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1. Introduction 

Power quality assessment is a power engineering field that is first and foremost driven by 

real data measurements. All the power quality assessment applications rely on results from 

real data processing. Take as an example the art of harmonic filter design, which is an 

engineering field notoriously known for relying on simulation-based planning; in this 

technical assessment, data recordings are indirectly used for finding the frequency response 

(or R-X plots) of the system impedance that is/are in turn used to determine the filters’ 

tuning frequencies (Kimbark, 1971).  

With so much reliance on the acquired data, the quality of such has become a very sensitive 

issue in power quality. An imperative action is to always employ high-resolution recording 

equipment in any instance of power quality analysis. Nevertheless, high-resolution 

equipment does not guarantee data usefulness because the measured data may be 

inherently of very low energy in a variety of ways. Therefore, to investigate such cases and 

to propose methods to identify useful data were the motivations for this research. This 

chapter proposes methods for data selection to be used in two applications where the 

reliability issue is crucial: the power system impedance estimation and the interharmonic 

source determination. 

1.1 The network harmonic impedance estimation 
Network impedance is power system parameter of great importance, and its accurate 

estimation is essential for power system analysis at fundamental and harmonic frequencies. 

This parameter is deemed of being of great importance for a variety of power system 

applications, such as evaluating the system short-circuit capacity, or defining the customer 

harmonic limits (Kimbark, 1971)-(IEEE Std. 519-1992). Several methods have been proposed 

to measure the network harmonic impedance and are available in literature. In this chapter, 

the transient-based approach is used to demonstrate the data selection methods. In the 

transient-based approach, the network impedance is conventionally calculated by using 

(Robert & Deflandre, 1997) 

       ,eq
Z h V h I h    (1) 
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where ΔV(h) and ΔI(h) are the subtraction in frequency domain of one or more cycles 
previous to the transient occurrence from the corresponding cycles containing the transient 
disturbance. The objective of this chapter is not to promote the use of the transient-based 
approach for determining the network harmonic impedance, nor is it to explain the method 
in detail. The reader is encouraged to consult (Robert & Deflandre, 1997) for details. In this 
application, the level of accuracy of such estimation can be supported by a set of indices, 
which are (but not limited to) the quantization noise in the data acquisition, the frequency 
resolution, the energy levels, and the scattering of the results obtained from the data. 

1.2 The Interharmonics measurement 
Interharmonics are spectral components which frequencies are non-integer multiples of the 
supply fundamental frequency. This power quality event represents the target of the second 
application of the proposed reliability criteria. Diagnosing interharmonic problems is a 
difficult task for a number of reasons: (1) interharmonics do not manifest themselves in 
known and/or fixed frequencies, as they vary with the operating conditions of the 
interharmonic-producing load; (2) interharmonics can cause flicker in addition to distorting 
the waveforms, which makes them more harmful than harmonics; (3) they are hard to 
analyze, as they are related to the problem of waveform modulation (IEEE Task Force, 2007). 
The most common effects of interharmonics have been well documented in literature (IEEE 
Task Force, 2007), (Ghartemani & Iravani, 2005)-(IEEE Interhamonic Task Force, 1997), 
(Yacamini, 1996). Much of the published material on interharmonics has identified the 
importance of determining the interharmonic source (Nassif et al, 2009, 2010a, 2010b). Only 
after the interharmonic source is identified, it is possible to assess the rate of responsibility 
and take suitable measures to design mitigation schemes. Interharmonic current spectral 
bins, which are typically of very low magnitude, are prone to suffer from their inherently 
low energy level. Due to this difficulty, the motivation of the proposed reliability criteria is 
to strengthen existing methods for determining the source of interharmonics and flicker 
which rely on the active power index (Kim et al, 2005), (Axelberg et al, 2008). 

1.3 Objectives and outline 
The objective of this research is to present a set of reliability criteria to evaluate recorded 
data used to assess power quality disturbances. The targets of the proposed methods are the 
data used in the determination of the network harmonic impedance and the identification of 
interharmonic sources. This chapter is structured as follows. Section 2 presents the data 
reliability criteria to be applied to both challenges. Section 3 presents the harmonic 
impedance determination problem and section 4 presents a network determination  
case study. Section 5 presents the interharmonic source determination problem and sections 
6 and 7 present two case studies. Section 8 presents general conclusions and 
recommendations. 

2. Data reliability criteria 

This section is intended to present the main data reliability criteria proposed to be employed 
in the power quality applications addressed in this chapter. The criteria are applied in a 
slightly different manner to fit the nature of each problem. As it will be explained in this 
chapter, in the context of the network impedance estimation, the concern is ΔI(f) and ΔV(f) 
(the variation of the voltage or current), whereas for the case of interharmonic measurement, 
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the concern is the value of I(f) and V(f). The reason for this will be explained in more detail 
in sections 3 and 4, and at this point it is just important to keep in mind that the introduced 
criteria is applied in both cases, but with this slight difference. 

2.1 The energy level index 
As shown in (1), the network impedance determination is heavily reliant on ΔI(f), which is 

the denominator of the expression. Any inaccuracy on this parameter can result in great 

numerical deviance of the harmonic impedance accurate estimation. Therefore, the ΔI(f) 

energy level is of great concern. For this application, a threshold was suggested in (Xu et al, 

2002) and is present in (2). If the calculated index is lower than the threshold level, the 

results obtained using these values are considered unreliable. 

 
 

 
1%.

60
threshold

I f
I

I Hz


 


 (2) 

Fig. 1 shows an example on how this criterion can be used. The energy level for ΔI(f) is 

compared with the threshold. For this case, frequencies around the 25th harmonic order 

(1500Hz) are unreliable according to this criterion. 
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Fig. 1. Energy level of ΔI(f) seen in a three-dimensional plot 

2.2 Frequency-domain coherence index 
This index is used in the problem of the network impedance estimation, which relies on the 

transient portion of the recorded voltages and currents (section 3 presents the method in 

detail). The random nature of a transient makes it a suitable application for using the power 

density spectrum (Morched & Kundur, 1987). The autocorrelation function of a random 

process is the appropriate statistical average, and the Fourier transform of the 

autocorrelation function provides the transformation from time domain to frequency 

domain, resulting in the power density spectrum.  
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This relationship can be understood as a transfer function. The concept of transfer function 
using the power spectral method based on correlation functions can be treated as the result 
from dividing the cross-power spectrum by the auto-power spectrum. For electrical power 
systems, if the output is the voltage and the input is the current, the transfer function is the 
impedance response of the system (Morched & Kundur, 1987). The degree of accuracy of the 
transfer function estimation can be assessed by the coherence function, which gives a 
measure of the power in the system output due to the input. This index is used as a data 
selection/rejection criterion and is given by 

    
   

2

,
VI

VI

VV II

P f
f

P f P f
   (3) 

where PVI(f) is  the cross-power spectrum of the voltage and current, which is obtained by 
the Fourier transform of the correlation between the two signals. Similarly, the auto-power 
spectrum PVV(f) and PII(f) are the Fourier transforms of the voltage and current auto-
correlation, respectively. By using the coherence function, it is typically revealed that a great 
deal of data falls within the category where input and output do not constitute a cause-effect 
relationship, which is the primary requirement of a transfer function. 

2.3 Time-domain correlation between interharmonic current and voltage spectra 
This index is used for the interharmonic source detection analysis, and is the time-domain 
twofold of the coherence index used for the harmonic system impedance. The criterion is 
supported by the fact that, if genuine interharmonics do exist, voltage and current spectra 
should show a correlation (Li et al, 2001) because an interharmonic injection will result in a 
voltage across the system impedance, and therefore both the voltage and current should 
show similar trends at that frequency. As many measurement snapshots are taken, the 
variation over time of the interharmonic voltage and current trends are observed, and their 
correlation is analyzed. In order to quantify this similarity, the correlation coefficient is used 
(Harnett, 1982): 

  
       

       

1 1 1

2 2

2 2

1 1 1 1

,

n n n

IH IH IH IH
i i i

n n n n

IH IH IH IH
i i i i

n I i V i I i V i
r ih

n I i I i n V i V i

  

   




             
         

  

   
 (4) 

where IIH and VIH are the interharmonic frequency current and the voltage magnitudes of 
the n-snapshot interharmonic data, respectively. Frequencies showing the calculated 
correlation coefficient lower than an established threshold should not be reliable, as they 
may not be genuine interharmonics (Li et al, 2001). 

2.4 Statistical data filtering and confidence intervals 
In many power quality applications, the measured data are used in calculations to obtain 
parameters that are subsequently used in further analyses. For example, in the network 
impedance estimation problem, the calculated resistance of the network may vary from 
0.0060 to 0.0905 (ohms) in different snapshots (see Fig. 2). The resistance of the associated 
network is the average of these results. Most of the calculated resistances are between 0.0654 
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and 0.0905 (ohms). Those values that are numerically distant from the rest of the data 
(shown inside the circles) may spoil the final result as those data are probably gross results. 
As per statistics theory, in the case of normally distributed data, 97 percent of the 
observations will differ by less than three times the standard deviation [14]. In the study 
presented in this chapter, the three standard deviation criterion is utilized to statistically 
filter the outlier data.  
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Fig. 2. Calculated 5th harmonic resistance over a number of snapshots 

In the example presented in Fig. 2, once the resistance of the network is achieved by 

averaging the filtered data, the confidence on the obtained results might be questioned. 

Instead of estimating the parameter by a single value, an interval likely to include the 

parameter is evaluated. Confidence intervals are used to indicate the reliability of such an 

estimate (Harnett, 1982). How likely the interval is to contain the parameter is determined 

by the confidence level or confidence coefficient. Increasing the desired confidence level will 

widen the confidence interval. For example, a 90% confidence interval for the achieved 

resistance will result in a 0.0717 ± 0.0055 confidence interval. In the other words, the 

resistance of the network is likely to be between 0.662 and 0.772 (ohms) with a probability of 

90%. 

Fig. 3 shows the calculated harmonic impedance of the network. Error bars are used to show 

the confidence intervals of the results. Larger confidence intervals present less reliable 

values. In this regard, the estimated resistance at 420 Hz is more reliable than its counterpart 

at 300 Hz.  
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Fig. 3. Selected 5th harmonic resistance data showing confidence intervals. 
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2.5 Quantization error 
Quantization refers to the digitalization step of the data acquisition equipment. This value 

dictates the magnitude threshold that a measurement must have to be free of measurement 

quantization noise (Oppenheim & Shafer, 1999). The A/D conversion introduces 

quantization error. The data collected are in the form of digital values while the actual data 

are in analog form. So the data are digitalized with an A/D converter. The error associated 

with this conversion is the quantization step. As the energy of current signals drops to a 

level comparable to that of quantization noises, the signal may be corrupted, and the data 

will, therefore, be unreliable. For this reason, if the harmonic currents are of magnitude 

lower than that of the quantization error, they should not be trusted. This criterion was 

developed as follows: 

1. The step size of the quantizer is 

 2 ,n

in
V   (5) 

where n is the number of bits and Vin is the input range. 

2. The current probe ratio is kprobe, which is the ratio V/A. 

3. Therefore, the step size in amperes is  

 .
I probe

k    (6) 

4. Finally, the maximum quantization error will be half of the step size. 

The input range, number of bits and current probe ratio will depend on the data acquisition 

equipment and measurement set up. The measurements presented later in this chapter are 

acquired by high-resolution equipment (NI-6020E - 100kbps, 12-bit, 8 channels). For the case 

of the system impedance estimation, equation (7) should hold true in order to generate 

reliable results for single-phase systems. This criterion is also used for ΔV(f): 

 ( ) .
error

I f I   (7) 

For the interharmonic case, the interharmonic current level I(ih) is monitored rather than the 

ΔI(f): 

 ( ) .
error

I ih I  (8) 

3. Network harmonic impedance estimation by using measured data 

The problem of the network harmonic impedance estimation by using measured data is 

explained in this section. Fig. 4 presents a typical scenario where measurements are taken to 

estimate the system harmonic impedance. Voltage and current probes are installed at the 

interface point between the network and the customer, called the point of common coupling 

(PCC). These probes are connected to the national instrument NI-6020E 12-bit data 

acquisition system with a 100 kHz sampling rate controlled by a laptop computer. Using 

this data-acquisition system, 256 samples per cycle were obtained for each waveform. In Fig. 

4, the impedance Zeq is the equivalent impedance of the transmission and distribution lines, 

and of the step-down and step-up transformers. 
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Fig. 4. Equivalent circuit for system impedance measurement. 

Many methods that deal with measuring the harmonic impedance have been proposed and 
published (Xu et al, 2002), (Morched & Kundur, 1987), (Oliveira et al, 1991). They can be 
classified as either invasive or non-invasive methods. Invasive methods are intended to 
produce a disturbance with energy high enough to change the state of the system to a 
different post-disturbance state. Such change in the system is necessary in order to obtain 
data records to satisfy (9) and (10), but low enough not to affect the operation of network 
equipment. The applied disturbance in the system generally causes an obvious transient in 
the voltage and current waveforms. The transient voltage and current data are used to 
obtain the impedance at harmonic frequencies. For the case presented in this chapter, the 
source of disturbance is a low voltage capacitor bank, but other devices can also be used, as 
explained in (Xu et al, 2002), (Morched & Kundur, 1987), (Oliveira et al, 1991) 
Therefore, the transient signal is extracted by subtracting one or more intact pre-disturbance 

cycles from the cycles containing the transient, as 

 
_

_

,

.

transient disturbance pre disturbance

transient disturbance pre disturbance

V V V V

I I I I

   

     (9) 

Finally, the network impedance is calculated by using 

      .eq
Z h V h I h    (10) 

3.1 Characterization of the capacitor switching transient 
Traditionally, transients are characterized by their magnitude and duration. For the 

application of network impedance estimation, the harmonic content of a transient is a very 

useful piece of information. A transient due to the switching of a capacitor has the following 

characteristics (IEEE Std. 1159-1995): 

Magnitude: up to 2 times the pre-existing voltage (assuming a previously discharged 

capacitor). 

 Duration: From 0.3ms to 50ms. 

 Main frequency component: 300Hz to 5 kHz. 
The energization of the capacitor bank (isolated switching) typically results in a medium-

frequency oscillatory voltage transient with a primary frequency between 300 and 900 Hz 

and magnitude of 1.3-1.5 p.u., and not longer than two 60Hz cycles. Fig. 5 shows typical 

transient waveforms and frequency contents due to a capacitor switching. For this case, the 

higher frequency components (except the fundamental component) are around 5th to 10th 

harmonic (300-600Hz). 
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Fig. 5. Characterization of the transients resulting from a capacitor switching: (a) voltage 
and current waveforms during a disturbance, (b) Transient waveforms and frequency 
contents. 

3.2 Transient Identification 
The perfect extraction of the transient is needed for the present application. Several 
classification methods were proposed to address this problem, such as neural networks and 
wavelet transforms (Anis & Morcos, 2002). Some other methods use criteria detection based 
on absolute peak magnitude, the principal frequency and the event duration less than 1 
cycle (Sabin et al, 1999). 
In this chapter, a simple approach is proposed to perform this task. It calculates the 
numerical derivative of the time-domain signals, and assumes that if a transient occurred, 
this derivative should be higher than 10. As a result, the numerical algorithm monitors the 
recorded waveforms and calculates the derivatives at each data sample; when this 
derivative is higher than 10, it can be concluded that a capacitor switching occurred. 

4. Impedance measurement case study 

More than 120 field tests have been carried out in most of the major utilities in Canada (in 
the provinces of British Columbia, Ontario, Alberta, Quebec, Nova Scotia and Manitoba), 
and a representative case is presented in this section. Over 70 snapshots (capacitor switching 
events) were taken at this site. Using the techniques described in section II, the impedance 
results were obtained and are presented in Fig. 6. This figure shows that in the range of 
1200-1750Hz there is an unexpected behavior in both components of the impedance. A 
resonant condition may be the reason of this sudden change. However, it might be caused 
by unreliable data instead. Further investigation is needed in order to provide a conclusion 
for this case. 
Based on extensive experience acquired by dealing with the collected data, the following 
thresholds were proposed for each index: 

 Energy level: ΔI(f)  > 1% and ΔV(f)  > 1%. 

 Coherence: γ(f) ≥ 0.95. 

 Standard deviation: 0.5  . 

 Quantization error: ΔI(f) > 0.0244A. 
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Fig. 6. Harmonic impedance for a sample field test used in the case study. 

As the reliability criteria are applied, it is useful to define the following ratio of success: 

 100%,Ratio Successfull cases Total cases   (11) 

where each case is one data snapshot taken at each site. 
Fig. 7 shows the success rate of cases for each index in function of frequency. Fig. 7a. also 

shows that the application of this index will affect ΔI much more than for ΔV, since the latter 

is acquired using voltage probes, which are inherently much more reliable. Since the 

impedance measurement is calculated from the ratio -ΔV/ΔI, the voltage threshold is 

applied to the denominator and is therefore less sensitive, as shown in (Xu et al, 2002). Fig. 

7b. shows that the coherence index does not reveal much information about reliability of the 

measurements; however it provides an indicator of the principal frequency of the transient 

signals, highlighted in the dotted circle. The standard deviation results presented in Fig. 7c. 

show that the impedances measured at frequencies between 1260 and 2000 Hz are very 

spread out and are, therefore, unreliable. The same situation occurs for frequencies above 

2610 Hz. These results agree with those presented in Fig. 7a. for the threshold used for ΔI. 

Fig. 7d. shows that the quantization is not a critical issue and the measurements taken in the 

field are accurate enough to overcome quantization noises. However the low quantization 

values, especially for current, are of lower values for the unreliable ranges presented in Fig. 

7a. and Fig. 7c. 

5. Interharmonic source determination 

In harmonic analysis, many polluters are usually present in a power distribution system for 

each harmonic order because power system harmonics always occur in fixed frequencies, 

i.e., integer multiples of the fundamental frequency. All harmonic loads usually generate all 

harmonic orders, and therefore, it is common to try to determine the harmonic contribution 

of each load rather than the harmonic sources. As opposed to harmonics, interharmonics are 

almost always generated by a single polluter. This property of interharmonics can be 

explained as follows.  
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Fig. 7. Indices in function of frequency: (a) energy level, (b) coherence, (c) standard 
deviation, (d) quantization error. 

The main interharmonic sources are adjustable speed drives (ASDs) with a p1-pulse rectifier 
and a p2-pulse inverter and periodically varying loads such as arc furnaces. Their 
interharmonic generation characteristics can be expressed as in (12) for ASDs (Yacamini, 
1996) and (13) for periodically varying loads (IEEE Task Force, 2007), respectively:  

  1 2
1 , 0,1,2...; 1,2,3...,

IH z
f p m f p nf m n      (12) 

where f and fz are the fundamental and drive-operating frequency. 

 , 1,2,3...,
IH v

f f nf n    (13) 

where fv is the load-varying frequency. According to equations (12) and (13), the interharmonic 
frequency depends on many factors such as the number of pulses of the converter and 
inverter, the drive-operating frequency, or the load-varying frequency. Therefore, the same 
frequency of interharmonics is rarely generated by more than one customer. 
Based on the above analysis, for interharmonic source determination, the analysis can be 
limited to the case of a single source for each of the interharmonic components. The most 
popular method currently being used to identify the interharmonic sources is based on the 
active power index. Fig. 8 helps to explain the power direction method. For this problem, 
the polluter side is usually assumed to be represented by its respective Norton equivalent 
circuit. Fig. 8 shows two different scenarios at the metering point between the upstream 
(system) and the downstream (customer) sides. Fig. 8a and Fig. 8b show the case where the 
interharmonic components come from the upstream side and the downstream side, 
respectively. The circuits presented in Fig. 8 are used for each frequency.  
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Fig. 8. Determination of interharmonic source – two different scenarios. 

The interharmonic active power can be obtained from the voltage and current 
measurements at a metering point as 

    *Re cos ,
IH IH IH IH IH IH

P V I V I     (14) 

where |VIH| and |IIH| are the interharmonic voltage and current magnitudes, respectively, 
and φIH is the angle displacement between the interharmonic voltage and current. 
The conclusion of the power direction method, therefore, is the following (Kim et al, 2005), 
(Axelberg, 2008): 

 If PIH > 0, the interharmonic component comes from the upstream side. 

 If PIH < 0, the interharmonic component comes from the downstream side. 
If this criterion is extended to a multi-feeding system like that shown in Fig. 9, the 
interharmonic source for each interharmonic can be identified. In such a case, monitoring 

equipment should be placed at each feeder suspected of injecting interharmonics into the 
system. For the system side measurements (point A), if the measured PIH > 0, the 
interharmonic component comes from the system. For the customer side measurements 
(points B and C), if the measured PIH < 0, the interharmonic component comes from the 

measured customer. 
 

 

Fig. 9. System diagram for locating the interharmonic source. 

As a given interharmonic frequency has only one source, the power direction method (in 
theory) could always reveal the interharmonic source correctly. In reality, as the active 
power of the interharmonics is typically very small, the measured data may not be reliable, 

so this index may not provide reliable conclusions. On the other hand, the angle φIH can be 
very close to either π/2 or –π/2, oscillating around these angles because of measurement 
errors, and resulting in the measured active power index swinging its sign and potentially 

causing misjudgment. The drifting nature of interharmonics in frequency and the supply 
fundamental frequency variation also influence this inaccuracy. 
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6. Interharmonic source determination case study #1 

The case study presented in this section illustrates the worst known effect of the 

interharmonics at present, which is the interference with control signals at the power line. 

The Automatic Meter Reading devices (AMR) of a utility company of the province of 

Alberta had experienced difficulties to receive inbound signals in a large oilfield extraction 

area. Utility engineers suspected that this interference could be caused by the presence of 

interharmonics. Field measurements were carried out at the substation feeder and at large 

customers that were suspected to be interharmonic polluters. The arrangement for the field 

measurement is shown in Fig. 10. The measured feeder supplies three customers, 

codenamed Customer 1, Customer 2 and Customer 3. These customers operate large oil 

extracting drives. The measurements were done through potential transformers and current 

transformers (PTs and CTs). The data were acquired for a period of two days, taking 

automatic snapshots of 5 seconds at every minute. The hardware utilized was a National 

Instruments NI-DAQ6020E, which operates at 100kb/s and has 8-channel capability. With 

this sampling rate, the recorded waveforms contained 256 points per cycle. 

 

 
 

Fig. 10. Field measurement locations at the measured area 

After processing all data snapshots taken at the four locations, a spectrum contour plot 

measured at the feeder is drawn in order to obtain the frequencies of the interharmonic 

components that are present in this system. Fig. 11 shows the contour plot of the data 

recorded at the feeder during one of the measured days. From this figure, it can be seen that 

there are four dominant interharmonic components, which seem to be two pairs: at around 

228 Hz and 348 Hz, and 264 Hz and 384 Hz. These components drift a little in frequency due 

to the change of the drive operation conditions, but they exist inside a narrow frequency 

range.  
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Fig. 11. Contour plot of the interharmonic data recorded at the feeder 

The active power index was monitored at the three loads. This is shown in Fig. 12-Fig. 15. 
The system was observed to be fairly balanced, and therefore only the power in phase A is 
shown. By looking into these figures, one would conclude that Customer 2 is the source of 
interharmonics 228Hz, 348Hz and 384Hz, whereas Customer 3 is the source of 
interharmonics 264Hz and 348Hz. As explained in equation (2), it is almost impossible that 
an interharmonic component is generated by two sources at the same time. Furthermore, 
after deeper investigation, it is shown that this apparent identification of the interharmonic 
polluters is incorrect, and the reliability criteria proposed in this chapter is useful in aiding 
the researcher to drawing correct conclusions. 
 

228 Hz

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

Time Step

P
a

 (
W

)

Customer 3

Customer 2

Customer 1

 

Fig. 12. Active power at the loads for fIH = 228Hz 
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Fig. 13. Active power at the loads for fIH = 264Hz 
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Fig. 14. Active power at the loads for fIH = 348Hz 
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Fig. 15. Active power at the loads for fIH = 384Hz 
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6.1 Applying the reliability criteria 
The first step to utilize the reliability criteria is to obtain the percentage of snapshots 

containing measurements with energy levels above the quantization error. This result for 

the case study is shown in Table 1. According to this criterion, the interharmonic currents 

measured at the feeder may be unreliable because they are too low as compared to the 

current fundamental component. This fact does not mean that the measured interharmonics 

are harmless, but simply that 12 bits of the data acquisition device are not enough to 

accurately measure their magnitudes. As for the loads, all data are reliable, except those of 

Customer 3 at 348 Hz. 

 

IH freq (Hz) Feeder Customer 1 Customer 2 Customer 3 

228 0.00 19.44 100.00 91.84 

264 0.00 0.00 77.19 81.63 

348 0.00 0.00 3.51 0.00 

384 0.00 100.00 100.00 100.00 

Table 1. Percentage of Snapshots with Energy Level Higher than Quantization Step 

The interharmonic voltage-current correlation for all the locations is calculated as well, and 

shown in Table 2. The results obtained for the feeder show that its measurements may not 

reliable. For the loads, it can be seen that the correlation is generally high, except for that of 

Customer 2 at 264 Hz. 

 

IH freq (Hz) Feeder Customer 1 Customer 2 Customer 3 

228 0.68 0.98 0.96 0.98 

264 0.31 0.96 0.59 0.92 

348 0.55 0.96 0.92 0.96 

384 0.77 0.99 0.98 0.97 

Table 2. V-I Correlation Coefficient (%) 

The other reliability criteria are also used but do not add much information to the 

conclusions to be drawn in Table 3, which summarizes the reliability at each frequency for 

each location. 

 

IH freq (Hz) Feeder Customer 1 Customer 2 Customer 3 

228 No Yes Yes Yes 

264 No No No Yes 

348 No No Yes No 

384 No Yes Yes Yes 

Table 3. Reliability Summary 

Table 4 shows the average of calculated active power at the feeder and at the loads (phase 

A). Note that the shaded cells are the ones that should not be trusted. 
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IH Freq 
(Hz) 

P (W) 
Feeder 

P (W) 
Customer 1 

P (W) 
Customer 2 

P (W) 
Customer 3 

228 -0.52 0.09 -3.53 0.72 

264 -1.14 0.07 0.13 -0.75 

348 -1.05 0.08 -1.98 -0.14 

384 -6.34 0.58 -23.5 3.64 

Table 4. Active Power Results for the Feeder and Customers 

6.2 The VIH-IIH angle displacement 
The power direction method relies on the information about the difference between the 
interharmonic voltage and current angles. If this difference is close to 90 or 270 degrees, the 
cosine of this difference will be very close to zero. For interharmonics of very low 
magnitude, the power may oscillate around zero, because the angle displacement usually 
exhibit lots of fluctuation due to measurement inaccuracies. Therefore, caution is needed 
when using the power direction method, since it is too sensitive to this angle.  
In the present case study, such fluctuation happens for interharmonics 264 Hz and 348 Hz. 
Furthermore, the active power results shown in Fig. 13 and Fig. 14 reveal that the power 
level is very low. This was also shown in Table 1, which revealed that many snapshots 
contain data with very low energy level. For these frequencies, the conclusions drawn using 
the power direction method cannot be trusted. A final conclusion about these frequencies 
will be provided in next subsection by using the theory of interharmonic pairing. 

6.3 The Interharmonic phase sequence characteristics 
Using the phase sequence characteristics of interharmonics, it can be verified that 

interharmonics 228 Hz and 348 Hz of this case study are one pair, and interharmonics 264 

Hz and 384 Hz are another pair. From (12), it can be estimated that the drives’ frequencies 

are 48 Hz and 54 Hz, and that the number of pulses of the inverter is p2 = 6. From this 

equation, it was also identified that 228 Hz and 264 Hz are negative sequence, whereas 348 

Hz and 384 Hz are positive sequence, as explained in (Zhang et al, 2005). Therefore, all 

parameters in (12) can be estimated as  

 

228 60 6 48,

364 60 6 54,

348 60 6 48,

384 60 6 54.

   
   
   
   

 (14) 

The same conclusion about the sequence is verified through analyzing the measurements: 
the symmetrical components of the interharmonic currents are calculated and one of them 
(positive-, negative- or zero-sequence) is observed to match the phase currents (the system is 
fairly balanced). 
Since it is clear that the source of two interharmonic frequencies of a pair is the same, it is 
confirmed that Table 4 shows some inconsistencies: Customer 3 cannot be the source of 
interharmonic 264 Hz unless it is also the source of interharmonic 384 Hz. It was, however, 
determined that Customer 2 is the source of interharmonic 384 Hz. This inconsistency for 
Customer 2 undermines the credibility of the conclusions taken at this frequency. It is not 
possible that interharmonic 264 Hz comes from both Customer 3 and Customer 2. Finally 
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the possibility that Customer 3 is the source of the interharmonic 264 Hz can be ruled out 
because this frequency is a pair of 384 Hz, which was generated from Customer 2. 

7. Interharmonic source determination case study #2 

In a second case, interharmonic problems were experienced in another oilfield area of 
Alberta, Canada. Measurements were taken at three customers, codenamed Customer 1, 
Customer 2, and Customer 3, which were operating big oil extraction ASD drives and were 
suspected interharmonic sources. The system diagram is shown in Fig. 16. The 
measurements at the metering points revealed that the interharmonic detected frequencies 
were present throughout the system. 
 

 

Fig. 16. Field measurement locations at system #2 

Fig. 17 shows a sample contour plot of the spectrum calculated for the three Customers’ 
currents in order to obtain the frequencies of the interharmonic components present in this 
system. Two main interharmonics are identified: 151 Hz and 271 Hz. 
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Figure 17. Contour plot of the interharmonic data recorded at the three Customers (phase 
A): (a) customer 1, (b) customer 2, (c) customer 3. 

7.1 Criteria for determining the reliability of the data 
Table 5 shows the percentage of reliable snapshots obtained by using the quantization error 
criterion. Only snapshots with an energy level higher than the quantization error could be 

www.intechopen.com



 
Power Quality Harmonics Analysis and Real Measurements Data 

 

86

used. All the data were reliable in this case due to the high magnitude of the interharmonic 
components. 
 

IH freq (Hz) Customer 1 Customer 2 Customer 3 

151 Hz 100 100 100 

271 Hz 100 100 100 

Table 5. Reliable Snapshots [%] According to the Quantization Error Criterion for System #2 

Table 6 shows the correlation results for the locations, revealing that the interharmonic 

voltage and current had a high degree of correlation at the three customer loads.  

 

IH freq (Hz) Customer 1 Customer 2 Customer 3 

151 Hz 0.93 0.88 0.98 

271 Hz 1.00 1.00 1.00 

Table 6. Correlation Results for System #2  

7.2 Results 
The power direction results are shown in Table 7. In this case, the data was deemed reliable 

by all reliability criteria. 
 

Location of measurements IH frequency [Hz] Sign(PIH)

Customer 1 
151 + 
271 + 

Customer 2 
151 + 
271 + 

Customer 3 
151 - 
271 - 

Table 7. Power Direction (at Interharmonic Frequencies) Results for System #2  

The information for sign(PIH) reveals that the sign(PIH) of Customer 3 is negative, so that 

Customer 3 was the source. In this case, the angle displacement between the voltage and 

current was not observed to fluctuate at around ±π/2 radians. Therefore, the power 

direction method can be used with full confidence. 

8. Conclusions 

This chapter investigated the reliability of the data used for the power quality disturbances 

assessment. The main applications were to estimate the network harmonic impedance and 

to determine the interharmonic source. A set of criteria to state about the data reliability was 

presented. They consisted in proposing thresholds for the following parameters: 

 Frequency-domain coherence; 

 Time-domain correlation; 

 Quantization error; 

 Standard deviation; 
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For the network impedance estimation application, it has been found that the energy level 
for ΔI(f) is a useful data filtering, but for ΔV(f) it has been found that it does not really make 
any difference. The Coherence index does not reveal much information about unreliable 
measurements but clearly identifies the principal frequency components of the transient. 
Analyses carried out on the quantization error level demonstrated that quantization noise is 
substantial for high frequencies and that the measurements taken are not significantly 
affected by quantization noises. The suggested thresholds for data rejection used were 
determined through extensive experience with handling data and provided more accurate 
and dependable results. These thresholds can be further adjusted as new data are analyzed 
and experience is built to improve the engineering judgment. 
For the interharmonic source detection, the power direction method is very sensitive to the 
typical low energy level of the interharmonic currents. It was observed that this low energy 
level affects the displacement angle between voltage and current, which may prevent using 
the method to conclude about some frequencies. Interharmonic pairing theory was used to 
draw a final conclusion for the smaller-magnitude interharmonics in the case study. For the 
higher magnitude interharmonics, the power direction method could be used with the 
confidence provided by the reliability criteria. 

9. Acknowledgments 

The author gratefully acknowledges the financial support provided by Hydro One to 
partially cover the publication of this chapter and also their encouragement into improving 
this research work. 
The author also expresses his gratitude towards Mr. Edwin Enrique Nino from ATCO 
electric for providing the several data sets of the network harmonic impedance collected in 
many Canadian utility sites, for processing the data and providing the presented results. 
Thanks are also extended to Mr. Hooman Mazin for providing part of the statistical analysis 
used in the network harmonic impedance data filtering application. 
Finally, the author expresses his appreciation to Prof. Wilsun Xu for his supervision, 
technical contributions and high-level advices. 

10. References 

Anis, W. R. & Morcos, M. M. (2002). Artificial Intelligence and Advanced Mathematical Tools 
for Power Quality Applications: A Survey, IEEE Trans. Power Delivery, vol. 17, no. 2. 

Axelberg, P. G. V., Bollen, M. J., Gu, I. Y. (2008). Trace of Flicker Sources by Using the 
Quantity of Flicker Power, IEEE Trans. Power Delivery, vol. 23, no. 1, pp. 465-471. 

Ghartemani, M. K. & Iravani, M. R. (2005). Measurement of Harmonics/Interharmonics of 
Time-Varying Frequencies, IEEE Trans. Power Delivery, vol. 20, no. 1, pp. 23-31. 

Harnett, D. L. (1982). Statistical Methods, Third Edition, Addison Wesley. 
IEEE Std. 519-1992 (1993) IEEE Recommended Practices and Requirements for Harmonic Control 

in Electrical Power Systems 
IEEE Std. 1159-1995. (1995). IEEE Recommended Practice for Monitoring Electric Power Quality. 
IEEE Task Force on Harmonics Modeling and Simulation. (2007). Interharmonics: Theory 

and Measurement, IEEE Trans. Power Delivery, vol. 22, no. 4. 
IEEE Interharmonic Task Force. (1997). Cigre 36.05/CIRED 2 CC02 Voltage Quality Working 

Group, Interharmonics in Power Systems. 

www.intechopen.com



 
Power Quality Harmonics Analysis and Real Measurements Data 

 

88

Johnson, R. A. & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis, Sixth 
edition, Pearson Prentice Hall. 

Kim, T., Powers, E. J., Grady, W. M., Arapostathis, A. (2005). Real and Reactive Power 
Analysis for Interharmonics, Proceedings of the IEEE Electric Ship Technologies 
Symposium, pp. 244-247. 

Kimbark, E. (1971). Direct Current Transmission (vol. 1), John Wiley & Sons 
Li, C., Xu, W., Tayjasanant, T. (2001). Interharmonics: Basic Concepts and Techniques for 

their Detection and Measurement, Electric Power Syst. Res., vol. 66, pp. 39-48. 
Morched, A. S. and Kundur, P. (1987). Identification and Modeling of Load Characteristics 

at High Frequencies, IEEE Trans. Power Systems, vol. PWRS-2, no. 1, pp. 153-160. 
Nassif, A. B, Yong, J., Mazin, H., Wang, X., Xu, W., (2010a). An Impedance-Based Approach 

for Identifying Interharmonic Sources. IEEE Transactions on Power Delivery, vol. 26, 
no. 1, pp. 333-340. 

Nassif, A. B, Nino, E. E., Mazin, H. (2009). On the Reliability of Real Measurement Data for 
Assessing Power Quality Disturbances, Proceedings of the IEEE PES General Meeting. 

Nassif, A. B., Yong, J., Xu, W. (2010b). Interharmonics: Signaling processing issues and 
applications, Proceedings of the IEEE PES General Meeting. 

Oppenheim, A. V. and Schafer, R. W. (1999). Discrete-Time Signal Processing, 2nd Ed. (Prentice 
Hall: Upper Saddle River, NJ). 

Oliveira, A., Oliveira, J. C., Resende J. W., Miskulin M. S. (1991). Practical approaches for AC 
system harmonic impedance measurements, IEEE Trans. Power Delivery, vol. 6, pp. 
1721–1726. 

Robert, A. & Deflandre, T. (1997). Guide for assessing the network harmonic impedances, 
Proceedings of the Joint CIGRE/CIRED 97, 2-5 June 1997, Conference Publication No. 438. 

Sabin, D. D., Grebe, T. E., Brooks, D. L., Sundaram A. (1999), Rules-based Algorithm for 
Detecting Transient Overvoltages due to Capacitor Switching and Statistical 
Analysis of Capacitor Switching in Distribution Systems, Proceedings of the IEEE 
Transmission and Distribution Conference, vol. 2, pp. 630-635. 

Xu, W., Ahmed, E. E., Zhang, X. and Liu, X. (2002). Measurement of Network Harmonic 
Impedances: Practical Implementation Issues and Their Solutions, IEEE Trans. 
Power Delivery, pp 210-216 vol. 17, no. 1. 

Yacamini, R. (1996). Power System Harmonics: Part 4 Interharmonics, IEE Power Eng. J., pp. 
185-193. 

Zhang, D., Xu W., Liu, Y. (2005). On the Phase Sequence Characteristics of Interharmonics, 
IEEE Trans. Power Delivery, vol. 20, no. 4, pp. 2563-2569. 

www.intechopen.com



Power Quality Harmonics Analysis and Real Measurements Data

Edited by Prof. Gregorio Romero

ISBN 978-953-307-335-4

Hard cover, 278 pages

Publisher InTech

Published online 23, November, 2011

Published in print edition November, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Nowadays, the increasing use of power electronics equipment origins important distortions. The perfect AC

power systems are a pure sinusoidal wave, both voltage and current, but the ever-increasing existence of non-

linear loads modify the characteristics of voltage and current from the ideal sinusoidal wave. This deviation

from the ideal wave is reflected by the harmonics and, although its effects vary depending on the type of load,

it affects the efficiency of an electrical system and can cause considerable damage to the systems and

infrastructures. Ensuring optimal power quality after a good design and devices means productivity, efficiency,

competitiveness and profitability. Nevertheless, nobody can assure the optimal power quality when there is a

good design if the correct testing and working process from the obtained data is not properly assured at every

instant; this entails processing the real data correctly. In this book the reader will be introduced to the

harmonics analysis from the real measurement data and to the study of different industrial environments and

electronic devices.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Alexandre Brandao Nassif (2011). On the Reliability of Real Measurement Data for Assessing Power Quality

Disturbances, Power Quality Harmonics Analysis and Real Measurements Data, Prof. Gregorio Romero (Ed.),

ISBN: 978-953-307-335-4, InTech, Available from: http://www.intechopen.com/books/power-quality-harmonics-

analysis-and-real-measurements-data/on-the-reliability-of-real-measurement-data-for-assessing-power-

quality-disturbances



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


