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1. Introduction 

Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of insulin 
producing beta-cells in the pancreas. Individuals with T1D cannot survive without insulin 
replacement, and despite daily insulin treatment remain at risk of complications including 
nephropathy, retinopathy and coronary heart disease. Although commonly associated with 
onset in childhood and adolescence with a peak age at diagnosis of 12 years, many cases of 
T1D are diagnosed in adulthood. Epidemiological studies show that the incidence of T1D is 
unequally distributed in the world’s population, with a high incidence rate in Caucasians 
(40/100 000/year in Finland) and an extremely low rate among Asian and South American 
populations (0.1/100 000/year) (Karvonen et al., 2000). T1D is increasingly considered a 
disease of “westernization” or affluence associated with improved hygiene, healthcare and 
living standards. The incidence of the condition has been increasing rapidly in recent 
decades for unknown reasons: the current rate of increase is 3% per year worldwide and it 
has been predicted that the incidence will be 40% higher by 2010 compared to 1998 
(Onkamo et al., 1999). More recent predictions show that if present trends continue, 
doubling of new cases of type 1 diabetes in European children younger than 5 years will 
occur between 2005 and 2020, and prevalent cases younger than 15 years will rise by 70% 
(Patterson et al., 2009). 
T1D is generally diagnosed on clinical grounds but can be confirmed by the presence of 

circulating antibodies in the blood (Baekkeskov et al., 1982). These antibodies are markers of 

ongoing autoimmune destruction (Bottatzo et al., 1985) and the best characterized are 

specific to the islet proteins insulin (Palmer et al., 1983), glutamic acid decarboxylase (GAD) 

(Baekkeskov et al., 1990), IA-2 ( Christie et al., 1994) and the zinc transporter ZnT8 (Wenzlau 

et al., 2007, 2008). The autoimmune process begins very early in life: studies of neonatal 

diabetes suggest that most cases of diabetes diagnosed before 6 months are unlikely to be 

autoimmune, but those diagnosed after the age of 6 months have the genetic characteristics 

of T1D (Edghill et al., 2006) while islet autoantibodies are detectable by 5 years of age in 

most future T1D cases (Bonifacio et al., 2004 ); in many by 2 years of age (Zeigler et al., 1999), 

and antibodies to insulin (generally the first to appear) have been detected as early as 6 to 12 

months of age (Roll et al., 1996).  

T1D can be predicted accurately by the detection of multiple islet autoantibodies and their 

characteristics (Bingley et al. 1997; Achenbach et al., 2004a, 2004b). Trials of agents to prevent 

T1D however require identification of those at risk of T1D very early in life before the 

autoimmune process has been initiated. This is only possible by estimation of genetic risk.  
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2. The role of genes in susceptibility to T1D 

Type 1 diabetes develops through the interaction of complex genetic and environmental 
influences. There are several lines of evidence indicating a strong genetic component 
causing susceptibility to the disease. Twin studies provide one line of evidence.  

2.1 Twin studies 
Concordance rates between monozygotic twins has been estimated at 30-50% compared to 
10% in dizygotic twins (Olmos et al., 1988; Kaprio et al., 1992; Verge et al., 1995; Hyttinen et 
al., 2003) indicating that genetic mechanisms are involved but are not solely responsible for 
disease pathogenesis. While concordance rates do increase over the period of observation 
the window of greatest risk appears to be within 3 years of diagnosis of the index twin 
(Redondo et al. 2001). Familial clustering of type 1 diabetes provides further evidence for the 
role genes in T1D. The risk of developing type 1 diabetes for any individual is 0.4% 
(population frequency). However the risk to a sibling of someone already affected is 6%. 
This produces a sibling risk/population prevalence ratio (λ) of 15 (Risch et al., 1988) strongly 
suggesting a genetic component.  

2.2 Genetic methodologies 
Unraveling of genetic mechanisms underlying a complex multifactorial disease involving 
genetic and environmental determinants such as T1D is challenging and has been ongoing 
since the 1970s. Indeed studies of T1D lead the way for other complex diseases. Initially 
simple case control comparisons of the allele frequencies of candidate genes were used. 
Then, in the 1990s, linkage studies were used which search for the co-transmission in T1D 
families of a DNA marker with the disease. The marker locus itself usually is not directly 
involved in the disease process, but if it lies close to a locus that is, a disease associated allele 
will be observed more often in individuals with disease. This lead to the identification of 
more genetic loci associated with T1D but was hampered by the requirement for increased 
statistical power from larger patient populations.  
The most recent, and successful methodologies however are genome wide association 
studies (GWAS). These studies have taken advantage of 1) collections of large cohorts of 
individuals (several thousand) with well classified disease and a similar number of matched 
healthy controls 2) a detailed map of the most common genetic variants in the human 
genome, single nucleotide polymorphisms (SNPs) and the completion of the HAPMAP 
(www.hapmap.org/) project which showed that not all genome wide SNPs need to be 
analysed to generate the maximum dataset and finally 3) improved methodologies for high 
throughput SNP genotyping.  
Interestingly, all three methodologies identified the human leucocyte antigen (HLA) region 
(also known as the major histocompatibility complex(MHC)) on the short arm of 
chromosome 6 as the predominant genetic susceptibility factor for T1D. The HLA is crucial 
to immune recognition of self and non-self peptides. There are 3 classes of HLA molecules- 
I, II, III. Class I and II are distinct structural entities. Although there are multiple class I and 
II genes, all the gene products have similar overall structure. Class III is a diverse collection 
of more than 20 genes including those encoding complement proteins. The structure of the 
MHC gene cluster is shown on Figure 1.  
Class I MHC molecules are found on all nucleated cells and present peptides to cytotoxic T 

cells. Class II MHC molecules are found on certain immune cells, chiefly macrophages, B 
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Fig. 1. The HLA region on chromosome 6 (from Mehers and Gillespie 2008). The T1D 
associated haplotypes are DRB1*03-DQB1*02 and DRB1*04-DQB1*0302 

cells and dendritic cells, collectively known as professional antigen-presenting cells (APCs). 

The Class II MHC molecules on APCs present peptides to helper T cells, which stimulate an 

immune reaction as shown schematically on figure 2. It therefore intuitive that autoimmune 

diseases such as type 1 diabetes, caused by the erroneous recognition of pancreatic proteins 

as foreign, might involve HLA variants.  

 

 

Fig. 2. A simplified schematic diagram of a proinsulin peptide being presented to a CD4 
helper T cell by MHC Class II on an antigen presenting cells (from Mehers and Gillespie, 
2008) 

Chromosome 6

A-B-C TNFb-TNFa-C2-Bf-C4-21 DR-DQ-DP
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3. The HLA in susceptibility to T1D 

In the early 1970s, Singal and colleagues, Nerup and colleagues and Cudworth and 

colleagues all independently showed show that HLA class 1 alleles B8 and B15 were more 

prevalent in individuals with T1D compared to healthy individuals who lacked these 

antigens (Singal and Blajchman, 1973; Nerup et al., 1974; Cudworth and Woodrow, 1975). It 

later became clear that it was HLA class II rather than HLA class I that had the closest 

association with T1D. In 1987 it was shown that HLA class II DQB1 plays important role in 

susceptibility and resistance to T1D susceptibility (Todd et al., 1987) and in 1988, Thomson 

and colleagues analysed 180 Caucasoid families with at least 2 affected children and showed 

that there was an increase in DRB1*03/DRB1*04 genotypes in T1D patients, compared to 

healthy controls. They identified HLA class II DRB1*03 as the recessive allele and DRB1*04 

as dominant and that the heterozygous effect of the two susceptible alleles together, 

produced a higher risk genotype with a synergistic effect (Thomson et al., 1988). They also 

demonstrated that DRB1*02 conferred a protective role in T1D susceptibility.  It is now 

common for HLA susceptibility to T1D to be discussed in terms of HLA DRB1 (DR) and 

DQB1 (DQ). 90% of childhood cases have at least one of the risk haplotypes DRB1*04-

DRB1*0302 (DR4-DQ8) or DRB*03-DQB1*0201 (DR3-DQ2) while the frequency of the 

highest risk combined genotype DRB1*04-DRB1*0302 (DR4-DQ8) and DRB*03-DQB1*0201 

(DR3-DQ2) is present in almost half of children diagnosed under the age of 5 years (Cailliat  

 

 

Fig. 3. Absolute risks associated with HLA class II genotypes for diagnosis of type 1 
diabetes. The highest risk is associated with the genotype DRB1*03-DQB1*02/DRB1*04-
DQB1*0302 
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Zucman et al., 1995, Gillespie et al., 2002). HLA class II haplotypes have been ranked in a 

risk hierarchy for T1D as shown in figure 3 (Lambert et al. 2004). Individuals with the 

highest risk genotype DRB1*03-DQB1*0201/DRB1*0401-DQB1*0302 have a 5% absolute 

risk of getting diabetes by the age of 15 years while DRB1*15-DQB1*0602 is protective 

(Thomson et al., 1988; Lambert et al., 2004; Pugliese et al., 1995). This haplotype is present 

only in about 1% of T1D cases but approximately 20% of the general population. 

As the function of class II alleles is to present antigen or peptides to T cells in order to 

activate them, the ability of some alleles to contribute to susceptibility and others to 

protection is most likely to be effects on this activation pathway. Most studies have focused 

on the effects of different alleles on peptide binding, as it is in the peptide-binding groove 

where most of the HLA polymorphism is located. An early hypothesis focused on residue 57 

in DQB alleles (Todd et al., 1987). All DQB1 alleles with an aspartic acid at residue 57 confer 

neutral to protective effects and the DQB1 alleles with alanine (*0201 and *0302) confer 

strong susceptibility in all ethnic groups. However this alone cannot explain all the observed 

associations with DQB1 alleles (Nepom et al, 1987 ). 

A HLA class II gene which is clearly of importance in susceptibility to T1D but to a lesser 

extent than HLA DR and DQ is HLA DPBI. Studies have consistently shown that the 

DPB1*0301 allele is susceptible while the *0402 allele is protective and that these effects are 

independent of other HLA class II modulators (Noble et al., 2003; Cruz et al., 2004). 

Intriguingly an “extreme” risk haplotype for T1D has been reported (Aly et al., 2006): 

siblings who share both extended high risk HLA DR3 and DR4 haplotypes identical by 

descent with the affected proband were shown to have a 55% risk of diabetes by the age of 

12 years compared with a 7% risk of diabetes by age 12 in siblings not sharing both IBD 

haplotypes. These data suggest the presence of an important, and as yet recognized, 

modulator of risk within the HLA.  

In the half century since HLA mediated susceptibility to type 1 diabetes was initially 

described, the HLA has consistently been replicated as the major determinant of genetic 

susceptibility with estimates suggesting that this gene family is responsible for 50% of 

susceptibility. Recent fine mapping of 8 megabases of the extended MHC region by genome 

wide association strategies have confirmed that the major susceptibility and resistance loci 

for T1D are within the HLA class II region (Nejentsev et al., 2007; Howson et al., 2009). 

HLA susceptibility to T1D is dynamic 

Intriguingly as the incidence of type 1 diabetes has been increasing, the frequency of HLA 

class II susceptibility genotypes in affected individuals has decreased (Herrman et al., 2003, 

Gillespie et al., 2004, Fourlanos et al., 2008). The frequency of individuals with the highest 

risk genotype DRB1*03-DQB1*0201/DRB1*0401-DQB1*0302 has been decreasing over the 

last half century while the frequency of those with the intermediate genotypes (carrying 

only one of the haplotypes DRB1*03-DQB1*0201 or DRB1*0401-DQB1*0302) has increased 

(figure 4). This was demonstrated by comparing HLA class II gene frequencies between a 

current T1D cohort, the Bart’s Oxford (BOX) cohort and a cohort diagnosed before 1950 

known as the Golden Years cohort. As the gene pool cannot change over this time frame, it 

appears that increasing environmental pressure is precipitating disease in individuals with 

less genetic susceptibility thus contributing to the ongoing increasing numbers of children 

developing T1D. This dynamic in assessment of genetic risk for T1D will create difficulties 

for therapeutic trials where accurate assessment of risk is crucial.  
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3.1 The role of HLA class I genes 
As indicated above HLA class II genes do not account for all of the HLA-associated 
contribution with type 1 diabetes. The original serological associations between the HLA 
and type 1 diabetes were with class I B alleles. It is increasingly clear that although the 
predominant effect of the HLA on susceptibility is mediated through HLA class II, these 
effects are modulated by HLA class 1 alleles. In a Finnish study of extended haplotypes it 
was shown that the A2, Cw1, B56, DR4, DQ8 haplotype was present in 5.5% of individuals 
with diabetes compared with 1.1% of controls and has the highest risk for type 1 diabetes 
(Tienari et al., 1992). In Finns, the Cw1, B56, DR4, DQ8 haplotype is conserved and is only 
associated with four HLA-A alleles. Only the A2 allele is associated with diabetes 
suggesting that, at least on this haplotype, the class I region contributes to susceptibility. 
The effect of class I alleles was also studied in non-DR3/non-DR4 or low genetic risk 
individuals with T1D (Fennessy et al. 1994) who were more likely to possess two of the 
HLA-A alleles associated with increased disease susceptibility. The haplotypes most 
frequently found in type 1 diabetes were the HLA-A alleles A28, A24, A3, A2 and A1. This 
group went on to show elevated risks for class I alleles B13, A24 and B62 in 801 newly 
diagnosed Finnish children (Langholz et al., 1995). In Japanese patients with type 1 diabetes, 
HLA-A24 is associated with rapid onset of the disease (Nakanishi et al., 1993) and may 
influence age of onset and disease progression. A study of 222 diabetic multiplex families 
from the Human Biological Data Interchange also showed the A*2402 allele has a significant 
effect on the age of onset distribution of DR-DQ haplotypes occurring at a higher frequency 
in those individuals diagnosed younger (Valdes et al 1999) while the A*0101 was associated 
with older age of onset. 
 

 

Fig. 4. The highest risk HLA DR3/DR4 genotypes is less frequent in a current T1D 
population (BOX) than in a population of individuals who developed T1D half a century 
earlier (adapted from Gillespie et al. Lancet 2004) 
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More recent studies by Nejentsev et al. in 2007 showed that after taking into account the 
effects of HLA class II, all remaining HLA effects on susceptibility to T1D are attributable to 
genes in HLA A and B. Most important was HLA B*39 as a susceptibility factor while the 
A*02 allele increases risk in individuals with the highest risk class II genotype. In the same 
way that HLA class II molecules present peptide to CD4 cells, HLA class I molecules present 
peptides to cytotoxic CD8+ T cells, increasingly accepted as the central cell in immune 
infiltration in human T1D pancreas and in the non-obese diabetic (NOD) mouse (discussed 
in section 7).  

4. Non HLA genes in susceptibility to T1D 

4.1 Insulin gene 
In the early 1980s, a second genetic locus, the insulin gene, linked with susceptibility to T1D 
was identified (Bell et al., 1984). The Insulin gene (INS) on chromosome 11p15 encompasses 
1430 base pairs (bp) and results in the translation of preproinsulin, the presursor of mature 
insulin. Preproinsulin is processed to proinsulin by removal of the signal peptide and then 
to mature biologically active insulin by removal of the C-peptide. It is increasingly clear that 
insulin is the primary autoantigen in T1D. A variable number tandem repeat (VNTR) region 
consisting of a 14 to 15 bp consensus sequence upstream of the INS gene, in the INS 
promoter, is comprised of three classes of alleles: there is a higher frequency of class I alleles 
with shorter repeat sequences in individuals with T1D (Bennett et al. 1995) while 
individuals with longer class III alleles are relatively protected from T1D. The VNTR 
regulates transcription rates of insulin and its precursors. Class I and Class III alleles 
differentially affect transcription of insulin in the thymus and pancreas (Vafiadis et al., 1997; 
Pugliese et al, 1997). Class III alleles result in 20% increased INS transcription in the thymus. 
This potentially results in more efficient negative selection of insulin reactive T cells and less 
susceptibility to T1D compared to class I alleles providing an attractive model for the role of 
the insulin gene in susceptibility to T1D but this hypothesis remains to be experimentally 
demonstrated.  

4.2 CTLA-4 
In 1996, the cytotoxic T-lymphocyte antigen-4 (CTLA-4) gene encoded on chromosome 2q33 
was identified as a further T1D susceptibility gene (Nistico et al., 1996). CTLA-4 is a surface 
molecule found on activated T cells which produces a negative signal by inhibiting the T cell 
receptor signaling complex ligand interactions (blocks binding of CD80 and CD86) (Figure 
2). Two major splice forms exist – encoding membrane bound and soluble forms. When 
CTLA-4 is knocked out, lymphoproliferative disorders result (Waterhouse et al., 1995). An 
A49G polymorphism in exon 1 of CTLA-4 changes the amino acid sequence resulting in 
reduced cell surface expression (Anjos et al., 2002). It is thought that inherited changes in 
CTLA-4 gene expression can increase T cell self-reactivity and therefore play an important 
role in autoimmune diseases such as T1D (Ueda et al., 2003). 

4.3 PTPN22 
More recently in 2004, protein tyrosine phosphatase non-receptor 22 (PTPN22), a gene 
found on chromosome 1p13 which encodes lymphoid protein tyrosine phosphatase (LYP) 
was found to be associated with susceptibility to T1D. Protein tyrosine phosphatases such as 
LYP are responsible for preventing spontaneous T cell activation and they have the ability to 
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prevent the response to antigen by dephosphorylating and inactivating T cell receptors. It 
has been demonstrated that a single nucleotide polymorphism (SNP) in the PTPN22 gene 
can lead to susceptibility to autoimmune diseases such as T1D because of a decrease in 
negative regulation of hyper-reactive T cells (Bottini et al., 2004). The first complete 
resequencing of the human PTPN22 gene was carried out in 2005 (Criswell et al., 2005). This 
sequence was further analysed for polymorphisms associated with T1D and a SNP at 
1858bp in codon 620 was found. Two alleles referred to as 1858C and 1858T were identified 
and the 1858T variant was shown to occur more often in T1D populations: 30.6% of people 
with TID compared to 21.3% healthy controls are heterozygous for the polymorphism p = 
0.0006 (Bottini et al., 2006). LYP is expressed in other cells in addition to T cells including 
natural killer (NK) cells, B cells, macrophages and dendritic cells (DCs) and so could very 
well also have an effect on the function of several immune cells.  

4.4 IL2RA/CD25 
In 2005, the interleukin 2 receptor alpha (IL2RA) region on chromosome 10p15 was found to 
be associated with T1D (Vella et al., 2005). IL2RA encodes the ┙-chain of the IL-2 receptor 
complex (also referred to as CD25) which is responsible for binding IL-2, a key player in the 
proliferation of regulatory T cells. IL2R has also been associated with T1D in the non-obese 
diabetic (NOD) mouse (Wicker et al., 2005). Two IL-2R SNPs associated with the increased 
risk of T1D have been reported (Qu et al., 2007) with ss52580101 the most closely associated 
(Lowe et al., 2007). A recent study measuring expression of IL-2R in individuals 
homozygous for susceptible and protective SNPs associated with T1D demonstrated that on 
stimulation, higher percentages of CD69+ CD4+ memory T cells secreted IL-2 from 
individuals with the protective SNP compared to individuals with the susceptible SNP 
(Dendrou et al., 2009). More recently susceptibility genotypes were found to be associated 
with lower levels of soluble IL2Ralpha (sIL2Ra) ((Lowe et al. 2007, Maier et al. 2009) and in 
vitro stimulation of peripheral blood mononuclear cells from individuals with T1D results in 
lower levels compared to healthy controls (Giordano et al. 1989). 

5. Genome wide association studies 

In recent years methodologies to identify susceptibility factors underlying complex 
disorders have improved by orders of magnitude. In particular the success of the HapMap 
project in identifying stretches of linkage disequilibrium decreasing the number of SNPs 
requiring genotyping combined with increased capacity for high throughput SNP analysis 
has resulted in a genetic revolution. In 2007, results of the first genome-wide association 
studies in seven different complex diseases was published by the Wellcome Trust Case 
Control Consortium (2007). Later in 2007, a further genome wide association scan was 
carried out and confirmed the additional associations of 12q24, 12q13, 16p13 and 18p11 with 
T1D (Todd et al., 2007). More recently the Type 1 Genetics Consortium (TIDGC) has 
published over 40 genetic loci associated with T1D (Barrett et al., 2009). A selection of the 
best characterized are shown on Figure 5. The genes detailed above all remain associated 
with T1D and most of the newly identified susceptibility genes can be positioned on 
immune activation pathways while some loci have yet to have the disease associated gene 
identified. Despite the overwhelming success of GWAS in identifying susceptibility genes 
for common diseases using hypothesis-free methodologies the effects of the identified genes 
on improved genetic risk assessments have been minimal. This is because most of the newly 
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identified loci make only a minimal contribution to risk with odds ratios (OR) in the range 
of 1.2-1.3 compared to 7 for the HLA locus (Figure 6). An OR of 1 indicates that risk is equal 
in healthy controls and individuals with disease. This has become known as the missing 
heritability and indicates, not surprisingly, that mechanisms other than common variants 
contribute to susceptibility to T1D. Candidates for such effects are rare variants as well as 
epigenetic modifications which cannot be detected by GWAS. Nevertheless the new loci 
identified by GWAS have informed ongoing functional studies and confirmed some 
interesting mechanistic loci such as IFIH1.  
 

 

Fig. 5. Chromos omal localisation of selected T1D associated loci (adapted from Ye et al. 2010) 

6. Genetic susceptibility to Type 1 diabetes in the post-GWAS era 

6.1 IFIH1  
In 2006, interferon induced with helicase C domain 1 (IFIH1) also known as MDA-5 on 

chromosome 2q24.3 was found to be strongly associated with T1D (Smyth et al., 2006)  

Later, in 2008, a follow up study on IFIH1 was carried out, confirming the strongest 

association to be with SNP rs1990760 (Qu et al., 2008).  IFIH1 is particularly interesting 

because unlike the T1D susceptibility genes discussed so far, it is not involved in T cell 

activation but contributes to innate immune responses by releasing the cytokine interferon-

gamma (IFN-┛) and inducing apoptosis of cells infected by picorna viruses of which 

enteroviruses such as coxsackie B4 which have been identified histologically in T1D 

pancreas (Dotta et al., 2007). This molecule may therefore provide molecular insights into 

the hypothesis that viral infection contributes to susceptibility to T1D as alterations in IFIH1 
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Fig. 6. The relative effect of selected T1D associated genes on susceptibility to T1D (adapted 
from Todd 2010) 

activity could interfere with detection and clearance of virus. PBMC expression levels of 

IFIH1 have been reported to be higher in individuals with susceptibility genotypes (Liu et 

al. 2009). Recent resequencing of the IFIH1 gene identified four rare variants associated with 

T1D protection, which are predicted to play a role in altering the expression and structure of 

IFIH1 (Nejentsev et al., 2009).  

6.2 TLR 7 and 8 
The Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition 

and activation of innate immunity. TLRs are highly conserved and recognize pathogen-

associated molecular patterns (PAMPs) that are expressed on infectious agents. Toll like 

receptors (TLR) 7 and 8 are located closely together on the X chromosome have recently 

been associated with T1D (Todd, 2010). TLR7 recognises single stranded RNA in 

endosomes, which is a common feature of viral genomes which are internalised by 

macrophages. Like IFIH1, the association of T1D with these receptors strengthens 

arguments for the involvement of viruses in the pathogenesis of disease.  

6.3 CCR5 
CCR5 is a chemokine receptor on the surface of several cells of the immune system 

including macrophages, NKT cells, CD4+ T cells and CD8+ T cells. It has been mapped to 

the short arm of chromosome 3 within the chemokine receptor gene cluster. Recent studies 

established that this gene comprises three exons spanning a region of about 6 kb. A 32bp 

insertion/deletion polymorphism exon 3 changes the open reading frame of CCR5 and 
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results in a nonfunctional protein. This polymorphism is present only in 1% of the 

population but deletion homozygotes are protected against HIV-1 infection (Alexander et 

al., 2000) as well as T1D, rheumatoid arthritis and celiac disease (Smyth et al., 2008).  

6.4 UBASH3A 
A chromosome 21q22.3 T1D-associated locus (rs876498) has been identified (Concannon et al. 

2008) and replicated (Grant et al., 2009). The only gene in the corresponding region of linkage 

disequilibrium is the Ubiquitin associated and SH3 domain containing A (UBASH3A) gene 

which comprises 15 exons, spans 40kb, and has been shown to be expressed in spleen, bone 

marrow and peripheral blood lymphocytes (Wattenhoffer et al., 2009). UBASH3A suppresses 

T cell receptor signalling (figure 7) and may therefore provide a candidate for the increased 

frequency of autoimmune disease in Down syndrome (Gillespie et al., 2006).   

 

 

Fig. 7. Many of the T1D associated genes can be mapped onto this antigen presentation 
pathway when proinsulin peptide is presented to a CD4 helper T cell through the T cell 
receptor (TCR) this activating Lyp coded for by PTPN22 as well as PTPN2, IL2, IL2RA and 
UBASH3A and several others (adapted from Gillespie, 2006) 

6.5 NK receptor/HLA class 1 interactions 
Natural killer (NK) cells represent the first line of defence against viral infection. NK cell 

infiltrates have been identified in pancreas from individuals with type 1 diabetes (T1D) 

(Dotta et al. 2008) and increased NK cell activity has been reported in the periphery of 

individuals with T1D (Herold et al 1984, Nair et al 1986) ]. NK cells act by either activating 

or inhibiting cytolysis and their activity is controlled by the balance of inhibitory and 

activating receptors on the cell surface. One set of human NK cell receptors are the killer 

immunoglobulin-like receptor (KIR) gene family on chromosome 19 [10] which consists of 
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16 genes; each is either inhibitory or activating in function and is polymorphic both in terms 

of gene content and allelic variation. Genome wide association studies of KIR in T1D are not 

yet available because this region of chromosome 19 does not have a high coverage SNP map 

but results from genetic studies of KIR in T1D increasingly show an association between 

T1D and the activating receptor KIR2DS2 (and its ligand, HLA C group 1). Van der Slik et 

al. (2003) analysed the KIR gene family and respective HLA class I ligands in 149 children 

diagnosed with diabetes under the age of 14 in a Dutch population and Shastry et al. (2008) 

carried out a similar analysis in 98 patients diagnosed with T1D under the age of 18 years 

compared to 70 healthy controls in a Latvian population. In addition Ramos-Lopez et al. 

(2009) showed, in a combined German/Belgian study of 1124 patients with T1D compared 

to 716 healthy controls, that a single nucleotide polymorphism (rs2756923) in exon 8 of the 

inhibitory gene KIR2DL2 was associated with T1D. More recent data show that activating 

combinations of KIR/HLA genes are more frequent in young T1D children diagnosed in the 

first 5 years of life suggesting that NK cell responses to viral infection are altered in this 

group (Mehers et al., submitted). 

 

 

Fig. 8. Individuals with T1D more frequently express genetic combinations of NK cell 
activation 

Target Cell

NK Cell

Less inhibition?

More activation?

NK activating signals through HLA C1 increase risk of T1D  
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7. The NOD model of T1D 

NOD mice, a commonly used mouse model for T1D, were generated following an 

experiment by Makino and colleagues in 1980 (Makino et al., 1980) where out-bred brother x 

sister Swiss mice were repetitively mated in order to produce a strain in which all mice 

developed cataracts. Mice without cataracts were found to have high blood glucose levels 

and were selectively bred in order to produce a mouse model strain of spontaneous diabetes 

development. These mice develop an autoimmune type of diabetes where pancreatic ┚-cells 

are damaged and destroyed by mononuclear cells infiltrating into the islets of langerhans 

(Fujino-Kurihara et al., 1985). The incidence of autoimmune diabetes in the female NOD 

mice varies in different colonies but generally is 60-80% and 20-30% in males (Kikutani and 

Makino, 1992; Atkinson and Leiter, 1999). This is in contrast to human T1D where males and 

females are equally affected early in life but the incidence is higher in males from 

adolescence onwards (Weets et al., 2001, Gale and Gillespie., 2002). Disease onset in the 

NOD usually occurs between 12-14 weeks in female mice and slightly later in males 

(Kikutani and Makino, 1992). 

NOD mice are very sensitive to changes in their environment and geographical location. It 

has been demonstrated that changes in either of these circumstances results in a different 

rate of spontaneous diabetes development (Oldstone, 1988). Diabetes onset in NOD mice is 

prevented by administration of Complete Freund’s Adjuvant (CFA), bacteria, parasites and 

the housing of the mice in dirty conditions, as well as many other treatments (Oldstone, 

1990; Oldstone et al., 1990; Sobel et al., 1998b; Zaccone et al., 2004).  

Multiple loci are involved in genetic susceptibility to autoimmune diabetes in the NOD 

mouse, as in humans. H-2g7, a mouse MHC haplotype, is the major genetic contributor to 

T1D genetic susceptibility (Kikutani and Makino, 1992; Atkinson and Leiter, 1999). 

Experiments investigating the MHC in the NOD mouse indicate that the MHC in mice is 

essential but not sufficient for ┚-cell destruction and development of diabetes in NOD mice 

(Kikutani and Makino, 1992) suggesting that, as in human T1D, other loci are important. It is 

increasingly clear that some susceptibility loci in humans and the NOD mouse are the same 

and this allows detailed functional analysis of genetic determinants of disease.  

Regions of genetic association in the NOD mouse have been designated Idd numbers – for 

instance the MHC association is referred to as Idd1 while ctla4 is Idd5.1. As well as the 

membrane bound and soluble forms of ctla4 found in humans mice have a third form 

lacking a binding domain. Protection from diabetes can be mediated by over-expression of 

this mouse specific isoform. The IL2 signaling pathway, specifically IL2 (Lyons et al. 2000) 

has also been associated with diabetes in the NOD mouse (Idd3).  

8. Common mechanisms of autoimmunity 

More than 50 genome wide association studies have now been published and their power to 

identify complex gene networks that link biological pathways is increasingly clear and 

particularly so for autoimmunity. When data from several different forms of autoimmunity 

including rheumatoid arthritis, celiac disease, autoimmune thyroid disease, multiple 

sclerosis and type 1 diabetes are compared, common autoimmune pathways, including the 

HLA and genes such as PTPN22 that that regulateT cell activation have become apparent. 

This may offer the potential for flexible therapy in the future. 

www.intechopen.com



 
Type 1 Diabetes – Pathogenesis, Genetics and Immunotherapy 562 

9. Other genetic mechanisms underlying susceptibility to T1D 

9.1 Gender and Type 1 diabetes 
Unlike most other autoimmune diseases where risk is greatest in females, type I diabetes is 
the only major organ-specific autoimmune disorder not to show a strong female bias with 
risk equal between males and females in childhood. Risk in males increases in adolescence 
and remains higher than females thereafter. The effects of hormonal changes on risk are 
unknown but effects on insulin resistance could be important. Furthermore, fathers with 
Type I diabetes are more likely than affected mothers to transmit the condition to their 
offspring (Warram et al. 1988) and this observation have never been explained. Women of 
childbearing age are therefore less likely to develop type I diabetes, and – should this occur 
– are less likely to transmit it to their offspring. Parent of origin effects, precipitated by 
epigenetic changes to DNA are worthy of investigation. 
 

 

Fig. 9. A female nucleus (two red X chromosomes) in autopsy male pancreas tissue. The Y 
chromosme is represented as a light green dot and nuclei are stained blue with dapi. Insulin 
is stained green with fitc. Showing that this maternal cell lies within an islet. Adabted from 
van Zyl et al. 2010 

9.2 Microchimerism 
Some genetic mechanisms such as rare variants cannot be identified by GWAS and will be 

defined by high throughput next generation sequencing protocols as they increasingly 

become available. Other mechanisms that require further investigation are DNA 

methylation and other epigenetic changes to DNA that could increase risk of future type 1 

diabetes. Further, over the last decade there have been several reports of associations 
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between maternal cells, which are known to persist in her progeny for several decades 

(Maloney et al. 1998). Maternal DNA is often detected by testing for the presence of the non-

inherited maternal allele (NIMA) and increased levels of maternal DNA or cells have been 

associated with several different autoimmune diseases (reviewed by Nelson 2008). One 

study of 464 T1D families by Pani et al. (2002) showed that the non-transmitted HLA DR3-

DQ2 and DR4-DQ8 were more frequent in mothers than in fathers of all non- DQ2/DQ8 

heterozygous diabetic offspring, as well as in offspring not carrying any HLA high-risk 

allele. In patients with either risk allele alone, more maternal than paternal non-transmitted 

risk alleles complemented the constellation to DQ2/DQ8. This suggested that the non-

inherited maternal allele was contributing to T1D susceptibility. This observation however 

could not be replicated in two other studies (Lambert et al. 2003, Herrman et al. 2003). 

Several years later, using a more sensitive quantitative PCR for the NIMA, Nelson et al 

(2007) showed that NIMA levels were increased in children with T1D compared to 

unaffected siblings and healthy controls. Intriguingly using fluorescence in situ 

hybridization (FISH) for the X and Y chromosomes, this study also showed evidence for the 

presence of maternal cells in autopsy pancreatic islets of individuals with T1D and healthy 

controls, although the frequency of maternal cells was higher. 

This increased frequency of maternal cells in autopsy T1D was confirmed in a follow up 

study (van Zyl et al. 2010). The role of these cells in T1D is, as yet, unclear. If they are 

functioning beta cells could represent the target of the immune response or alternatively 

could be immune effector cells. Further studies are required in this new area of biology. 

10. Conclusions 

Type 1 diabetes is a disease of major personal, medical and financial significance. The recent 

rapid increased in the frequency of the disease, especially in those diagnosed under the age 

of 5 years is alarming. Thirty years of research have demonstrated the importance of 

underlying genetic susceptibility. Major improvements in identifying the genetic 

determinants of complex disease have resulted in an explosion of information on the genetic 

pathways contributing to autoimmune diabetes. While these genetic determinants have not 

enhanced assessment of genetic risk for participation in intervention trials (HLA mediated 

risk remains the most robust means of estimating genetic risk), they have identified immune 

and biochemical pathways that may potentially be targeted therapeutically in the future. 
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