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1. Introduction 

Prostate cancer is the most common non-cutaneous cancer in American men and the 
second most deadly (Jemal et al., 2010). One in six American men will get prostate cancer 
in his lifetime, and the risk increases with age. Prostate cancer progresses over the course 
of decades, so there is ample opportunity for prevention earlier in life. Epidemiological 
and laboratory studies point to vitamin D3 as a promising chemopreventative agent for 
prostate cancer. Vitamin D3 metabolites and analogs have been shown to induce cell cycle 
arrest, differentiation, and senescence in normal prostate cells and prostate cancer cells. 
Ongoing studies are interrogating the mechanistic effects behind vitamin D3 actions in the 
prostate. Additionally, clinical trials aim to investigate the potential chemopreventative 
and therapeutic effects of vitamin D3 metabolites and analogs, both alone and in 
combination with taxol-based chemotherapeutic agents. Herein we will summarize the 
epidemiological, laboratory, and clinical studies with vitamin D3 and the prostate and 
discuss how the current data supports a role for vitamin D3 in the prevention and 
treatment of prostate cancer.  

2. Prostate cancer treatment and prevention 

If prostate cancer is thought to be localized to the prostate and is classified as low-grade, 
“watchful waiting” is an option, since some prostate tumors do not become life-threatening. 
Otherwise, a prostatectomy or external beam radiation is the first line of therapy (or in some 
cases, brachytherapy). Both prostatectomy and radiation therapy can damage the nerves 
that rest along the prostate, so side effects include impotence and incontinence that may or 
may not reverse over time. If the cancer is thought to have spread beyond the prostate, then 
a more systematic therapeutic approach is needed. 
Since androgens are required for growth of both normal prostate cells and most prostate 
cancer cells, androgen ablation therapy is standard in the forms of surgical or chemical 
castration. Castration has significant side effects, but it reduces tumor burden and 
metastatses and it can help ease pain from metastatic outgrowths. However, androgen 
deprivation therapy inherently selects for prostate cancer cells that can grow in the absence 
of androgens, which often leads to tumor recurrence in 18 to 24 months in the form of 
castration-resistant prostate cancer (Feldman & Feldman, 2001). The median survival time 
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for patients with castration-resistant prostate cancer is only 12-18 months. There is no 
standard successful treatment for castration-resistant prostate cancer, but therapies include 
docetaxel or pacilaxel-based chemotherapy, which are palliative at best. The impacts on 
quality of life and the success rates of current treatment options for prostate cancer 
(especially for castration-resistant prostate cancer) highlight the need for improved 
therapeutic approaches and the importance of chemoprevention, especially in men who are 
at higher risks for prostate cancer.  
The American Cancer Society states that some cases of prostate cancer may be prevented 

by maintaining a healthy lifestyle and by hormonal control. Men who take Finasteride, a 

5-alpha reductase inhibitor, which is a treatment for benign prostatic hyperplasia (BPH) 

and male-pattern baldness, have a lower incidence of prostate cancer, but this drug is not 

widely used for its chemopreventative properties (Hamilton et al., 2010). Dietary sources 

of chemoprevention are promising, but clinical studies are lacking due to the time and 

funds required to carry them out (Thompson et al., 2005). One of the most promising 

dietary chemopreventative agents for prostate cancer is vitamin D3, which we will discuss 

in detail below. 

3. Prostate cancer risk factors 

The major risk factors for prostate cancer include age, race, family history, and geographic 

location. Prostate cancer develops over the course of decades, so its incidence and 

detection rates increase with age. Men of African-American descent are almost twice as 

likely to get prostate cancer as Caucasian men, and the prostate cancer mortality rate is 

more than twice as high for African-American men (Jemal, et al., 2010). Conversely, Asian 

men have among the lowest prostate cancer incidence and mortality rates in the world. 

Interestingly, prostate cancer risk increases in Asian men who relocate to the United 

States, which emphasizes the contributions of diet and lifestyle to prostate cancer risk 

(Severson et al., 1989; Luo et al., 2004). Prostate cancer can also have a strong heritable 

component. The estimated lifetime risk for prostate cancer increases with the number of 

family members diagnosed, with up to a 45% increase for men with three or more 

relatives with prostate cancer (Bratt, 2002). The heritable component of prostate cancer is 

attributed to a number of heritable genetic and epigenetic aberrations, reviewed 

elsewhere (Nelson et al., 2003).  

3.1 Prostate cancer risk factors and vitamin D3 

Of the major risk factors for prostate cancer, age, race, and geographic location are closely 

tied to vitamin D3 status. Older men get less sun exposure and have a thinner epidermis 

(in which UV light synthesizes vitamin D3) than younger men, which are two reasons why 

older men have lower serum vitamin D3 levels (MacLaughlin & Holick, 1985; Lips, 2001). 

Studies have shown inverse correlations between prostate cancer incidence and 

geographical regions with less exposure to UV radiation (Hanchette & Schwartz, 1992). 

Prostate cancer risk and mortality rates are at least twice as high in African-American men 

than in Caucasian men, and one reason for this may be the high levels of melanin in the 

skin that blocks UV-induced synthesis of vitamin D3 (Matsuoka et al., 1991). Japanese men 

have very low risks for prostate cancer and have among the highest serum vitamin D3 

levels in the world due to the traditional vitamin D3-rich diet (Nakamura et al., 2000). 
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These and other epidemiological studies support a role for vitamin D3 in prostate cancer 

prevention. 

4. Vitamin D3 metabolism 

Vitamin D was discovered in 1920 and characterized as a vitamin that is necessary for skeletal 
development and calcium homeostasis (Mellanby, 1921). Its chemical structure later revealed 
that vitamin D is not a vitamin, but a seco-steroid hormone belonging to the steroid hormone 
family that can be synthesized in the body or obtained from the diet (Brockmann, 1936; 
Lawson et al., 1971). Vitamin D3 can be synthesized upon exposure to sunlight or obtained 
from dietary sources such as oily fish, eggs, and fortified milk. Upon exposure to UV radiation, 
7-dehydrocholesterol in the skin is converted to vitamin D3, also known as cholecalciferol 
(Figure 1). Vitamin D3 is the natural form of vitamin D obtained from the diet (DeLuca, 2004). 
Vitamin D3 travels to the liver where vitamin D3 25-hydroxylase (25-OHase, encoded by the 
cytochrome P450 enzyme CYP27A1) hydroxylates it to become 25-hydroxyvitamin D3 
(25OHD3) (Blunt et al., 1968). 25OHD3 then enters the kidney where 25 hydroxyvitamin D3 1ǂ-
hydroxylase (1ǂ-OHase, encoded by CYP27B1) hydroxylates it at the 1ǂ position, generating 
the hormonally active form 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) (Fraser & Kodicek, 1970). 
1,25(OH)2D3 then travels to target tissues to carry out its effects such as regulating mineral 
homeostasis. Tissues other than the kidney express endogenous 1ǂ-OHase such as the bone, 
liver, placenta, macrophages, skin, breast, colon, and prostate, so 25OHD3 can be activated 
directly in these tissues (Schwartz et al., 1998; Zehnder et al., 2001).  
Once activated, 1,25(OH)2D3 (also known as calcitriol) can bind the vitamin D receptor 
(VDR) within the cytosol (Figure 2). Upon binding, conformational changes occur that 
expose the retinoid X receptor (RXR) dimerization domains and the nuclear localization 
domains, allowing the VDR and the RXR to heterodimerize and enter the nucleus (Yasmin 
et al., 2005). Nuclear receptor co-activators such as DRIP/Mediator and SRC/p160 associate 
with the 1,25(OH)2D3 -VDR-RXR complex and regulate its transcriptional activity (Rachez & 
Freedman, 2000; MacDonald et al., 2001). The conformational change also causes the release 
of co-repressors such as nuclear co-repressors (NCoRs) and the silencing mediator for 
retinoid and thyroid hormone receptors (SMRT) histone deacetylase complex, allowing 
histones to be released and the 1,25(OH)2D3 -VDR-RXR complex to bind the vitamin D 
response element (VDRE) in the promoters of target genes (Tagami et al., 1998). RNA 
polymerase II (RNA Pol II) is recruited to the transcriptional machinery complex and 
transcribes 1,25(OH)2D3 target genes. 
Plasma 1,25(OH)2D3 levels are tightly regulated by a negative feedback loop because high 
levels of 1,25(OH)2D3 can be toxic. One of the universal 1,25(OH)2D3 -VDR-RXR target genes 
is CYP24A1, which encodes 24-hydroxylase (24-OHase). 24-OHase hydroxylates 
1,25(OH)2D3 at the 24 position, which targets it for further oxidation to C23 carboxylic acid 
which is catabolized to calcitroic acid and excreted from the body (Figure 1) (Prosser & 
Jones, 2004). Normal serum circulation levels of 25OHD3 are 30-50 ng/mL, while normal 
serum levels of 1,25(OH)2D3 are only ~30 pg/mL (Shepard et al., 1979; Horst & Littledike, 
1982). 1,25(OH)2D3 circulates bound to the vitamin D binding protein (DBP) from which it 
disassociates before entering the cell (Arnaud & Constans, 1993). Responses to vitamin D3 
intake differ among individuals and among tissue-types due to variables including 
CYP24A1 levels, kidney function, and genetic and epigenetic differences in vitamin D3 
metabolic proteins. 
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Fig. 1. Vitamin D3 metabolism. 

 

 

Fig. 2. Intracellular trafficking of 1,25(OH)2D3. 
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5. Vitamin D3 epidemiology 

There is an established association between increased prostate cancer risk and mortality and 
low serum 25OHD3 levels (Ahonen et al., 2000; Tretli et al., 2009), as well as an association 
between prostate cancer risk and genetic polymorphisms of the VDR (Ingles et al., 1997). 
However, other studies report no association or even a positive association between serum 
25OHD3 and prostate cancer risk (Nomura et al., 1998; Park et al., 2010). The inconsistencies 
among reports warrant improved investigation and evaluation methods (reviewed in 
(Trottier et al., 2010)). One reason for the inconsistencies could be the apparent impact on 
prostate cancer risk of vitamin D3 exposure over the course of a lifetime as opposed to the 
impact of serum levels of 25OHD3 over a defined time period (John et al., 2004; John et al., 
2007); studies have shown that childhood sunburn frequency and UV exposure correlates 
with lower prostate cancer risks (Luscombe et al., 2001; Bodiwala et al., 2003). Another 
reason could be that, since prostate cancer develops over the course of decades, some 
patients’ cancer cells may have lost the ability to activate 25OHD3 to 1,25(OH)2D3 

(Guileyardo et al., 1980; J. Y. Hsu et al., 2001; Chen et al., 2003). Studies with follow-up 
periods greater than 10 years are better for evaluating the implications of vitamin D3 status 
in prostate cancer development (Ahonen, et al., 2000; Li et al., 2007). Additionally, 
intermittent high doses (>100,000 IU) of vitamin D3 may be metabolized differently from 
lower daily doses (Rosen, 2011). There is no standardization for vitamin D3, 25OHD3 or 
1,25(OH)2D3 administration, which has hampered clinical studies. Overall, the 
epidemiological studies encourage more laboratory and clinical investigations into a 
therapeutic role for vitamin D3 and its metabolites in the prevention and treatment of 
prostate cancer. 

6. In vitro and in vivo studies 

As mentioned above, prostate cells express endogenous 1ǂ-OHase and can synthesize 

1,25(OH)2D3 from 25(OH)D3, which suggests an important role for 1,25(OH)2D3 in prostate 

biology (Schwartz, et al., 1998). We and others have shown that 25OHD3 inhibits prostate 

epithelial cell growth and induces p21 and p27 (common downstream targets of 

1,25(OH)2D3) to the same extents as does 1,25(OH) 2D3 (Barreto et al., 2000). This supports 

the application of 25OHD3 as a therapeutic that targets prostate tissue. Interestingly, 1ǂ-

OHase activity is lost and 24-OHase expression is elevated in prostate cancer cells compared 

to normal prostate cells, which supports a correlation between decreased 1,25(OH)2D3 levels 

and prostate cancer (Miller et al., 1995; Whitlatch et al., 2002).  
One of the ways that 1,25(OH)2D3 is thought to maintain prostate homeostasis is by keeping 
cell growth in check. 1,25(OH)2D3-induced apoptosis is rarely observed. LNCaP cells treated 
with 1,25(OH)2D3 undergo cell cycle arrest at G1 as a result of increased p21 and p27 levels 
and decreased CDK2 activity followed by dephosphorylation of retinoblastoma (pRB) and 
subsequent suppression of E2F transcriptional activity (Figure 3) (Zhuang & Burnstein, 1998; 
Yang & Burnstein, 2003). Two of the most common downstream targets of 1,25(OH)2D3 are 
CDKN1A (which encodes p21) and CDKN1B (which encodes p27). 25OHD3, 1,25(OH)2D3, 
and its analogs have been shown to elevate p21 and p27 expression in several tissue types in 
conjunction with cell growth inhibition (Kawa et al., 1997; Barreto, et al., 2000; Colston & 
Hansen, 2002). CDKN1A contains a VDRE, so its transcription can be directly regulated by 
1,25(OH)2D3. 1,25(OH)2D3 can also elevate p21 indirectly through direct transcriptional 
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induction of insulin-like growth factor binding protein-3 (IGFBP-3), an upstream mediator 
of p21 transcription (Boyle et al., 2001; Peng et al., 2004; Peng et al., 2008). CDKN1B does not 
contain a VDRE, so p27 is regulated indirectly by 1,25(OH)2D3. CDK2 activates SKP2-
mediated degradation of p27, so 1,25(OH)2D3-mediated induction of p27 is likely due to 
inhibition of CDK2 and p27 protein stabilization (Yang & Burnstein, 2003).  
 

 

Fig. 3. 1,25(OH)2D3 signaling leading to G1 cell cycle arrest in prostate cancer cells.  

More recently, 1,25(OH)2D3 has been shown to inhibit E2F and/or induce G1 arrest 

independently from pRB (Figure 3). In the C4-2 prostate cancer cell line, 1,25(OH)2D3 inhibited 

cMYC which subsequently suppressed E2F activity and cell cycle progression regardless of 

pRB status (Washington et al., 2011). We have reported that 1,25(OH)2D3 induces cell cycle 

arrest independently from pRB in prostate progenitor/stem cells (Maund et al., 2011). Flores 

and Burnstein recently reported that the cell cycle inhibitory protein GADD45Ǆ mediates 

1,25(OH)2D3-induced accumulation of LNCaP cells in G1 (Flores & Burnstein, 2010). Cell cycle 

arrest in G1 is a common downstream effect of 1,25(OH)2D3 treatment, and additional 

mechanisms of cell cycle regulation by 1,25(OH)2D3 are still being uncovered. 
1,25(OH)2D3 can induce differentiation of several cell types including prostate stem cells, 
prostate epithelial cells and prostate cancer cells (Miller et al., 1992; Tokar & Webber, 2005; 
Maund, et al., 2011). Differentiated prostate cells do not normally divide, so 1,25(OH)2D3 
may slow or halt any aberrant cell division. 1,25(OH)2D3-induced differentiation of the 
LNCaP prostate cancer cell line is evidenced by increased levels of prostate-specific antigen 
(PSA), kallikrein 2, E-cadherin, and androgen receptor (AR) (Esquenet et al., 1996; Campbell 
et al., 1997; Zhao et al., 1997; Darson et al., 1999; Zhao et al., 1999; Tokar & Webber, 2005).  
AR signaling plays critical roles in prostate development, function, and pathogenesis. We 
reported that prostate progenitor/stem cells are AR-negative but, upon treatment with 
1,25(OH)2D3, they become AR-positive (Barclay et al., 2008; Maund, et al., 2011). AR is not a 
direct transcriptional target of 1,25(OH)2D3 because it does not contain a VDRE, but we did 
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observe increased AR mRNA in response to 1,25(OH)2D3; its mechanism of upregulation is 
unclear (Zhao, et al., 1999). Since AR signaling can contribute to prostate tumor growth, the 
induction of AR by 1,25(OH)2D3 may not be considered an anti-tumor effect. However, the 
induction of AR by 1,25(OH)2D3 signifies a transition from a less-differentiated prostate cell 
toward a more-differentiated prostate cell that is either less likely to become cancerous or, if 
already transformed, more responsive to therapeutic intervention such as castration. These 
hypotheses have yet to be tested in vivo. In LNCaP cells, growth inhibition by 1,25(OH)2D3 
has been shown to be dependent on AR (Miller, et al., 1992; Zhao, et al., 1997; Zhao et al., 
2000). AR-mediated induction of IGFBP-3 has been implicated in this process (Peng, et al., 
2008). The exact mechanism(s) of 1,25(OH)2D3-induced differentiation is unknown, though 
differentiation is often preceded by an enrichment of cells in the G1 phase of the cell cycle 
(Studzinski & Harrison, 1999). Upregulation of p21 and p27 are implicated in differentiation 
of LNCaP and PC3 cells, and p27 is involved in senescence in a mouse model of prostate 
cancer (Campbell, et al., 1997; Majumder et al., 2008). This suggests that accumulation of 
prostate cells in G1 may precede 1,25(OH)2D3-induced differentiation and/or senescence, 
but the mechanisms remain unknown.  
Our group recently reported that 1,25(OH)2D3 can induce senescence of prostate cancer cells 
in vitro (Axanova et al., 2010). Senescence is defined as a terminally-arrested state in which 
cells are metabolically active but cannot resume cell cycle progression (Muller, 2009), so 
induction of senescence is an additional form of 1,25(OH)2D3-mediated growth suppression. 
Senescence has been observed in cases of PIN that do not progress to prostate cancer 
(Majumder, et al., 2008), so it is possible that additional senescence induced by 1,25(OH)2D3 
may impede prostate cancer progression. This has yet to be tested in vivo.  
Another way that 1,25(OH)2D3 may impede prostate cancer progression and metastasis is 
through inhibition of cellular invasion and migration. In vitro studies have shown that 
1,25(OH)2D3 decreases expression of alpha-6 and beta-4 integrins to inhibit the invasive 
capacities of prostate cancer cell lines (Sung & Feldman, 2000). 1,25(OH)2D3 is known to 
induce E-cadherin in prostate cancer cells (Campbell, et al., 1997), and E-cadherin was 
recently reported to mediate 1,25(OH)2D3-induced cellular adhesion that mitigates the 
metastatic capabilities of prostate cancer cells (J. W. Hsu et al., 2011). 1,25(OH)2D3 has also 
been shown to regulate a range of matrix metalloproteinases (MMPs) and tissue inhibitors 
of matrix metalloproteinases (TIMPs), also thought to mediate the effects of 1,25(OH)2D3 on 
invasion of prostate cancer cells (Bao et al., 2006). 
In vivo studies with 1,25(OH)2D3 have been carried out primarily in xenograft models of 
prostate cancer as well as in the Dunning rat model of prostate cancer and, more recently, 
the Nkx3.1+/-PTEN+/- mouse model (Getzenberg et al., 1997; Lokeshwar et al., 1999; Banach-
Petrosky et al., 2006; Trump et al., 2006). In the rat Dunning model, 1,25(OH)2D3 and 
1,25(OH)2D3 analogs decreased tumor volumes and lung metastases, but the animals 
developed hypercalcemia. Use of 1,25(OH)2D3 analogs alone, however, were sufficient to 
reduce PC3 and LNCaP xenograft volumes without inducing hypercalcemia (Schwartz et 
al., 1995; Blutt et al., 2000). Nkx3.1+/-PTEN+/- mutant mice develop high-grade PIN with the 
capacity for progression to advanced metastatic and androgen-independent prostate cancer 
(Kim et al., 2002; Abate-Shen et al., 2003). Sustained intravenous delivery of 46 ng/kg/day 
of 1,25(OH)2D3 or vehicle control were administered to Nkx3.1+/-PTEN+/- pre-cancerous and 
cancerous cohorts of mice for 4 months (Banach-Petrosky, et al., 2006). Interestingly, 
1,25(OH)2D3 suppressed PIN formation in the pre-cancerous cohort, but it did not affect 
prostate cancer progression in the cancerous cohort. Furthermore, increased levels of the 
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VDR were observed in the pre-cancerous cohort after 1,25(OH)2D3 administration, while 
there was only a modest increase in VDR in the cancerous cohort, which could account for 
the ineffectiveness of 1,25(OH)2D3 on tumor progression in the cancerous cohort. These 
results suggest that prostate cancer cells may have aberrations in the vitamin D3 response 
pathway. Therefore, vitamin D3 may be more effective as a chemopreventative agent than as 
a chemotherapeutic.  

6.1 Prostate stem cells and vitamin D3 

Accumulating evidence supports the presence of adult prostate-specific stem cells, which 
undergo self-renewal into an identical prostate stem cell and multi-lineage differentiation 
into the multiple epithelial cell types of the prostate (Burger et al., 2005; Barclay, et al., 2008; 
Goldstein et al., 2010). They serve to maintain prostate tissue homeostasis and to stimulate 
tissue regeneration after injury. There are many similarities between the signalling 
pathways found to regulate stem cell processes and those that regulate cancer progression, 
which has led to the cancer stem cell hypothesis (Reya et al., 2001; Maund & Cramer, 2009; 
Mimeault & Batra, 2010). The prostate cancer stem cell hypothesis proposes that a 
transformed prostate stem cell can give rise to a heterogeneous prostate tumor, and that the 
tumor cannot be ablated unless the cancer stem cells are eliminated.  
The aim of chemoprevention is to impede tumor development at the earliest point in its 
progression. According to the cancer stem cell hypothesis, the target cell population for 
prostate cancer prevention would be the prostate stem/progenitor cells (Maund & Cramer, 
2010). Stem cells intrinsically have an extended replicative capacity. Agents that limit this 
capacity and promote differentiation are promising chemopreventative agents. We have 
recently reported that 1,25(OH)2D3 is growth-inhibitory in adult prostate stem/progenitor cells 
(Maund, et al., 2011). 1,25(OH)2D3 can induce G1 and G2 cell cycle arrest, stimulate 
differentiation toward a luminal epithelial cell type, and trigger senescence in this cell 
population, supporting a relevant role for vitamin D3 in prostate chemoprevention 
(particularly in light of the cancer stem cell hypothesis). We found that the cytokine 
interleukin-1 alpha is highly upregulated by 1,25(OH)2D3 and is a novel mediator of 
1,25(OH)2D3-induced growth inhibition of prostate stem/progenitor cells. In addition, 
microarray data revealed that 1,25(OH)2D3 can impact gene expression and signalling 
pathways involved in stem cell self-renewal and multilineage differentiation including 
Hedgehog, Wnt, and TGFǃ signaling (Maund, et al., 2011). 1,25(OH)2D3 regulates components 
of these pathways in other cell types as well (Sarkar et al., 2010; Tang et al., 2011). This work is 
just beginning to reveal the cellular and genomic impacts of 1,25(OH)2D3 in the stem cell 
population. Furthermore, 1,25(OH)2D3 has been shown to exert anti-proliferative and pro-
differentiating effects on hematopoietic and skin progenitor cells (Liu et al., 1996; Lehmann et 
al., 2010). The identification of tissue-specific stem cells and their potential contributions to 
cancer initiation and progression is changing the way we approach cancer prevention and 
treatment. A major aim is to identify compounds that effectively target the stem cell 
population, and 1,25(OH)2D3 is a promising candidate for further investigation. 

7. Clinical studies 

Most clinical trials involving 1,25(OH)2D3 and 1,25(OH)2D3 analogs are carried out in 
combination with chemotherapeutic agents, particularly the taxanes, and are tested in 
patients with castration-resistant prostate cancer. 1,25(OH)2D3 analogs such as EB1089 and 
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22-oxacalcitriol (OCT) are VDR ligands designed to recapitulate the anti-proliferative effects 
of 1,25(OH)2D3 while minimizing the effects on calcium homeostasis that often lead to 
hypercalcemia (Steddon et al., 2001). To date, no 1,25(OH)2D3 analog has fared significantly 
better than 1,25(OH)2D3 alone. There are still many studies missing that are necessary for 
designing accurate clinical trials with 1,25(OH)2D3 and 1,25(OH)2D3 analogs including 
determination of the maximum-tolerated and optimal doses, definitions of phase II single-
agent and combination doses, and randomized phase II trials that compare 1,25(OH)2D3 
alone versus 1,25(OH)2D3 in combination with a single chemotherapeutic agent. These 
issues must be resolved in order to generate accurate phase II and phase III clinical trial data 
(Trump et al., 2010).  
A high-dose formulation of 1,25(OH)2D3 called DN-101 was tested for safety and efficacy in 
the ASCENT I (Androgen-independent prostate cancer Study of Calcitriol Enhancement of 
Taxotere) phase II trial in combination with docetaxel (Brawer, 2007). DN-101 
administration was associated with improved survival but it did not impact PSA response 
(Beer et al., 2007). A large phase III trial (ASCENT II) was terminated in 2007 due to greater 
death rates in the experimental arm (docetaxel, prednisone, and DN-101) than the control 
arm (docetaxel, prednisone, and placebo). However, ASCENT II was not accurately 
designed to test the efficacy of DN-101 versus the placebo (Trump, et al., 2010). The 
docetaxel administration schedule and the DN-101 dosages were not consistent with those 
previously established. Since the optimal dose and maximum-tolerated dose for oral 
1,25(OH)2D3 remain undefined, the DN-101 doses used in the ASCENT trials were based on 
convenience: a weekly oral dose of 0.5 μg/kg. In pre-clinical trials, however, intravenous 
administration of >1 μg/kg 1,25(OH)2D3 was required for anti-tumor effects (Trump, et al., 
2010). Although the results from the ASCENT II trial were ambiguous, they highlighted 
several questions that need to be resolved before designing new 1,25(OH)2D3 clinical trials. 
Vitamin D3 oral supplementation doses are still being defined; they vary depending on the 
desired endpoint and on individual vitamin D3 metabolic capacity (Bischoff-Ferrari, 2009). 
Individuals with serum 25OHD3 levels less than 30 ng/mL are considered to be vitamin D3 
deficient. A recent retrospective analysis measured the impact of 8,000 IU/day vitamin D3 
supplementation on 25OHD3 levels in 2198 cancer patients (Vashi et al., 2010). They found 
that patients with baseline 25OHD3 levels between 20 and 32 ng/mL responded to 
supplementation better than those with baseline levels <20 ng/mL. Additionally, patients 
with prostate cancer were the most responsive to vitamin D3 supplementation, in terms of 
the number of individuals whose 25OHD3 levels were >32 ng/mL after 8 weeks of 
supplementation. This finding supports further clinical investigations of vitamin D3 in 
prostate cancer prevention and treatment. This study reported that 8,000 IU/day for 8 
weeks was a safe and effective regimen for prostate and lung cancer patients, and they 
suggested that supplementation levels should be higher in colorectal and pancreatic cancer 
patients (Vashi, et al., 2010). Further studies are required to define maximum-tolerated and 
optimal doses for patients with different types of cancers.  
The range of serum 25OHD3 associated with cancer prevention is 60-80 ng/mL (CF Garland 
et al., 2009). A recent community-based study of voluntary vitamin D3 supplementation 
sought to define the doses necessary to reach serum 25OHD3 levels in this range (C. F. 
Garland et al., 2011). They reported that total vitamin D3 intake from 9,400 to 17,400 IU/day 
would be necessary to achieve serum 25OHD3 levels of 30-50 ng/mL in this population. 
Additionally, they reported no toxicity from up to 40,000 IU/day. They proposed that most 
individuals should supplement their vitamin D3 intake by 4,000-8,000 IU/day in order to 
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reach serum 25OHD3 levels associated with cancer prevention. This study will help shape 
additional clinical trials for vitamin D3-based chemoprevention, and in the meantime it will 
help inform the public about the importance of sufficient vitamin D3 supplementation. 
However, there is much controversy over the recommended vitamin D3 supplementation 
doses. In 2010 the Institute of Medicine recommended a daily dose of 600 IU vitamin D3, 
with a tolerable upper limit of 4,000 IU/day. However, the long-term benefits of vitamin D3 
doses in this range are unknown, and others (such as C.F. Garland et al., 2011 and Vashi et 
al., 2010) argue that 600 IU is insufficient for significant clinical benefits and that the 
tolerable upper limit exceeds 4,000 IU/day. It is becoming clear that the optimal daily 
vitamin D3 dose is dependent on 1) the individual’s baseline serum 25OHD3 level, 2) the 
individual’s vitamin D3 metabolic capacity, and 3) the individual’s health status and lifestyle 
(diabetic, prostate cancer vs. colorectal cancer patient, etc.). For these reasons and for the 
lack of definititve clinical studies there is controversy surrounding universal recommended 
vitamin D3 doses. Future work should focus on resolving this continuing controversy. 

8. Conclusion 

Further understanding of the mechanisms of action behind 1,25(OH)2D3 signaling in the 
prostate and a deeper understanding of prostate stem cell biology will help potentiate the 
chemopreventative effects of vitamin D3 and promote its concomitant use in primary and 
adjuvant prostate cancer therapies. Prostate cancer is a slow-growing disease that develops 
over the course of decades and typically affects men late in life. Treatment decisions are 
based on tumor severity and rate of PSA change, and some prostate tumors do not even 
progress to stages necessary for therapeutic intervention. The aim of prostate cancer 
chemoprevention is to delay tumor onset and progression. Chemopreventative strategies 
that delay prostate tumor onset or progression by even five years will drastically decrease 
the incidence of clinically-relevant prostate cancer and will reduce the need for prostate 
cancer treatment. Current findings that 1,25(OH)2D3, the metabolically active form of 
naturally-derived and FDA-approved vitamin D3, is effective in regulating prostate 
progenitor/stem cell growth and differentiation supports the use of vitamin D3 as a safe and 
effective chemopreventative agent for prostate cancer. Thorough studies assessing the 
efficacy of vitamin D3 or its analogs in the clinical therapeutic setting are still needed.  
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