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1. Introduction 

Demand for robots is shifting from their use in industrial applications to their use in 
domestic situations, where they “live” and interact with humans. Such robots require 
sophisticated body designs and interfaces to do this. Humanoid robots that have multi-
degrees-of-freedom (MDOF) have been developed, and they are capable of working with 
humans using a body design similar to humans. However, it is very difficult to intricately 
control robots with human generated, preprogrammed, learned behavior. Learned behavior 
should be acquired by the robots themselves in a human-like way, not programmed 
manually. Humans learn actions by trial and error or by emulating someone else’s actions. 
We therefore apply reinforcement learning for the control of humanoid robots because this 
process resembles a human’s trial and error learning process. 
Many existing methods of reinforcement learning for control tasks involve discrediting state 
space using BOXES (Michie & Chambers, 1968; Sutton & Barto, 1998) or CMAC 
(Albus, 1981) to approximate a value function that specifies what is advantageous in the 
long run. However, these methods are not effective for doing generalization and cause 
perceptual aliasing. Other methods use basis function networks for treating continuous state 
space and actions.  

Networks with sigmoid functions have the problem of catastrophic interference. They 
are suitable for off-line learning, but are not adequate for on-line learning such as that 
needed for learning motion (Boyan & Moore, 1995; Schaal & Atkeson, 1996). On the 
contrary, networks with radial basis functions are suitable for on-line learning. However, 
learning using these functions requires a large number of units in the hidden layer, 
because they cannot ensure sufficient generalization. To avoid this problem, methods of 
incremental allocation of basis functions and adaptive state space formation were 
proposed (Morimoto & Doya, 1998; Samejima & Omori, 1998; Takahashi et al., 1996; 
Moore & Atkeson, 1995). 
In this chapter, we propose a dynamic allocation method of basis functions called 
Allocation/Elimination Gaussian Softmax Basis Function Network (AE-GSBFN), that is 
used in reinforcement learning to treat continuous high-dimensional state spaces. AE-
GSBFN is a kind of actor-critic method that uses basis functions and it has allocation and 
elimination processes. In this method, if a basis function is required for learning, it is 
allocated dynamically. On the other hand, if an allocated basis function becomes redundant, 
the function is eliminated. This method can treat continuous high-dimensional state spaces 
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because the allocation and elimination processes reduce the number of basis functions 
required for evaluation of the state space.  

Fig. 1. Actor-critic architecture. 

Fig. 2. Basis function network. 

To confirm the effectiveness of our method, we used computer simulation to show how a 
humanoid robot learned two motions: a standing-up motion from a seated position on chair 
and a foot-stamping motion. 

2. Actor-Critic Method 

In this section, we describe an actor-critic method using basis functions, and we apply it to 
our method. 
Actor-critic methods are temporal difference (TD) methods that have a separate memory 
structure to explicitly represent the policy independent of the value function (Sutton & Barto, 
1998). Actor-critic methods are constructed by an actor and a critic, as depicted in Figure 1. The 
policy structure is known as the actor because it is used to select actions, and the estimated 
value function is known as the critic because it criticizes the actions made by the actor. 
The actor and the critic each have a basis function network for learning of continuous state 
spaces. Basis function networks have a three-layer structure as shown in Figure 2, and basis 
functions are placed in middle-layer units. Repeating the following procedure, in an actor-
critic method using basis function networks, the critic correctly estimates the value function 
V(s), and then the actor acquires actions that maximize V(s).
1. When state s(t) is observed in the environment, the actor calculates the j-th value uj(t)

of the action u(t) as follows (Gullapalli, 1990): 
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N

i
jiijjj tntbgutu )()()( max

s , (1) 

where max
ju  is a maximal control value, N is the number of basis functions, bi(s(t)) is a 

basis function, ij is a weight, nj(t) is a noise function, and g() is a logistic sigmoid 

activation function whose outputs lie in the range ( 1, 1). The output value of actions is 

saturated into max
ju  by g().

2. The critic receives the reward r(t), and then observes the resulting next state s(t+1). The 

critic provides the TD-error )(t  as follows: 

)()1()()( tVtVtrt ss , (2) 

where  is a discount factor, and V(s) is an estimated value function. Here, V(s(t)) is 

calculated as follows: 
N

i
ii tbvtV )()( ss , (3) 

where vi is a weight. 

3. The actor updates weight ij  using TD-error: 

)()()( tbtnt ijijij s , (4) 

where  is a learning rate. 

4.  The critic updates weight vi:

iii etvv )( , (5) 

where  is a learning rate, and ei is an eligibility trace. Here, ei is calculated as follows: 

)(tbee ii s , (6) 

where  is a trace-decay parameter. 

5. Time is updated. 

ttt . (7) 

Note that t  is 1 in general, but we used the description of t  for the control interval of the 

humanoid robots.  

3. Dynamic Allocation of Basis Functions 

In this chapter, we propose a dynamic allocation method of basis functions. This method is 
an extended application of the Adaptive Gaussian Softmax Basis Function Network (A-
GSBFN) (Morimoto & Doya, 1998, 1999). A-GSBFN only allocates basis functions, whereas 
our method both allocates and eliminates them. In this section, we first briefly describe A-
GSBFN in Section 3.1; then we propose our method, Allocation/Elimination Gaussian 
Softmax Basis Function Network (AE-GSBFN), in Section 3.2. 

3.1 A-GSBFN 

Networks with sigmoid functions have the problem of catastrophic interference. They are 
suitable for off-line learning, but not adequate for on-line learning. In contrast, networks 
with radial basis functions (Figure 3) are suitable for on-line learning, but learning using 
these functions requires a large number of units, because they cannot ensure sufficient 
generalization. The Gaussian softmax functions (Figure 4) have the features of both sigmoid 
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functions and radial basis functions. Networks with the Gaussian softmax functions can 
therefore assess state space locally and globally, and enable learning motions of humanoid 
robots.

Fig. 3. Shape of radial basis functions. Four radial basis functions are visible here, but it is 
clear that the amount of generalization done is insufficient. 

Fig. 4. Shape of Gaussian softmax basis functions. Similar to Figure 3, there are four basis 
functions.  Using Gaussian softmax basis functions, global generalization is done, such as 
using sigmoid functions. 

The Gaussian softmax basis function is used in A-GSBFN and is given by the following 
equation:

N

k
k

i
i

ta

ta
tb

)(

)(
)(

s

s
s , (8) 

where ai(s(t)) is a radial basis function, and N is the number of radial basis functions. Radial 
basis function ai(s(t)) in the i-th unit is calculated by the following equation: 

2
)(

2

1
exp)( ii tMta css , (9) 

where ci is the center of the i-th basis function, and M is a matrix that determines the shape 
of the basis function. 
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In A-GSBFN, a new unit is allocated if the error is larger than threshold max  and the 

activation of all existing units is smaller than threshold amin:

minmax )(maxand)( atath i
i

s , (10) 

where h(t) is defined as )()()( tntth j  at the actor, and )()( tth  at the critic. The new 

unit is initialized with ci = s, and 0i .

3.2 Allocation/Elimination GSBFN 

To perform allocation and elimination of basis functions, we introduce three criteria into A-

GSBFN: trace i  of activation of radial basis functions, additional control time , and 

existing time i  of radial basis functions. The criteria i  and i  are prepared for all basis 

functions, and  is prepared for both actor and critic networks. A learning agent can gather 

further information on its own states by using these criteria.  
We now define the condition of allocation of basis functions. 

Definition 1 - Allocation 

A new unit is allocated at ci = s (t) if the following condition is satisfied at the actor or critic 
networks:

minmax )(maxand)( atath i
i

s

 and    addT , (11) 

where addT  is a threshold. 

Let us consider using condition (10) for allocation. This condition is only considered for 
allocation, but it is not considered as a process after a function is eliminated. Therefore, 
when a basis function is eliminated, another basis function is immediately allocated at the 
near state of the eliminated function. To prevent immediate allocation, we introduced 
additional control time  into the condition of allocation. The value of  monitors the 

length of time that has elapsed since a basis function was eliminated. Note that  is 

initialized at 0, when a basis function is eliminated. 

We then define the condition of elimination using i  and i .

Definition 2 - Elimination 

The basis function )(tbi s  is eliminated if the following condition is satisfied in the actor or 

critic networks.  

erasemax and Tii , (12) 

where max  and eraseT are thresholds. 

�

The trace i  of the activation of radial basis functions is updated at each step in the 

following manner: 

)(taiii s , (13) 

where  is a discount rate. Using i , the learning agent can sense states that it has recently 

taken. The value of i  takes a high value if the agent stays in almost the same state. This 
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situation is assumed when the learning falls into a local minimum. Using the value of i , we 

consider how to avoid the local minimum. Moreover, using i , we consider how to inhibit a 

basis function from immediate elimination after it is allocated. We therefore defined the 

condition of elimination using i  and i .

Fig. 5. Learning motion; standing up from a chair. 

4. Experiments 

4.1 Standing-up motion learning 

In this section, as an example of learning of continuous high-dimensional state spaces, AE-
GSBFN is applied to a humanoid robot learning to stand up from a chair (Figure 5). The 
learning was simulated using the virtual body of the humanoid robot HOAP-1 made by 
Fujitsu Automation Ltd. Figure 6 shows HOAP-1. The robot is 48 centimeters tall, weighs 6 
kilograms, has 20 DOFs, and has 4 pressure sensors each on the soles of its feet. Additionally, 
angular rate and acceleration sensors are mounted in its chest. To simulate learning, we 
used the Open Dynamics Engine (Smith). 

Fig. 6. HOAP-1 (Humanoid for Open Architecture Platform). 

The robot is able to observe the following vector s(t) as its own state: 

PPAAKKWWt ,,,,,,,)(s , (14) 

where W , K , and A  are waist, knee, and ankle angles respectively, and P  is the pitch 

of its body (see Figure 5). Action u(t) of the robot is determined as follows: 

AKWt ,,)(u , (15) 
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One trial ended when the robot fell down or time exceeded ttotal = 10 [s]. Rewards r(t) were 
determined by height y [cm] of the robot’s chest: 

)(20

)(20
)(

total

downstand

stand

failureontt

trialduring
ll

yl

tr , (16) 

where lstand = 35 [cm] is the position of the robot’s chest in an upright posture, and ldown = 20 

[cm] is its center in a falling-down posture. We used 36/max
ju , 9.0 , 1.0 ,

02.0 , 6.0 , and 01.0t  [s] for parameters in Section 2, M=(1.0, 0.57, 1.0, 0.57, 1.0, 

0.57, 1.0, 0.57), 5.0max , and 4.0mina  in Section 3.1, and 1addT  [s], 9.0 , 0.5max ,

and 3eraseT  [s] in Section 3.2. 

Figure 7 shows the learning results. First, the robot learned to fall down backward, as shown 
in i). Second, the robot intended to stand up from a chair, but fell forward, as shown in ii), 
because it could not yet fully control its balance. Finally, the robot stood up while 
maintaining its balance, as shown in iii). The number of basis functions in the 2922nd trial 
was 72 in both actor and critic networks. Figure 8 shows the experimental result with the 
humanoid robot HOAP-1. The result shows that HOAP-1 was able to stand up from a chair, 
as in the simulation. 
We then compared the number of basis functions in AE-GSBFN with the number of basis 
functions in A-GSBFN. Figure 9 shows the number of basis functions of the actor, averaged 
over 20 repetitions. In these experiments, motion learning with both AE-GSBFN and A-
GSBFN was successful, but the figure indicates that the number of basis functions required 
by AE-GSBFN was fewer than that by A-GSBFN. That is, high dimensional learning is 
possible using AE-GSBFN. Finally, we plotted the height of the robot’s chest in successful 
experiments in Figures 10 and 11. In the figures, circles denote a successful stand-up. The 
results show that motion learning with both AE-GSBFN and A-GSBFN was successful. 

4.2 Stamping motion learning 

In Section 4.1, we described our experiment with learning of transitional motion. In this 
section, we describe our experiment with periodic motion learning. We use a stamping 
motion as a periodic motion (Figure 12). Periodic motions, such as locomotion, are difficult 
to learn only through reinforcement learning, so in many cases, a Central Pattern Generator 
(CPG), etc., is used in addition to reinforcement learning (e.g., Mori et al., 2004). In this 
experiment, we use inverse kinematics and AE-GSBFN to obtain a stamping motion. 

Inverse kinematics calculates the amount  of change of each joint angle from the amount 

P  of change of the coordinates of a link model: 

PJ )(1 , (17) 

where )(J  is the Jacobian matrix. Generally, since the dimension of  differs from the dimension 

of P , )(J  does not become a regular matrix, and its inverse matrix cannot be calculated. 

Moreover, even if it could be calculated, a motion resolution by )(1J  cannot be performed in the 

neighborhood of singular points, which are given by  around 0)(det J . To solve these 

problems, we used the following function (Nakamura & Hanafusa, 1984) in this section: 

PIkJJJ s

TT 1)( , (18) 
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i) 300th trial 

ii) 1031st trial 

iii) 1564th trial 

Fig. 7. Learning results. 

Fig. 8. Experimental result with HOAP-1. 

Fig. 9. Number of basis functions in the actor network (averaged over 20 repetitions). 
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Fig. 10. Height of robot’s chest with AE-GSBFN. Circles denote successful stand-ups. 

where ks is a scalar function with which it becomes a positive value near singular points and 
becomes 0 otherwise: 

)(0

)(1 0

2

0
0

otherwise

ww
w

w
kks , (19) 

where k0 is a positive parameter, w0 is a threshold that divides around singular points from 

the others, and w is given by )()(det TJJw .

In this experiment, the coordinate of the end of the legs is given by inverse kinematics (i.e., 
up-down motion of the legs is given), and motion of the horizontal direction of the waist is 
learned by AE-GSBFN. The coordinate value was acquired from the locomotion data of 
HOAP-1. Concretely, motion is generated by solving inverse kinematics from pw to the 
idling leg, and from the supporting leg to pw  (Figure 12 (a)). The change of supporting and 
idling legs is also acquired from HOAP-1’s locomotion data. 

Fig. 11. Height of robot’s chest with A-GSBFN. Circles denote successful stand-ups. 
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Fig. 12. Learning motion; stamping the foot. 

The robot is able to observe the following vector s(t) as its own state: 

),,,,,,,,,,

,,,,,,,,,,()(

)()()()()()()()(

)()()()()()()()(

PSPS
L

K
L

K
R

K
R

K
L

WS
L

WS
R

WS
R

WS

PFPF
L

AF
L

AF
R

AF
R

AF
L

WF
L

WF
R

WF
R

WFts
 (20) 

where )(
WF  (right leg: )(R

WF , left leg: )(L
WF ) and )(

AF (right leg: )(R
AF , left leg: )(L

AF ) are angles of 

the waist and ankle about the roll axis, respectively, and PF is the pitch of its body about 

the roll axis. Also )(
WS  (right leg: )(R

WS , left leg: )(L
WS ) and )(

K (right leg: )(R
K , left leg: )(L

K )

are angles of the waist and knee about the pitch axis, respectively, and PS is the pitch of its 

body about the pitch axis. Note that the angle of the ankle of each leg about the pitch axis 
was controlled to be parallel to the ground. 
Action u(t) of the robot is determined as follows: 

)()( tptu , (21) 

where )(tp  is the amount of change of )(tp  which is the position of the center of the robot’s 

waist.  Note that the value of )(tp  is a y-coordinate value, and does not include x- or z-

coordinate values. 
One trial terminated when the robot fell down or time exceeded ttotal = 17.9 [s]. Rewards r(t)
were determined by the following equation: 

)(20

)()0()(20
)(

total failureontt

trialduringptp
tr . (22) 

We can use the value of the difference between its supporting leg and )(tp  as rewards, 

but these rewards may represent the ideal position of )(tp  because of the use of inverse 

kinematics. Therefore, we used the above equation. Using the equation (22), the closer 

)(tp  is to )0(p , the more the rewards increases. Intuitively, it is unsuitable for rewards 

of stamping motion learning, but acquiring a  stamping motion only brings more 
rewards, because an up-down motion of the leg is given forcibly by inverse kinematics, 

and it is necessary to change )(tp  quite a lot to make the robot stay upright without 

falling down. 
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We used 4max 100.1ju , 9.0 , 1.0 , 02.0 , 6.0 , and 01.0t  [s] for 

parameters in Section 2, M=diag(2.0, 1.1, 2.0, 1.1, 2.0, 1.1, 2.0, 1.1, 2.0, 1.1, 2.0, 1.1, 2.0, 1.1, 2.0, 

1.1, 2.0, 1.1, 2.0, 1.1), 5.0max , and 135.0mina  in Section 3.1, and 0.1addT  [s], 9.0 ,

0.5max , and 0.2eraseT  [s] in Section 3.2. We also used k0 = 0.01 and w0=0.003 for the 

parameters of inverse kinematics.
Figure 13 shows the learning results. The robot can control its balance by moving its 
waist right and left. Figure 14 plots the amount of time taken to fall down. You can 
see that the time increases as the learning progresses. Figure 15 shows the value of 

)(tp  in the 986th trial. It is clear that )(tp  changes periodically. These results indicate 

that a stamping motion was acquired, but the robot’s idling leg does not rise perfectly 
when we look at the photos in Figure 13. We assume that the first reason for these 
results is that it is difficult to control the angle of ankle using inverse kinematics 

(since inverse kinematics cannot control )(R
AF  and )(L

AF  to be parallel to the ground). 

The second reason is that we only used y-coordinate values of the waist for learning, 
and the third is because we used equation (22) for rewards. To solve the second issue, 
we can use its z-coordinate value. Using equation (22), the third reason, a small 
periodic motion is obtained (Figure 16). To solve this problem, we should consider 
another reward function for this experiment. We will explore these areas in our future 
research. 

Fig. 13. Simulation result (986th trial). 
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Fig. 14. Time during trial (averaged over 100 repetitions). If the value of a vertical axis is 
large, the stamping motion extends for a long time.

Fig. 15. Position of p(t) in horizontal direction in 986th trial. 

Fig. 16. Ideal angle and output angle of )(R
WF with AE-GSBFN in 986th trial. The dotted line 

indicates an ideal motion and the solid line indicates the acquired motion with AE-GSBFN. It is 
clear that the acquired motion consists of small periodic motions compared with the deal motion.
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5. Conclusion 

In this chapter, we proposed a dynamic allocation method of basis functions, AE-GSBFN, in 
reinforcement learning. Through allocation and elimination processes, AE-GSBFN 
overcomes the curse of dimensionality and avoids a fall into local minima. To confirm the 
effectiveness of AE-GSBFN, we applied it to the motion control of a humanoid robot. We 
demonstrated that AE-GSBFN is capable of providing better performance than A-GSBFN, 
and we succeeded in enabling the learning of motion control of the robot. 
The future objective of this study is to do some general comparisons of our method with 
other dynamic neural networks, for example, Fritzke’s “Growing Neural Gas” (Fritzke, 
1996) and Marsland’s “Grow When Required Nets” (Marsland et al., 2002). An analysis of 
the necessity of hierarchical reinforcement learning methods proposed by Morimoto and 
Doya (Morimoto & Doya, 2000) in relation to the standing up simulation is also an 
important issue for the future study. 
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