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1. Introduction 

Piezoelectricity has found a lot of applications since it was discovered in 1880 by Pierre and 

Jacques Curie. There are many applications of the direct piezoelectric effect - the production 

of an electric potential when stress is applied to the piezoelectric material, as well as the 

reverse piezoelectric effect - the production of strain when an electric field is applied 

(Moheimani & Fleming, 2006). In this chapter analysis of mechatronic systems with both 

direct and reverse piezoelectric effects applications in mechatronic systems are presented. In 

considered systems piezoelectric transducers are used as actuators – the reverse 

piezoelectric effect application, or as vibration dampers with the external shunting electric 

circuit – the direct piezoelectric effect. In the first case piezoelectric transducers can be used 

as actuators glued on the surface of a mechanical subsystem in order to generate desired 

vibrations or also to control and damp vibrations in active damping applications (Kurnik et 

al., 1995; Gao & Liao, 2005). In this case electric voltage is generated by external control 

system and applied to the transducer. In the second case piezoelectric transducers are used 

as passive vibration dampers. A passive electric network is adjoined to transducer’s clamps. 

The possibility of dissipating mechanical energy with piezoelectric transducers shunted 

with passive electric circuits was experimentally investigated and described in many 

publications (Buchacz & Płaczek, 2009a; Fein, 2008; Hagood & von Flotow, 1991; Kurnik, 

2004). There are two basic applications of this idea. In the first method only a resistor is used 

as a shunting circuit and in the second method it is a passive electric circuit composed of a 

resistor and inductor. Many authors have worked to improve this idea. For example 

multimode piezoelectric shunt damping systems were described (Fleming et al., 2002). What 

is more there are many commercial applications of this idea (Yoshikawa et al., 1998). 

Mechatronic systems with piezoelectric sensors or actuators are widely used because 

piezoelectric transducers can be applied in order to obtain required dynamic characteristic 

of designed system. It is very important to use very precise mathematical model and 

method of the system’s analysis to design it correctly. It was proved that it is very important 

to take into consideration influence of all analyzed system’s elements including a glue layer 

between piezoelectric transducer and mechanical subsystem (Pietrzakowski, 2001; Buchacz 

& Płaczek, 2010b). It is indispensable to take into account geometrical and material 
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parameters of all system’s components because the omission of the influence of one of them 

results in inaccuracy in the analysis of the system. 

This work presents the issues of modeling and testing of flexural vibrating mechatronic 

systems with piezoelectric transducers used as actuators or vibration dampers. Analysis 

method of the considered system will be presented, started from development of the 

mathematical model, by setting its characteristics, to determine the influence of the system’s 

properties on these characteristics. 

The discussed subject is important due to increasing number of applications, both simple 
and reverse piezoelectric phenomena in various modern technical devices. The process of 
modeling of technical devices with piezoelectric materials is complex and requires large 
amounts of time because of the complexity of the phenomena occurring in these systems. 
The correct description of the system by its mathematical model during the design phase is 
fundamental condition for proper operation of designed system. Therefore, in the work the 
processes of modeling, testing and verification of used mathematical models of one-
dimensional vibrating mechatronic systems will be presented. A series of discrete – 
continuous mathematical models with different simplifying assumptions will be created. 
Using created models and corrected approximate Galerkin method dynamic characteristics 
of considered systems will be designated. An analysis of influence of some geometrical and 
material parameters of system’s components on obtained characteristics will be conducted. 
Mathematical model that provides the most accurate analysis of the system and maximum 
simplification of used mathematical tools and minimize required amount of time will be 
indicated. Identification of the optimal mathematical model that meets the assumed criteria 
is the main purpose of this work, which is an introduction to the task of synthesis of one-
dimensional vibrating continuous systems. 

2. Considered system with piezoelectric transducer and assumptions 

The main aim of this work is to designate dynamic characteristics of a mechatronic system 

with piezoelectric transducer used as an actuator or passive vibration damper. It is a 

cantilever beam which has a rectangular constant cross-section, length l , width b and 

thickness hb. Young’s modulus of the beam is denoted Eb. A piezoelectric transducer of 

length lp is bonded to the beam’s surface within the distance of x1 from a clamped end of the 

beam. The transducer is bonded by a glue layer of thickness hk and Kirchhoff’s modulus G. 

The glue layer has homogeneous properties in overall length. The system under 

consideration in both cases (with piezoelectric actuator or vibration damper) is presented in 

Fig. 1. 

In order to analyze vibration of the systems following assumptions were made: 

 material of which the system is made is subjected to Hooke’s law, 

 the system has a continuous, linear mass distribution, 

 the system’s vibration is harmonic, 

 planes of cross-sections that are perpendicular to the axis of the beam remain flat 
during deformation of the beam – an analysis is based on the Bernoulli’s hypothesis of 
flat cross-sections, 

 displacements are small compared with the dimensions of the system. 
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Fig. 1. Shape of the considered system: a) with piezoelectric passive vibration damper, 
b) with piezoelectric actuator 

Structural damping of the beam and glue layer was taken into account in mathematical 
models of considered systems using Kelvin-Voigt model of material. It was introduced by 
replacing Young’s modulus of the beam and modulus of elasticity in shear of the glue layer 
by equations: 

 1 ,b b bE E
t

     
 (1) 

 1 ,kG G
t

     
 (2) 

where ηb and ηk denote structural damping coefficients of the beam and the glue layer that 
have time unit (Pietrzakowski, 2001). 

It was assumed that the beam is made of steel and piezoelectric transducer is a PZT transducer. 
Geometric and material parameters of the system’s elements: mechanical subsystem – the beam, 
the glue layer and the piezoelectric transducer are presented in tables 1, 2 and 3.  

 

Geometric parameters Material parameters 

 0,24l m   210000bE MPa  

 0,04b m  
3

7850b

kg

m
     

 

 0,002bh m   58 10b s    

Table 1. Parameters of the mechanical subsystem 
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Geometric parameters Material parameters 

 1 0,01x m  12
31 240 10

m
d

V
       

 

 2 0,09x m  33 02900T F
e

m
      

 

 0,001ph m  
2

12
11

11

1
17 10E

E

m
s

Nc

  
    

  
 

 0,04pb m  
3

7450p

kg

m
     

 

Table 2. Parameters of the piezoelectric transducer 

 

Geometric parameters Material parameters 

 0,0001kh m   61000 10G Pa   

  310k s   

Table 3. Parameters of the glue layer 

Symbols ρb and ρp denote density of the beam and transducer. d31 is a piezoelectric constant, 
e33T is a permittivity at zero or constant stress, s11E is flexibility and c11E is a Young’s modulus 
at zero or constant electric field. 

Dynamic characteristics of considered systems are described by equations: 

    , ,Yy x t F t   (3) 

    , ,Vy x t U t   (4) 

where y(x,t) is the linear displacement of the beam’s sections in the direction perpendicular 

to the beam’s axis. In case of the system with piezoelectric vibration damper it is dynamic 

flexibility – relation between the external force applied to the system and beam’s deflection 

(equation 3). In case of the system with piezoelectric actuator it is relation between electric 

voltage that supplies the actuator and beam’s deflection (equation 4) (Buchacz & Płaczek, 

2011). Externally applied force in the first system and electric voltage in the second system 

are described as: 

   0 cos ,F t F t   (5) 

   0 cos ,U t U t   (6) 

and they were assumed as harmonic functions of time. 
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3. Approximate Galerkin method verification – Analysis of the mechanical 
subsystem 

In order to designate dynamic characteristics of considered systems correctly it is important 
to use very precise mathematical model. Very precise method of the system’s analysis is 
very important too. It is impossible to use exact Fourier method of separation of variables in 
analysis of mechatronic systems, this is why the approximate method must be used. To 
analyze considered systems approximate Galerkin method was chosen but verification of 
this method was the first step (Buchacz & Płaczek, 2010c). To check accuracy and verify if 
the Galerkin method can be used to analyze mechatronic systems the mechanical subsystem 
was analyzed twice. First, the exact method was used to designate dynamic flexibility of the 
mechanical subsystem. Then, the approximate method was used and obtained results were 
juxtaposed. The mechanical subsystem is presented in Fig.2.    

 

Fig. 2. Shape of the mechanical subsystem 

The equation of free vibration of the mechanical subsystem was derived in agreement with 

d’Alembert’s principle. The external force F(t) was neglected. Taking into account 

equilibrium of forces and bending moments acting on the beam’s element, after 

transformations a well known equation was obtained:  

 
   2 4

4
2 4

, ,
,

y x t y x t
a

t x

 
 

 
 (7) 

where: 

 4 .b b

b b

E J
a

A
  (8) 

Ab and Jb are the area and moment of inertia of the beam’s cross-section. In order to 
determine the solution of the differential equation of motion (7) Fourier method of 
separation of variables was used. Taking into account the system’s boundary conditions, 
after transformations the characteristic equation of the mechanical subsystem was 
obtained:  

 
1

cos .
cosh

kl
kl

   (9) 

Graphic solution of the equation (9) is presented in Fig. 3. The solution of the system’s 

characteristic equation approach to limit described by equation:   
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2 1

,
2

n

n
k

l


         1,2,3...n   (10) 

This solution is precise for n > 3. For the lower values of n solutions should be readout from 
the graphic solution (Fig. 3) and they are presented in table 4. 

 

Fig. 3. The graphic solution of the characteristic equation of the system (equation 7) 

Taking into account the system’s boundary and initial conditions, after transformations the 
sequence of eigenfunctions is described by the equation: 

    cos cosh
cos cosh sin sinh .

sin sinh
n n

n n n n n n
n n

k l k l
X x A k x k x k x k x

k l k l


   


 (11) 

Assuming zero initial conditions and taking into account that the deflection of the beam is a 
harmonic function with the same phase as the external force the final form of the solution of 
differential equation (7) can be described by the equation: 

    
1

, cos ,n n
n

y x t X x t



   (12) 

and dynamic flexibility of the mechanical subsystem can be described as: 

* * * * * * * *

*3 * *

cosh cos sinh sin sinh sin cosh cos
,

2 1 cos cosh
Y

b b

l l x x l l x x

E J l l

       


  

                   
  

 (13) 

where: 

 * 2
4 .b b

b b

A

E J

    (14) 

In the approximate method the solution of differential equation (7) was assumed as a simple 
equation (Buchacz & Płaczek, 2009b, 2010d): 

  
1

, sin cos ,n
n

y x t A k x t



   (15) 
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where A is an amplitude of vibration. It fulfils only two boundary conditions – deflection of 
the clamped and free ends of the beam: 

   0, 0 ,xy x t   (16) 

  , .x ly x t A   (17) 

The equation of the mechanical subsystem’s vibration forced by external applied force can 
be described as: 

 
       2 4

4
2 4

, ,
.

b b

y x t y x t F t x l
a

At x




  
  

 
 (18) 

Distribution of the external force was determined using Dirac delta function ǅ(x-l). 

Corresponding derivatives of the assumed approximate solution of the differential equation 

of motion (15) were substituted in the equation of forced beam’s vibration (18). Taking into 

account the definition of the dynamic flexibility (3), after transformations absolute value of 

the dynamic flexibility of the mechanical subsystem (denoted Y) was determined: 

 
 

 2 4 41

.
n

b b n

x l
Y

A a k



 








 
  (19) 

Taking into account geometrical and material parameters of the considered mechanical 

subsystem (see table 1), the dynamic flexibility for the first three natural frequencies are 

presented in Fig. 4. In this figure results obtained using the exact and the approximate  

 

Fig. 4. The dynamic flexibility of the mechanical subsystem – exact and approximate 
method, for n=1,2,3 
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n  The exact method The approximate method  %  

1 1

1,8751
k

l
  1

2
k

l


  29,8  

2 2

4,6941
k

l
  2

3

2
k

l


  0,782  

3 3

7,85477
k

l
  3

5

2
k

l


  0,023  

>3  2 1
2

nk n
l


   0  

Table 4. The first three roots of the characteristic equation and shifts of values of the 
system’s natural frequencies 

methods are juxtaposed. Inexactness of the approximate method is very meaningful for 

the first three natural frequencies. Shifts of values of the system’s natural frequencies are 

results of the discrepancy between the assumed solution of the system’s differential 

equation of motion in the approximate method and solution obtained on the basis of 

graphic solution of the system’s characteristic equation in the exact method. These 

discrepancies are shown in table 4. So it is possible to identify discrepancies between the 

exact and approximate methods without knowing any geometrical and material 

parameters. Knowing the characteristic equation of the mechanical system with known 

boundary conditions and assumed solution of the differential equation of motion it is 

possible to determine whether the solution obtained using the approximate method 

differs from the exact solution. 

The approximate method was corrected for the first three natural frequencies of the 

considered system by introduction in equation (19) correction coefficients described by the 

equation: 

 ' ,n n n      (20) 

where ωn and ωn’ are values obtained using the exact and approximate methods, 
respectively (Buchacz & Płaczek, 2010c). The dynamic flexibility of the mechanical 
subsystem before and after correction is presented in Fig. 5 separately for the first three 
natural frequencies. 

Results of assumption of simplified eigenfunction of variable x (equation 15) are also 

inaccuracies of the system’s vibration forms presented in Fig. 6. 

The approximate Galerkin method with corrected coefficients gives a very high accuracy 

and obtained results can be treated as very precise (see Fig. 5). So it can be used to analyze 

mechatronic systems with piezoelectric transducers. The considered system – a cantilever 

beam was chosen purposely because inexactness of the approximate Galerkin method is the 

biggest in this way of the system fixing. 
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Before correction After correction 

 

 

  

Fig. 5. The dynamic flexibility of the mechanical subsystem – exact and approximate method 
before and after correction. 

4. Mechatronic system with broad-band piezoelectric vibration damper 

The considered mechatronic system with broad-band, passive piezoelectric vibration damper 

was presented in Fig. 1. In this case, to the clamps of a piezoelectric transducer, an external 

shunt resistor with a resistance RZ is attached. As a result of the impact of vibrating beam on 

the transducer and its strain the electric charge and additional stiffness of electromechanical 

nature, that depends on the capacitance of the piezoelectric transducer, are generated. 

Electricity is converted into heat and give up to the environment. Piezoelectric transducer with 

an external resistor is called a shunt broad-band damper (Buchacz & Płaczek, 2010c; Hagood & 

von Flotow, 1991;Kurnik, 1995). 
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a) 

b) 

c) 

Fig. 6. Vibration forms of the mechanical subsystem – the exact and approximate methods,  
a) the first natural frequency, b) the second natural frequency, c) the third natural frequency 

Piezoelectric transducer can be described as a serial connection of a capacitor with 
capacitance CP, internal resistance of the transducer RP and strain-dependent voltage source 
UP. However, it is permissible to assume a simplified model of the transducer where 
internal resistance is omitted. In this case internal resistance of the transducer, which usually 
is in the range 50 – 100 Ω (Behrens & Fleming, 2003) is negligibly small in comparison to the 
resistance of externally applied electric circuit (400 kΩ), so it was omitted. Taking into 
account an equivalent circuit of the piezoelectric transducer presented in Fig. 7, an 
electromotive force generated by the transducer and its electrical capacity are treated as a 
serial circuit. The considered mechatronic system can be represented in the form, as shown 
in Fig. 1. So, the piezoelectric transducer with an external shunt resistor is treated as a serial 
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RC circuit with a harmonic voltage source generated by the transducer (Behrens & Fleming, 
2003; Moheimani & Fleming, 2006). 

 

Fig. 7. The substitute scheme of the piezoelectric transducer with an external shunt resistor 

4.1 A series of mathematical models of the mechatronic system with piezoelectric 
vibration damper 

A series of mathematical models of the considered mechatronic system with broad-band, 
passive piezoelectric vibration damper was developed. Different type of the assumptions 
and simplifications were introduced so developed mathematical models have different 
degree of precision of real system representation. A series of discrete – continuous 
mathematical models was created. The aim of this study was to develop mathematical 
models of the system under consideration, their verification and indication of adequate 
model to accurately describe the phenomena occurring in the system and maximally 
simplify the mathematical calculations and minimize required time (Buchacz & Płaczek, 
2009b, 2010b).  

4.1.1 Discrete – continuous mathematical model with an assumption of perfectly 
bonded piezoelectric damper 

In the first mathematical model of the considered mechatronic system there is an 
assumption of perfectly bonded piezoelectric transducer - strain of the transducer is exactly 
the same as the beam’s surface strain. Taking into account arrangement of forces and 
bending moments acting in the system that are presented in Fig. 8, differential equation of 
motion can be described as: 

 
         

22 4
4

2 4 2

,, , 1
1 .

p
b

b b b b

M x ty x t y x t x l
a F t

t A At x x




 

           
 (21) 

T(x,t) denotes transverse force, M(x,t) bending moment and MP(x,t) bending moment 

generated by the piezoelectric transducer that can be described as:  

    , .
2

b p
p p

h h
M x t F t


   (22) 
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Fig. 8. Arrangement of forces and bending moments acting on the cut out part of the beam 
and the piezoelectric transducer with length dx 

Piezoelectric materials can be described by a pair of constitutive equations witch includes 
the relationship between mechanical and electrical properties of transducers (Preumont, 
2006; Moheimani & Fleming, 2006). In case of the system under consideration these 
equations can be written as: 

 
3 33 3 31 1 ,TD E d T   (23) 

 
1 31 3 11 1.ES d E s T   (24) 

Symbols ǆ33T, d31, s11E are dielectric, piezoelectric and elasticity constants. Superscripts T and 
E denote value at zero/constant stress and zero/constant electric field, respectively. 
Symbols D3, S1, T1 and E3 denote electric displacement, strain, stress and the electric field in 
the directions of the axis described by the subscript. After transformation of equation (24), 
force generated by the transducer can be described as: 

      11 1 1, ,E
P pF t c A S x t t      (25) 

where:  

    
1 31 3 31 .C

p

U t
t d E d

h
     (26) 

Symbol c11E denotes Young’s modulus of the transducer at zero/constant electric field 
(inverse of elasticity constant). UC(t) is an electric voltage on the capacitance Cp. Due to the 
fact that the piezoelectric transducer is attached to the surface of the beam on the section 
from x1 to x2 its impact was limited by introducing Heaviside function H(x). Finally, 
equation (21) can be described as: 

          
2 4 2

4
1 1 12 4 2

, ,
1 , ,b

y x t y x t
a c H S x t H t F t

tt x x
  

                   
 (27) 

where: 

 
  11

1 ,
2

E
b p p

b b

h h c A
c

A

 
  (28) 
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 

,
b b

x l

A







  (29) 

    1 2 .H H x x H x x     (30) 

Equation of the piezoelectric transducer with external electric circuit can be described as:  

 
      ,C

Z P C p

U t
R C U t U t

t


 


 (31) 

where: CP is the transducer’s capacitance, UP(t) denotes electric voltage generated by the 
transducer as a result of its strain. Voltage generated by the transducer is a quotient of 
generated electric charge and capacitance of the transducer. After transformation of the 
constitutive equations (23) and (24) electric charge generated by the transducer can be 
described as (Kurnik, 2004): 

        31 2
1 33 31

11

, 1 ,
p CT

pE
p

l bd U t
Q t S x t l b k

hs
    (32) 

where: 

 
2

2 31
31

11 33

,
E T

d
k

s 
  (33) 

is an electromechanical coupling constant that determines the efficiency of conversion of 
mechanical energy into electrical energy and electrical energy into mechanical energy of the 
transducer, whose value usually is from 0,3 to 0,7 (Preumont, 2006). Equation (33) describes 
the electric charge accumulated on the surface of electrodes of the transducer with an 
assumption about uniaxial, homogeneous strain of the transducer. Assuming an ideal 
attachment of the transducer to the beam’s surface its strain is equal to the beam’s surface 
strain and can be described as:  

    2

1 2

,
, .

2
b y x th

S x t
x


 


 (34) 

Finally, equation (31) can be described as: 

 
         31 2

1 33 31
11

, 1 .
pC CT

Z P C pE
p pp

l bdU t U t
R C U t S x t l b k

t C hC s



   


 (35) 

Using the classical method of analysis of linear electric circuits and due to the low impact of 
the transient component on the course of electric voltage generated on the capacitance of the 
linear RC circuit the electric voltage UC(t) was assumed as: 

    sin ,
p

C
P

U
U t t

C Z
 


    (36) 
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where |Z| and φ are absolute value and argument of the serial circuit impedance. 

Equations (27) and (35) form a discrete-continuous mathematical model of the considered 
system. 

4.1.2 Discrete – continuous mathematical model with an assumption of pure shear of 
a glue layer between the piezoelectric damper and beam’s surface 

Concerning the impact of the glue layer between the transducer and the beam’s surface, the 
mathematical model of the system under consideration was developed. It will allow more 
detailed representation of the real system. First, a pure shear of the glue layer was assumed. 
Arrangement of forces and bending moments acting in the system modeled with this 
assumption is presented in Fig. 9. 

 

Fig. 9. Forces and bending moments in case of the pure shear of the glue layer 

Shear stress was determined according to the Hook’s law, assuming small values of pure 
non-dilatational strain: 

 .
k

l
G

h
 
   (37) 

Δl is a displacement of the lower and upper surfaces of the glue layer. Movements of the 
beam, the glue layer and the transducer are shown in Fig. 10. 

 

Fig. 10. Movements of the beam, the glue layer and the piezoelectric transducer in the case 
of pure shear of the glue layer 
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Uniform distribution of shear stress along the glue layer was assumed. The real strain of the 

transducer is a difference of the glue layer’s upper surface strain and the free transducer’s 

strain that is a result of electric field on the transducer’s electrodes, so Δl can be described as: 

      1, , ,p b kl l x t x t t          (38) 

where: ǆb and ǆk are the beam’s and the glue layer’s upper surfaces strains. 

Finally, obtained system of equations:  

           
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4
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31 33 2
1 31
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1 1 , ,
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, 1

b k b k

T
p pC

Z P C CE
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y x t y x t
a c H x t x t t F t

t t xt x

l bd l bU t
R C U t S x t k U t

t C hC s

     



                           


      

 (39) 

where: 

 2 .
2

p

b k

Gl
c

h
  (40) 

is the discrete-continuous mathematical model of the system under consideration with the 

assumption about pure shear of the glue layer. 

4.1.3 Discrete – continuous mathematical model taking into account a shear stress 
and eccentric tension of a glue layer between the piezoelectric damper and beam’s 
surface 

In the next mathematical model the system under consideration was modeled as a combined 

beam in order to unify parameters of all components (Buchacz & Płaczek, 2009c). Shear 

stress and eccentric tension of the glue layer were assumed. The substitute cross-section of 

considered system presented in Fig. 11 was introduced by multiplying the width of the 

piezoelectric transducer and the glue layer by factors: 

 11 ,
E

p
b

c
m

E
  (41) 

 
 2 1

.k
b

G
m

E


  (42) 

Symbol υ denotes the Poisson’s ratio of the glue layer. 

Taking into account the eccentric tension of the glue layer under the action of forces 

presented in Fig.12 the stress on the substitute cross-section’s surfaces was assigned. 

FP(t) denotes force generated by the piezoelectric transducer and Fb(t) denotes forces 

generated by the bending beam as a result of the beam’s elasticity. The area, location of the 

central axis and moment of inertia of the substitute cross-section were calculated: 
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Fig. 11. Position of the center of gravity of substitute cross-section of the beam 

 

Fig. 12. Arrangement of forces in case of eccentric tension of the glue layer 

 ,w b k k p pA bh m bh m bh    (43) 

 

2
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2 2 2
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w w b k p k k p p
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y A b h h h m h h m

             
      

 (44) 

222 22 2
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                                                   

 (45) 

were calculated and stress on the surfaces of the substitute cross-section was assigned: 

    
 0,51

,
w pb

i i b p
w w w

y h yh y
m F t F t

J A J


                
 (46) 

where subscript i denotes element of the composite beam (i=b,k,p). In case of the beam, value 

of the symbol mb is equal to one, while in case of the transducer and the glue layer mp and mk 

are described by equations (41) and (42). Using the basic laws and dependences from theory 

of strength of materials the real strain of the piezoelectric transducer was assigned: 

      1 1 2 1, , ,bS x t W x t W t      (47) 

where: 
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 (49) 

 

To determine the value of shear stress on the plane of contact of the transducer and beam 
the following dependence was used: 

      
 

,
, ,z

w

T x t S y
x y

J b y






 (50) 

 

where: SZ(y) is a static moment of cut off part of the composite beam’s cross-section relative 
to the weighted neutral axis. Transverse force T(x,t) can be calculated as a derivative of 
bending moment acting on the beam’s cross-section: 

  
    3 4 1,

, ,
bH W x t W t

T x t
x

       


 (51) 

 

where:  
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 (53) 

 

Finally, the discrete-continuous mathematical model of the system can be described as: 
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                          


      

 (54) 

Obtained system of equations is a mathematical model with assumptions of shear stress and 
eccentric tension of the glue layer. 
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4.1.4 Discrete – continuous mathematical model taking into account a bending 
moment generated by the transducer and eccentric tension of a glue layer between 
the piezoelectric damper and beam’s surface 

Taking into account parameters of the combined beam introduced in section 4.1.4 the 

discrete-continuous mathematical model with influence of the glue layer on the dynamic 

characteristic of the system was developed. However, in this model the impact of the 

piezoelectric transducer was described as a bending moment, similarly as in the 

mathematical model with the assumption of perfectly attachment of the transducer. 

Homogeneous, uniaxial tension of the transducer was assumed and its deformation was 

described by the equation (47). In this case the bending moment generated by the transducer 

can be described as: 

        11 1 2 1, , 1 .
2

p b E
p k p b

h h
M x t h c A W x t W t 

 
         
 

 (55) 

 

Obtained system of equations: 
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where:  
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 
   
 

 (57) 

is the discrete-continuous mathematical model of the system under consideration. 

4.2 Dynamic flexibility of the system with broad-band piezoelectric vibration damper 

Dynamic flexibility of the considered system was assigned using corrected approximate 

Galerkin method. Solution of the differential equation of the beam’s motion with 

piezoelectric damper was assumed as a product of the system’s eigenfunctions in 

accordance with the equation (15). For all mathematical models analogous calculations were 

done, therefore, an algorithm used to determine the dynamic flexibility of the system using 

the first mathematical model is presented. Obtained results for all mathematical models are 

presented in graphical form. 

In the mathematical model of the considered mechatronic system with the assumption of 

perfectly bonded piezoelectric damper - equations (27) and (35) the derivatives of the 

approximate equation (15) were substituted. Assuming that the dynamic flexibility will be 

assigned on the free end of the beam (x=l), after transformations and simplifications a 

system of equations was obtained: 
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Using mathematical dependences: 

 cos sin ,i te t i t       (67) 

 sin cos ,
2

t t
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after transformations the system of equations (58) can be written in matrix form: 
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 (69) 

Using Cramer’s rule amplitude of the system’s vibration can be calculated as: 

 ,AW
A

W
  (70) 
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where W is a main matrix determinant and WA is a determinant of the matrix formed by 
replacing the first column in the main matrix by the column vector of free terms. Obtained 
equation can be substituted in the assumed solution of the derivative equation of the beam’s 
motion (15). Finally, in agreement with definition (3), the dynamic flexibility of the system 
under consideration can be described as: 
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7 6
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






      (71) 

In order to eliminate complex numbers in equation (71) its numerator and denominator 
were multiplied by the number conjugate with the denominator. Absolute value of the 
obtained complex number was calculated: 
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where: 

  2 2
1 1 7 4 5 7 3 5 6 1 6sin ,nR k l P P P P P P P P P P     (73) 

  2 2
2 2 7 3 5 7 4 5 6 2 6sin .nR k l P P P P P P P P P P     (74) 

Taking into account geometrical and material parameters of the considered system 
presented in tables 1, 2 and 3, graphical solution of the equation (72) is presented in Fig. 13.  

 

 

 

Fig. 13. Absolute value of the dynamic flexibility of mechatronic system with piezoelectric 
vibration damper, for the first three natural frequencies (in a half logarithmic scale) 
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Results obtained using the others mathematical models of the considered system are also 
presented in Fig. 13. 

Using developed mathematical models and corrected approximate Galerkin method, very 
similar course of dynamic characteristics were obtained, except the second mathematical 
model with the assumption about pure shear of the glue layer. Shift of the natural 
frequencies in the direction of higher values of the mechatronic system in the direction of 
higher values can be observed. This shift is a result of increased stiffness of mechatronic 
system compared with the mechanical subsystem. 

5. Mechatronic system with piezoelectric actuator 

Developed mathematical models of the system with piezoelectric vibration damper were 
used to analyze the mechatronic system with piezoelectric actuator. In this case inverse 
piezoelectric effect is applied. Strain of the piezoelectric transducer is a result of externally 
applied electric voltage described by the equation (6). The considered system is presented in 
Fig. 1. Its parameters are presented in tables 1, 2 and 3. The aim of the system’s analysis is to 
designate dynamic characteristic that is a relation between parameters of externally applied 
voltage and deflection of the free end of the beam (it was assumed that x=l), described by 
the equation (4). 

In this case the internal capacitance CP and resistance RP of the piezoelectric transducer were 
taken into account, so transducer supplied by the external harmonic voltage source can be 
treated as a serial RC circuit with harmonic voltage source and was described by the 
equation (Buchacz & Płaczek, 2011): 

 
     .C

P P C

U t
R C U t U t

t


 


 (75) 

Equations of motion of the beam with piezoelectric actuator for all developed mathematical 
models were designated in agreement with d’Alembert’s principle similarly as in the case of 
mechatronic system with piezoelectric vibration damper. Obtained absolute value of 
dynamic characteristics for all mathematical models of the system are presented in Fig. 14. 

Final results are very similar for all mathematical models, except the second model with the 
assumptions about pure shear of the glue layer, as it was in case of analysis of system with 
piezoelectric vibration damper. 

6. Analysis of influence of parameters of considered systems on dynamic 
characteristics 

Developed mathematical models of considered systems were used to analyze influence of 
geometric and material parameters of systems on obtained dynamic characteristics. This 
study was carried out in dimensionless form in order to generalize obtained results. 
Results are presented in the form of three-dimensional graphs that show the course of the 
dimensionless absolute value of dynamic characteristic in relation to dimensionless 
frequency of externally applied force or electric voltage and one of the system’s 
parameters dimensionless value. Dimensionless values of dynamic characteristics were 
introduced as: 
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Fig. 14. Absolute value of the dynamic characteristic of mechatronic system with 
piezoelectric actuator, for the first three natural frequencies (a half logarithmic scale) 

Dimensionless frequencyies of external force or electric voltage were introduced by dividing 
their values by the value of the first natural frequency of the mechanical subsystem. 
Dimensionless values of analyzed parameters were obtained by dividing them by their 
initial values. Obtained results for selected parameters are presented in Fig. 15 and Fig. 16. 

Influence of the other parameters on characteristics of considered systems were analyzed in 
other publications (Buchacz & Płaczek, 2009b, 2010a).  

7. Conclusions and selection of an optimal mathematical model 

Realized studies have shown that the corrected approximate Galerkin method can be used 
to analyze mechatronic systems with piezoelectric transducers. Verification of the 
approximate method proved that obtained results can be treated as very precise. Precision 
of the mathematical model of considered system has no big influence on the final results. 
There are no significant differences between the values of natural vibration frequencies of 
considered systems and course of dynamic characteristics, except the second model. In case 
of the mathematical model with the assumption of pure shear of the glue layer a very 
significant shift of natural frequencies values and increase of piezoelectric damper or 
actuator efficiency were observed. These discrepancies are the results of the assumed  
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Fig. 15. Influence of length of the piezoelectric transducer on the absolute value of the 
dimensionless dynamic characteristics 
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Fig. 16. Influence of piezoelectric constant of the piezoelectric transducer on the absolute 
value of the dimensionless dynamic characteristics 
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simplifications of the real strain of the transducer and resulting generated shear stress in the 
glue layer. There was also an assumption about pure shear of the glue layer, while, in the 
real system, this layer is under the influence of forces that cause the eccentric tension of it. 

The simplest is the mathematical model with the assumption about perfectly bonded 
piezoelectric transducer. But taking this assumption it is impossible to define influence of 
the glue layer on the dynamic characteristic of the system. Using this model it is not possible 
to meet requirements undertaken in this work. To take into account properties of the glue 
layer and its real loads to which it is subjected, mathematical models, where an eccentric 
tension of glue layer was considered, were developed. Interactions between elements of the 
system were being taken into consideration and real strain of the transducer was 
determined. The third mathematical model is much more complex then the last one, while 
obtained results are very similar. It is therefore concluded that the optima, in terms of 
assumed criteria, is the last mathematical model where a bending moment generated by the 
transducer and eccentric tension of a glue layer between the piezoelectric transducer and 
surface of the beam were taken into account. Using this model it is possible to analyze 
influence of all components of the system, including glue layer between the beam and 
transducer, while it is quite simple at the same time. 
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