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1. Introduction 

One of the most relevant aspects in cell death regulation is the signaling of apoptosis by 
serine/threonine kinases, a broad category of kinases that includes, among others, the 
mitogen-activated protein kinases (MAPKs) (Cross et al., 2000; Khlodenko & Birtwistle, 2009). 
The three main members that integrate the MAPK family in mammalian cells are: the stress-
activated protein kinase c-Jun NH2-terminal kinases (JNK), the stress-activated protein kinase 
2 (SAPK2, p38), and the extracellular signal-regulated protein kinases (ERK1/2, p44/p42) (Fig. 
1). In addition, other less well-characterized MAPK pathways exist, such as the extracellular 
regulated kinase 5 (ERK5) pathway (Hayashi &Lee, 2004; Junttila & Li, 2008) (Fig. 1). Albeit 
with multiple exceptions, JNK and ERK5 are generally associated with apoptosis induction; 
while ERK1/2 are generally associated to mitogenesis, and therefore inversely related to 
apoptosis (Hayashi &Lee, 2004; Junttila & Li, 2008); and contradictory effects on cell death 
have been described to p38 (Chang et al., 2008; Joo & Yoo, 2009; Khwaja et al., 2008; Ricote et 
al., 2006a; Shimada et al., 2006; Vayalil et al., 2004; Zhang &Kong, 2008). 
ERK is a threonine-glutamic acid-tyrosine (Thr-Glu-Tyr) motif (Hunter, 2000; Liu et al., 
2010) that play a central role in stimulation of cell proliferation (Marais & Marshall, 1990; 
Peng et al., 2010). Two isoforms of ERK, referred as ERK1 (or p44) and ERK2 (or p42), are 
ubiquitously expressed and represent a convergence point for mitogenic signaling from a 
diverse array of pathways (Cullen &Lockyer, 2002; Eisinger &Ammer, 2008; Gao et al., 
2010). Both are ubiquitously expressed, although their relative abundance in tissues is 
variable. For example, in many immune cells ERK2 is the predominant species, while in 
several cells of neuroendocrine origin they may be equally expressed (Zebisch et al., 2007). 
ERK 1/2 is activated by MEK1/2 specifically by phosphorylating a tyrosine and a threonine 
residue, separated by a glutamate residue (TEY) (Zebisch et al., 2007). Activated ERK1 and 
ERK2 can translocate to the nucleus, where it activates several transcription factors such as 
ATF-2, Elk-1, c-Fos, c-myc or Ets-1 (Junttila & Li, 2008). At the same time, it can also 
phosphorylate cytoplasmic and nuclear kinases, such as MNK1, MNK2, MPKAP-2, RSK or 
MSK1 (Zebisch et al., 2007). The ERK1/2 cascade is triggered by growth factors and 
cytokines acting through receptor tyrosine kinases, G-protein-coupled receptors, and non-
nuclear activated steroid hormone receptors. The biological consequences of ERK1/2 
substrate phosphorylation include pro-proliferative (Pearson et al., 2001), pro-differentiation 
(Pearson et al., 2001), pro-survival (Pearson et al., 2001), pro-angiogenic (Pàges et al., 2000), 
pro-motility (Joslin et al., 2007) and pro-invasive effects (Price et al., 2002). 
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P38 plays roles in cell differentiation, growth inhibition and apoptosis, proliferation and cell 
survival (Hui et al., 2007; Raingeaud et al., 1995; Thornton & Rincon, 2009). p38 is activated 
in cells in response to stress signals, growth factors, inflammatory cytokines, UV, heat and 
osmotic shock (Raingeaud et al., 1995; Whyte et al., 2009). Four isoforms of p38 exist (p38┙, 
┚, ┛ and ├), although p38┙ is the most widely expressed. MKK3/6 (MAPKKK) and SEK 
(MAPKK) activate p38. A great number MAPKKs and MAPKKKs (e.g. Mlk1-3, MEKK1-4, 
TAK, ASK1/2) upstream of p38 have been identified. Both MAPKKs and MAPKKKs are 
generally activated by G small proteins as Rac1, Cdc42, RhoA and RhoB (Fenf et al., 2009). 
Activated p38 phosphorylates and regulates many transcription factors (including activating 
transcription factor-2, NF-kB, Elk-1, Max, myocyte enhancer factor-2, Mac, p53 or Stat1) 
(Royuela et al., 2008; Whyte et al., 2009; Zhao et al., 1999), and other cell cycle and apoptosis 
mediators (e.g. Cdc25A, Bcl-2) (Thornton & Rincon, 2009). p38 has been defined as tumor 
suppressor and generally exert a  pro-apoptotic role. However, it has been also shown to 
enhance cell survival in response to stress stimuli, for instance, in response to DNA damage 
(Thornton& Rincon., 2009; Whyte et al., 2009; Jiang et al., 1997; Wang XS et al., 1997; Feng et 
al., 2009; Zhao et al., 1999; Royuela et al., 2008; Wood et al., 2009). Triggering of pro- or anti-
apoptotic p38-mediated response seems to depend on the stimuli, the cell system and the 
involved p38 isoform (Feng et al., 2009). 
 

 

Fig. 1. Mitogen activated protein kinase (MAPK) signaling. MAP kinases are activated by 
upstream kinases such as MAP kinase kinase (MAPKK), that include MEKs 1, 2, 3, 4, 5, 6 
and 7. In turn, MAPKKs are activated by several different MAP kinase kinase kinases 
(MAPKKKs). Numerous stimulatory factors such as cytokines, mitogens or death receptors, 
can activate MAPKKKs. Each MAPK, depending on the stimulus and cell type, can 
phosphorylate different transcription factors. 
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JNK proteins, also called stress activated protein kinases (SAPKs), are activated in response 

to a variety of extracellular stimuli, including UV irradiation, mitogens and cytokines (De 

Graeve et al., 1999). Notably, the earliest discoveries included the identification of the three 

mammalian JNK genes called JNK1, JNK2, and JNK3 (also termed stress-activated protein 

kinase (SAPK)-┛, SAPK-┙ and SAPK-┚, respectively) which can be subdivided into 10 

isoforms by alternative splicing (Bogoyevitch et al., 2010; Dérijard et al., 1994). Alternative 

splicing further increases the diversity of JNK proteins, however apart from early 

biochemical studies on these splice forms (Gupta et al., 1996) their functional significance in 

vivo has remained largely unexplored (Bogoyevitch et al., 2010). The products of JNK1 and 

JNK2 are ubiquitously expressed in every cells and tissues, whereas JNK3 is localized 

primarily in brain, heart and testis. Due to the specificity of tissue, JNK3 presents different 

functions than JNK1 and JNK2. In addition, several authors believe that JNK1 and JNK2 

present redundant functions. Several studies suggest that JNK are involved in regulation of 

the cell cycle (Bode & Dong, 2007.). JNK signaling contributes to the ability of p53 to mediate 

apoptosis through stabilization and activation of p53 (Bode & Dong, 2007; Fuchs et al., 1998). 

The fourth MAPK of interest in this review is ERK5. ERK5 is a large molecular size kinase 

(Lee et al., 1995) identified independently by two groups. One used a two hybrid screen 

with an upstream activator MEK5 as the bait; the other used a degenerate PCR strategy to 

clone novel MAPK (Lee et al., 1995; Zhou et al., 2005). ERK5 is activated by growth factors 

(Kato et al., 1998), integrin engagement (Sawhney et al., 2009) and cell stress (Pi et al., 2004), 

and its important molecular targets would seem to include the induction of transcription of 

components of the transcription factor Ap1 (cJun (Kayahama et al., 2005) and Fos 

(Kamakura et al., 1999) and activation of transcription factors of the myocyte enhancer 

family group (for example, MEF2C, a well characterized target (Kato et al., 1997)), and cMyc 

(English et al., 1998). 

In an in vitro study directed using androgen-dependent PC3 cells, McCracken et al. (2008) 

described ERK5-overexpresion related with proliferative, migrative and invasive 

capabilities, establishing the potential importance of ERK5 in aggressive prostate cancer. In 

similar studies Sawhney et al. (Sawhney et al., 2009) hypothesized that ERK5 activation 

could promote cancer metastasis. 
In mammalian cells, ERK, p38 and JNK activities are respectively regulated by three 
different MAPK cascades, which provide a link between transmembrane signaling and 
changes in transcription and are activated in response to different environmental or 
developmental signals (Junttila & Li, 2008) (Fig. 1). Depending on the cell type, a particular 
MAPK cascade may be involved in different cellular responses. The JNK and p38 signaling 
pathways are activated by pro-inflammatory (TNF┙, IL-6 or IL-1) or anti-inflammatory 
(EGF, TGF-┚) cytokines, but also in response to cellular stresses such as genotoxic, osmotic, 
hypoxic, or oxidative stress. The JNK pathway consists of JNK, a MAPKK such as SEK1 
(also known as MEK4) or MEK7, and a MAPKKK such as ASK1, MEKK1, mixed-lineage 
kinase (MLK), or transforming growth factor-┚-activated kinase 1 (TAK1) (Davis, 2000; Kim 
& Choi, 2010). In the p38 signaling pathway, distinct MAPKKs such as MEK3 and MEK6 
activate p38 and these are activated by the same MAPKKKs (such as ASK1 and TAK1) that 
function in the JNK pathway. In the ERK signaling pathway, ERK1 or ERK2 (ERK1/2) is 
activated by MEK1/2, which in turn is activated by a Raf isoform such as A-Raf, B-Raf, or 
Raf-1 (also known as C-Raf) but also by TRAF-2 and TRAF-6. The kinase Raf-1 is activated 
by the small Ras-like GTPase, whose activation is mediated by the receptor tyrosine kinase 
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(RTK)-Grb2-SOS signaling axis (Dhillon et al., 2007). Members of the Ras family of proteins, 
including K-Ras, H-Ras, and N-Ras, play a key role in transmission of extracellular signals 
into cells (Ancrile et al., 2008) (Fig. 1). 
The aim of this review was to focus on the possible involvement of MAPKs in several 
transduction pathways related with prostate cancer development as well as the possible 
functional role of MAPKs in cell death/ survival/ proliferation decisions depending on the 
cell type, stage and cell stimulus. We also discuss the possible use of some members of this 
pathway as a potential therapeutic target. 

2. IL-6/TNF/JNK pathway 

Depending on the stimulus and cell type, JNKs can phosphorylate different substrates such 
as Ap1, ATF-2, Elk-1, c-Myc, p53, MLK2 and several members of the Bcl-2 family. JNKs are 
implicated in development, morphogenesis and cell differentiation (Heasley & Han, 2006). 
Several studies suggest that in apoptosis JNKs have opposite functions depending on the 
cellular stimulus. In this way, JNKs can induce apoptosis, but also can enhance cell survival 
and proliferation. JNKs are also involved in regulation of the cell cycle (Bode & Dong, 2007). 
JNK signaling contributes to the ability of p53 to mediate apoptosis through stabilization 
and activation of p53 (Bode & Dong, 2007; Fuchs et al., 1998). Several authors suggest that 
JNK activity is chronically altered in various cancer types such as prostate (Meshki et al., 
2010; Royuela et al., 2002), breast (Wang HY et al., 2003; Wang J et al., 2010), pancreatic or 
lung (Lee et al., 2010; Su et al., 1998) carcinomas. 
Investigations of JNKs have focused on their activation in response to diverse stresses 
including ultraviolet and gamma radiation, inflammatory cytokines and cytotoxic drugs. In 
this way, pro inflammatory cytokines such as IL-6 or TNF activate different transduction 
pathway (Khalaf et al., 2010). 
IL-6 exerts its effects through a membrane receptor complex composed by IL-6 receptor a 
(IL-6Ra) and glycoprotein 130 (gp130). Silver and Hunter (Silver & Hunter, 2010) described 
the role of gp130 in promoting or preventing the development of autoimmunity and cancer, 
two processes that are associated with aberrant inflammatory responses. In addition to an 
immunological role, IL-6 is involved in cell proliferation in other tissues such as bone 
(Kurihara et al., 1990), testis (spermatogenesis) (Huleihel & Lunenfeld, 2004), skin (Krueguer 
et al., 1990) or nervous system (Hama et al., 1989). It has been shown that IL-6 also 
stimulates the development of many tumors, including melanoma, renal cell carcinoma, 
Kaposi’s sarcoma, ovarian carcinoma, lymphoma and leukemia, multiple myeloma, prostate 
carcinoma and breast carcinoma (García-Tuñon et al., 2005; Hong et al., 2007; Rabinovich et 
al., 2007; Royuela et al., 2004). 
First, IL-6 binds to IL-6Ra, which is unable to initiate signal transduction, and this complex 
attracts gp130 molecules, which dimerize leading to the intracellular signal by the activation 
of constituvely-associated gp130 Jak proteins (Heinrich et al., 1998; Hong et al., 2007; Silver 
& Hunter, 2010). In PC (prostate cancer) immunoreaction to IL-6 and gp-130 were increased. 
IL-6 signalling could be enhanced not only due to increased autocrine production but also 
increasing levels of this receptor (Rodriguez-Berriguete et al., 2010a; Royuela et al., 2004). 
Jak proteins can simultaneously trigger functionally distinct and even contradictory 
signaling pathways. One of them leads to the recruitment at the complex receptor of SHP2, 
Sos and Grb2, which in turn activates Ras by stimulating the exchange of GDP bound to Ras 
for GTP. Then, Ras initiates a MAPK cascade by phosphorylation of Raf-1 (Ancrile & 
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O'Hayer, 2008). Raf-1 activation might stimulate two different pathways. One pathway is 
initiated by MEK1/2 and the other with the activation of JNK. In prostate cancer expression 
of to Raf-1, MEK-1 and p-MEK were increased with Gleason grade (Rodruguez et al., 2010a). 
TNF-┙ is a 17 kDa polypeptide that has been implicated in skin carcinogenesis and in 
metastatic tumor spread of a variety of carcinomas and sarcomas. The action of TNF- ┙ is 
mediated by two distinct receptors named TNF-receptor I (55 kDa, TNFRI) and receptor II 
(75 kDa, TNFRII) with similar affinity for TNF- ┙ in human tissues (Loetscher et al., 1990; 
Smith et al., 1990). The domains of these receptors are different (Tartaglia et al., 1991). 
TNFRI is the major mediator of most TNF-┙ activity (Wiegmann et al., 1992). The expression 
and action of TNF- ┙ and its receptors has been reported in several tumors such as 
esophageal (Hubel et al., 2000), prostate (De Miguel et al., 2000; Meshki et al., 2010), 
follicular thyroid (Zubelewicz et al., 2002), skin (Arnott et al., 2004), ovarian (Qiu et al., 2010; 
Rzymski et al., 2005) and breast (García-Tuñon et al., 2006) cancers. 

In human prostate cancer, TNF cascade seems to be over-stimulated since TNF receptors 

(TNFRI and TNFRII) present high immunoexpression (Ricote et al., 2003). Binding of TNF-

┙/TNFRI complex to TNF receptor associated death domain proteins (TRADD) activates 

TRAF-2 (1 of the 6 members of the TNF receptor associated factor), which represents an 

integration point for pro-apoptotic and antiapoptotic signals (Wajant & Scheurich, 2001). 

TRAF-2 activation might stimulate two different pathways. One pathway is initiated by the 

interaction of TRAF-2 with the activation of NF-kB inducing kinase termed NIK, which is a 

MAP3K-related kinase that activates the IKK complex composed of IKK- and IKK- (Wu & 

Kral, 2005). In prostate cancer, NIK seems to be triggered by TNF/TRAF-2 or IL-

1/IRAK/TRAF-6, since the presence of TNF, TNFRI and TRAF-2 has been described (De 

Miguel et al., 2000; Ricote et al., 2003), but also the presence of IL-1 family members (Nuñez 

et al., 2008; Ricote et al., 2004). NIK stimulate IKK-, which induces IKK- degradation. IKK 

complex phosphorylates IkB, following its ubiquitination and rapid degradation causing the 

nuclear translocation of NF-kB, which in turn, activates target genes involved in 

carcinogenesis: tumor initiation, malignant transformation and metastasis (Wu & Kral., 

2005; Chengedza & Benbrook, 2010). In PC, TRAF-2 might be involved in the NIK activation 

pathway, although immunoexpression to TRAF-2 was detected in a low number of cases 

(decrease with Gleason grade), at the same time that the most of these patients were 

positives to NF-kB/p50 and NF-kB/p65 (Nuñez et al., 2008). These data, in addition with 

the elevated immunoexpressions to IL-1, IRAK, TRAF-6 and NIK observed in the same 

samples, suggest that NIK is stimulated by IL-1. Using the prostate carcinoma cell lines 

LNCaP, DU45 and PC3, Gasparian et al. (2009) found that increased IKK activation leads to 

the activation of NF-kB. A potential role of NF-kB in the development of different tumors as 

breast (Miller et al., 2000; Wu & Kral, 2005), colon (Dejardin et al., 1999; Wang S et al., 2009), 

pancreas (Wang W et al 1999; Eldor et al., 2009), thyroid (Visconti et al., 1997) or prostate 

(Nuñez et al., 2008; Domingo-Domenech et al., 2005) have been reported. 

The other pathway activates the cascade ASK-1 (signal regulating kinase), MEK-4 (mitogen 
activated protein kinase-kinase 4) and Jun N-terminal kinase (JNK) (Royuela et al., 2008). 
When JNK is translocated to the nucleus is phosphorylated and activates transcription 
factors such as AP-1 or ATF-2. In all normal human prostates, positive immunoreactions to 
TRAF-2 and ASK1 (cytoplasm localization) MEK-4 (cytoplasm and nucleus localization) and 
JNK were found. Although in prostate cancer the transduction pathway from TRAF-2 to AP-
1 seems to be inanctive, since immunoreaction to TRAF-2, ASK-1 And MEK-4 decreased and 
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no immunoreaction to AP-1 was even found (Ricote et al., 2003; Royuela et al., 2008). The 
mechanism that accounts for the nuclear location MEK-4 is unclear, since this protein is 
activated by a cytoplasmic protein and phosphorylates JNK in the cytoplasm. However, 
MEK-4 function may not be restricted to the JNK signal transduction pathway because 
MEK-4 also phosphorylate and activates p38, and this latter is prelocalized in the nucleus 
and is rapidly exported to the cytoplasm upon activation (Taylor et al., 2008). 

 

 

Fig. 2. JNK immunostaining appeared in normal (A), BPH (B) and PC (B) samples. Scale 

bars: 20 m (A-B) and 30 m (C). 

JNK immunoreactiveness is increased in the glandular epithelium of PC specimens (Royuela 
et al., 2002; Shimada et al., 2006). With these data, Ricote et al. (2003) suggest that MEK-4 is 
not involved in JNK/AP-1 pathway, although it might be involved in p38 activation 
pathway. This hypothesis agrees with the high p38 levels found in normal prostate in our 
laboratory (Royuela et al., 2002). In this pathology there must be several extracellular or 
intracellular factors that are blocking the activation of this transduction pathway in different 
steps. ASK1 might be a critical blockage point of this transduction pathway. P21 has been 
reported as an ASK1 inhibitor and has been found significantly associated with a high 
Gleason score (Aaltomaa et al., 1999; Royuela et al., 2001). Bcl-2 has been postulated as a 
potential modulator of JNK activation in fibroblasts. Since an increase of bcl-2 has been 
reported in prostate cancer specimens, bcl-2 might be another potential inhibitor of JNK in 
prostate cancer (Haeusgen et al., 2010; Royuela et al., 2000). Ricote et al. (2006) reported in 

an in vitro study that JNK phosphorylation was found to be increased by TNF- dose-
dependent manner in LNCaP cells (but not in PC3 cells), and the rate of apoptosis was 
reduced by the administration of a specific JNK inhibitor, suggesting that JNK positively 

regulates apoptosis induction by TNF- in this cell model. 
Two opposite roles in the cell cycle control have been reported for JNK: cell proliferation 

and apoptosis. In contrast, JNK activation by some cytokines, such as TNF- and IL-6, 
stimulates apoptosis. Since these two cytokines have been found increased in the prostatic 
epithelium of PC patients (Rodriguez-Berriguete et al., 2010a; Royuela et al., 2008), it might 

be that the increased apoptotic indexes in PC are related to the elevated levels of TNF-, IL-
6 and JNK. Nevertheless, the apoptotic mechanism stimulated by JNK is via p53 (Fuchs et 
al., 1998), but the p53 present in PC patients (Lee y cols., 2008), as occurs in most cancers is a 
mutant form with deletions or mutations which obstruct its association to JNK (Fuchs et al., 
1998). Therefore, the elevated apoptotic rates in PC does not seem to be related to the high 
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levels of cytokines and JNK in these patients but to other factors including the increased p38 
levels mentioned above. Therefore, the most probable action of JNK in PC would be cell 
proliferation stimulation rather than apoptosis. 

3. IL-1/ TNF/ p38 

Several studies suggested that p38 play an important role in leukemia (Feng et al., 2009); 
lymphomas (Zheng et al., 2003) or tumor such as breast (Ancrile et al., 2008), prostate (Ricote 
et al., 2006a), gastrical (Guo et al., 2008) or lung (Zhang et al., 2010). 
 

 

Fig. 3. p38 immunostaining appeared in normal (A), BPH (B) and PC (B) samples. Scale bars: 

25 m (B) 30 m (A, C). 

In addition to TNF/AP1 pathway (by ASK-1 or MEK-4), Interleukin-1 (IL-1) is another 
physiological regulator of p38. IL-1 activates PAK-1 through its binding to two GTPases, 
called Cdc42 and Rac. These ones activate PAK-1, which induces MEK-6 activation that in 
turns activates p38 (Raingeaud et al., 1995). 
Several reports about IL-1 family in cancer have been reported. IL-1, IL-1 and IL-1Ra have 
been detected in human breast cancer, and have been related to protumorigenic activity 
(Miller et al., 2010). The number of men showing IL-1 immunoexpression is lower in 
prostate cancer group than in normal prostate group but most cancer patients studied 
presented immunoreaction to IL-1, IL-1RI, IL-1RII and IL-1Ra [60]. The interaction between 
IL-1 and IL-RI would be involved in the high proliferation degree of these tumors. No 
association between IL-1 and IL-1Ra has also been reported in premalignant gastric 
conditions (Kupcinskas et al., 2010). 
In human prostate cancer, intense immnoreaction to PAK-1, MEK-6 and p38 were found but 
also to p-Elk-1 and p-ATF-2 whose location change from the nucleus to the cytoplasm 
(Ricote et al., 2006a; Rodriguez-Berriguete et al., 2010b). This fact may be related with its 
biological function. In mammalian cells, endogenous p38 is present in the nucleus but it can 
be exported to the cytoplasm upon activation (Ricote et al., 2006). Recently, Wood et al. 
(2009) described nuclear localization of p38 in response to DNA damage. In the nucleus, p38 
phosphorylates Elk-1, ATF-2 and also NF-kB (Junttila et al., 2008; Raingeaud et al., 1995; 
Royuela et al., 2008). ATF-2 (Li & Wicks, 2001) and Elk-1 (Amorino & Parsons, 2004) are not 
only a target of p38 but also a target for JNK. Since immunoreaction to JNK was found in 
normal human prostate, but not in prostate cancer, is reasonable to suggest that the 
activation of ATF-2 and Elk-1 are the consequence of p38 pathway activation (Ricote et al., 
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Fig. 4. Nuclear immunoreaction to p-Elk-1 appeared in the epithelial basal cells of normal 
prostate (A) or all epithelial cells in BPH (B). In PC samples p-Elk-1 (C) was observed in the 
cytoplasm. p-ATF-2 immunostaining was localised in the nuclei of epithelial cells in normal 

prostate (D) but more intense in BPH (E) and PC (F). Scale bar: 20 m (B, E) and 25 m (A, 
C-D, F). 

2006a). However, the TNF-┙ signal may be diverted from the Ap-1 pathway towards the p38 
pathway, because MEK-4 may also phosphorylate and activate p38 and ASK-1 may activate 
MEK-6, which, in turn, phosphorylates p38 (Stein et al., 1996). Proapoptotic effects of 

TNF/AP-1 pathway decrease, because this pathway is inhibited by p21 at ASK1 step 

(Ricote et al., 2003). Cell proliferation stimulation triggered by TNF via p38 occurs, since 
intense immunoreaction to PAK-1 and MEK-6 was found (Ricote et al., 2006a), but previous 
studies have shown elevated levels of IL-1 (Ricote et al., 2004) and p38 (Royuela et al., 2002). 
Ricote et al. (2006)b using LNCaP cells suggest that p38 plays an important role in prostatic 
tumor promotion by TNF┙ stimulation, and hence may represent a target for the treatment 
of prostatic cancer. Treatment with the p38 inhibitor SB203580 caused a notable increase in 
the frequency of apoptosis in LNCaP cell cultures, indicating that p38 exerts an anti-
apoptotic action in this cell line (Ricote et al., 2006). Noted that LNCaP cells represent a good 
model of well-differentiated tumor and as such its behavior is more comparable to the in 
vivo tumor condition. In this way, Thornton and Rincon (2009) considered the potential use 
of pharmacological inhibitors of p38 in therapeutic treatment for several diseases. 

4. TNF/IL-1/IL-6/ERK 

When IL-6 and IL-6R┙ induces dimerization of gp130, and subsequently the activation of 

constituvely-associated gp130 Jak proteins, simultaneously trigger functionally distinct and 

even contradictory signaling pathways. One of them leads to the recruitment at the complex 

receptor of SHP2, Sos and Grb2, which in turn activates Ras by stimulating the exchange of 
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GDP bound to Ras for GTP (Silver & Hunter, 2010). Then, Ras phosphorylate of Raf-1. In 

this way is iniciate a MAPK cascade when Raf-1 (via IL-6 pathway), TRAF-2 (via TNF 

pathway) or TRAF-6 (via Il-6 pathway) phosphorylate sequentially MEK1/2 and ERK1/2, in 

a process that culminates in modulation of gene transcription through the activation of 

several transcription factors such as c-Myc, Elk-1 (Werlen et al., 2003) or NF-kB (Turjanski et 

al., 2007). 

 

 

Fig. 5. P50 was scantly in the cytoplasm epithelial cells of normal (A) but in PC 
immunostaining also was nuclear, increasing the expression in medium (B) and after, in 
high (C) Gleason. No immunoreaction was found to p65 in normal prostate but was 
localized in the cytoplasm of epithelial cells in BPH (D) and PC (E-F) samples; but in PC was 
also localized in the nuclei of epithelial increasing nuclear localization with Gleason grade. 

Scale bars: 20 m (A), 25 m (B-C, E-F) and 30 m (D). 

Some components of the Raf-MEK-ERK pathway are activated in solid tumors and 
hematological malignaces (Grant, 2008; McCubrey et al., 2007). 
In approximately 30% of human breast cancers, mutations are found in the ERK1/2 MAPK 

pathway (Whyte et al., 2009). ERK1/2 and downstream ERK1/2 targets are hyper-

phosphorylated in a large subset of mammary tumors (Mueller et al., 2000). Increased 

expressions of Raf pathway has been associated with advance prostate cancer, hormonal 

independence, metastasis and a poor prognosis (Keller et al., 2004). Moreover, prostate 

cancer cell lines isolated from advanced cancer patients (LNCaP, PC3, DU145) expressed 

low levels of active Raf kinase inhibitors (McCubrey et al., 2007). TNF┙ acts as an ERK 

activator in some cases related to inflammation and cell proliferation. In this way, Ricote et 

al. (2006b) showed that ERK phosphorylation was notably increased by TNF┙ dose 

dependent manner in LNCaP cells. In prostate cancer, presence of Raf-1 and MEK-1 in 
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conjunction with elevated ERK-1 and ERK-2 suggest that stimulation of cell proliferation 

could be triggered by IL-6 via the ERK pathway (Rodriguez-Berriguete et al., 2010a). In this 

way, Ricote et al. (2006b) in in vitro studies with LNCaP cells, showed that the use of specific 

ERK inhibitor minimally affected apoptosis, suggesting that ERK activation does not play a 

significant role in apoptosis regulation. 

Moreover, ERK may also induce the phosphorilation of apoptotic regulatory molecules 
including bcl-2 family members (e.g. Bad, Bim and controversially Bcl-2) and caspase 9 
(McCubrey et al., 2007). There are evidences suggesting a protective effect in cells by NF-kB 
activation via ERK (Chu et al., 2008; Zhu et al., 2004). This transcription factor in a basal state 
is retained in the cytoplasm by binding to specific inhibitors, the inhibitors of NF-kB (IkBs). 
Upon cell stimulation IkBs are degradated and consequently NF-kB is translocated into the 
nucleus (Karin, 2006), where it promotes the expression of several anti-apoptotic genes such 
as inhibitors of apoptosis proteins (IAPs) (Rodriguez-Berriguete et al., 2010) and bcl-2 family 
members (Aggarwal, 2000). 

5. New perspectives 

In summary, it is reasonable to speculate that MAPK could be involved in prostate cancer 
development, maintenance and/or progression, since are involucrate in several 
transduction pathway related with prostate cancer development. These transduction 
pathways were interrelated and activated by pro-inflammatory (IL-6, IL-1 and TNF). At the 
end are activated several transcription factor such as NF-kB, Elk-1, ATF-2, p53, or mcl-1. 
Translocation of NF-kB to the nucleus in PC might be due to the overactivation of several 

transduction pathways triggered by pro-inflammatory cytokines (IL-1, IL-6 and TNF-). NF-
kB has been considered a marker of predicting PC since nuclear localization was only 
observed in PC, but another transcription factor activate by these pro-inflammatory 
cytokines relate with cell proliferation such as Elk-1, ATF-2 or c-myc were also increased in 
PC. For this, might be that overexpression of MAPKs might be secondary to overexpression 
of these cytokines and, subsequently, MAPKs also might be involved in the development of 
prostatic hyperplasia and neoplasia. Therefore, since PC is a heterogeneous disease in which 
multiple transduction pathways may contribute to uncontrolled apoptosis/cell proliferation 
balance, we concluded that significant attention would be focused to the rational 
combination of novel agents directed toward the inactivation of pro-inflammatory 
cytokines, because could be disrupt complementary tumor cell proliferation pathways. 
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