed iNOS tumour cell staining (Loibl et al., 2002). 
In addition to breast cancer, iNOS has also been shown to be markedly expressed in 

approximately 60% of human adenomas and in 20-25% of colon carcinomas, while 

expression was either low or absent in the surrounding normal tissues (Ambs et al., 1998a). 

In human ovarian cancer, iNOS activity has been localized in tumour cells and not found in 

normal tissue (Thomsen et al., 1995). Other tumours that have demonstrated iNOS gene 

expression are brain, head and neck, esophagus, lung, prostate, bladder, pancreatic, and 

Kaposi's sarcoma (Cobbs et al., 1995; Rosbe et al., 1995; Wilson et al., 1998; Ambs et al., 

1998a; Klotz et al., 1998; Hajri et al., 1998; Weninger et al., 1998; Swane et al., 1999). 
In this study, we found that exist strong expression of iNOS in stroma and gland of HPB, in 

comparison with PCa. It Have been demonstrated that NO- mediated up-regulation of 

VEGF. In the results is possible that NO generated by iNOS in stroma may promote early 
new blood vessel formation by up-regulating VEGF and enhance ability of the tumour to 
grow and increases its invasiveness ability in gland. (Ambs et al., 1998a). Moreover, the 
accumulation of p53 in gland can result in down-regulation of iNOS expression by 
inhibition of iNOS promoter activity (Ambs et al., 1998b). On the other hand, the generation 
of chronic injury and irritation  initiate the inflammatory response of stroma to gland (NOS-
1). A subsequent respiratory burst an increase uptake of oxygen that leads to the release of 

reactive oxygen species (NO, ONOO, N2O3, NO2 and NO3) from leucocytes can damage 
surrounding cells and drive carcinogenesis by altering targets and pathways that are crucial 
to normal prostate homeostasis (Coussens & Werb, 2002; Fukumura et al., 2006). 
COX-1 and COX-2 regulate a key step in prostanoid (i.e., tromboxanes and prostaglandins) 
synthesis. Prostaglandins regulate various pathophysiological processes such as 
inflammatory reaction, gastrointestinal cytoprotection and ulceration (Smith & Langenbach, 
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2001). COX-1 is the constitutive isoform and COX-2 is the inducible isoform. COX-1 is 
expressed in most tissues and plays a role in the production of prostaglandins that control 
normal physiological processes. COX-2 is undetectable in most normal tissues (except for 
the central nervous system, kidneys and seminal vesicles), but is induced by various 
inflammatory and mitogenic stimuli (growth factors, pro-inflammatory cytokines and tumor 
necrosis factor) and other regulatory factors (Peppelenbosch et al., 1993; Zhang et al., 1998, 
Chen et al., 2001; Dempke et al., 2001). Although the mechanism of COX-2 upregulation is 
not fully understood, it could result from activation of Ras and mitogen-activated protein 
kinase (MAPK) pathway. It has been recognized that Akt/PKB activity is implicated in Ras-
induced expression of COX-2. COX-2 is regulated at transcriptional and post-transcriptional 
levels by proinflamatory agents. These pathways lead to the activation of regulatory factors 
that eventually bind the promoter region of the COX-2 gene. (Sheng et al., 1998, 2000). 
In this study, we found that exist strong expression of COX-2 in stroma and gland of HPB, 
in comparison with PCa. There are conflicting data regarding whether COX-2 is increased in 
the epithelial , gland or the stromal component of tumors (Horsman et al., 2010). Liu et al 
were the first to describe tumorigenesis induced by COX-2 over-expression. In their study, 
the murine COX-2 gene was inserted downstream of a murine mammary tumor virus 
promoter. As a consequence, hyperplasia and carcinoma of the mammary gland were 
observed and associated with strong COX-2 expression in mammary gland epithelial cells 
with increase prostaglandin E2 levels. (Liu et al., 2001). The role of COX-2 in tumor 
promotion is more strongly supported by previous studies in colorectal tumor models 
describen by Oshima et al (Oshima et al., 1996). These findings have been confirmed 
analyzing many tumors including pancreas, skin, gastric, bladder, lung, head, and neck 
cancers, suggesting that COX-2, but not COX-1, may play a pivotal role in tumor formation 
and growth (Thun et al., 2002). COX-2-derived prostaglandins contribute to tumor growth 
by inducing angiogenesis that sustain tumor cell viability and growth. COX-2 is expressed 
within human tumor neovasculature as well as in neoplastic cells present in human colon, 
breast, prostate and lung cancer biopsy tissue. (Kerbel & Folkman, 2002). The proangiogenic 
effects of COX-2 are mediated primarily by three products of arachidonic metabolism: 
Tromboxane A2, Prostaglandins I2 and E2 and selective inhibition of COX-2 activity has 
been shown to suppress angiogenesis in vitro and in vivo (Tsujii et al., 1998; Masferrer et al., 
2000; Uefuji et al., 2000). We suggested that COX-2 overexpression in stroma inhibit 
apoptosis and promote angiogenesis in prostate gland. 
Our results suggest that iNOS and COX-2 play a key role in tumorigenesis and indicate that 
iNOS and COX-2-selective inhibitors could be a novel class of therapeutic agents for PCa. 

5. Conclusions 

We suggested that the O2
/H2O2 balance regulated by the over-expression of NOX, 

Cu/Zn-SOD, Mn-SOD and CAT is actively involved in tumor environment, cell 
proliferation, differentiation, tumor progression and angiogenesis of PCa. On the other 
hand, iNOS and COX-2 may promote blood vessel formation in gland from its over-
expression in stroma by multiple mechanisms that involve reactive oxygen species, 
transcription factors, cytokines, growth factors and tumor necrosis factor. 
Moreover, we suggested that the NOX, Cu/Zn-SOD, Mn-SOD, CAT, iNOS and/or COX-2 in 
combination with PSA, could be a molecular markers or prognostic indicators for the early 
diagnosis and post-treatment monitoring of PCa.  
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6. Future research 

Our research group is determining the gene expression and activity of nitric oxide synthases 
isoforms (eNOS, nNOS and iNOS), Mn-SOD, Cu/Zn-SOD, Glutathione peroxidase, 
Glutathione reductase, Glutathione-S-transferase, Catalase and Ciclooxygenase-2 to 
integrate the effect of the regulation of the antioxidant system in the development of 
prostate cancer and recently in breast cancer. 
Actually, we begin a new line of research where we studied the gene expression and 
polymorphisms of some components of the cytochrome P450 system as well as its 
association with the risk of developing prostate cancer and breast cancer. We found a 
protein over-expression of CYP2W1, 4F11 and 8A1, orphans cytochromes, in prostate 
cancer. We hope to find a molecular marker or prognostic indicator for prostate cancer and 
breast cancer. 
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