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1. Introduction 

The development of high-resolution visualisation techniques, such as magnetic resonance 
(MR) and computer tomography (CT) opens the possibility for non-destructive studies of 
the inner structure of the objects of different nature and origin. The deterioration of the 
structure with time, deformations and loss of strength under the load and other processes 
lead to morphological and topological changes inside materials, which require both 
qualitative analysis and quantitative evaluation. Assessment and proper description of the 
topological and morphological characteristics of materials with porous and irregular 
architecture is of great importance for many scientific and engineering studies. 
The Scaling Index Method (SIM) is a novel numerical tool for characterising the local 
topology of an arbitrary structure. By evaluating the local dimensionality of each point, the 
SIM indicates topologically different substructures: unstructured background, one-
dimensional (rod-like) and two-dimensional (plate-like) elements. By changing the 
parameters of the SIM one can distinguish the outer surface from inner points of the 
structure, describe structures at different scales, and include anisotropic features of the 
tissue. This method can be applied to both binary and greyscale multidimensional images. 
To demonstrate the scientific performance of the method we apply numerical techniques 

based on the SIM to tree-dimensional µCT images of the bone tissue engineering scaffolds 
(as an example of designed porous structure) and to trabecular bone specimens taken from 
the human vertebrae in vitro (as an example of biological tissue with very irregular and 
complicated structure). A proper description of the global and local structural characteristics 
of the trabecular bone network, which carries and redistributes mechanical load inside the 
bone, helps to evaluate the deterioration of bone tissue caused by osteoporosis and to 
predict the most frequent complications of this disease, namely spine and hip fractures. 
Because of the porous and very irregular architecture of the trabecular bone tissue, a 
detailed assessment of such a structure requires the use of many texture measures derived 
from different morphological, biomechanical, topological, and statistical concepts. We show 
that the Scaling Index Method provides complementary information to the existing well-
established techniques. 
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One of the most frequently used morphological parameter in classical three-dimensional 
morphometric analysis is the Structure Model Index (SMI). It quantifies the type of the 
structure by the estimation of the plate-to-rode ratio, which is calculated by means of three-
dimensional differential analysis of the triangulated bone surface. Scaling Index Method 
proposes a new approach for the calculation of rode-plate ratio, leading to the novel 
approach of calculation SMI. Combination of the SIM, which describes the topology of the 
structure on a local level, with Finite Element Method (FEM), which models the 
biomechanical behaviour of the bone, gives a possibility to analyse redistribution of the 
stresses and deformations within topologically different structure elements. Minkowski 
Functionals (MF) supply global morphological information about any structure. According 
to integral geometry the topology of an arbitrary 3D body can be described by four 
quantities, known as the Minkowski Functionals, which represent the volume (MF1), the 
surface (MF2), the integral mean curvature (MF3), and connectivity number (MF4). The first 
and second Minkowski Functionals (MF1 and MF2) correspond to the bone volume fraction 
BV/TV and normalized bone surface area BS/TV, respectively. To extract global 
morphological characteristics of the trabecular structure, Minkowski Functionals are 
calculated from the binarized high-resolution image. In conventional approach binarization 
is made according to the grey level value. In our study we threshold 3D µCT images 
according to the local structure characteristic calculated by SIM. Such a nonlinear 
combination of the SIM and MF opens a possibility to calculate global topological properties 
for substructures selected according to their local topology. 
We provide a detailed theoretical description of the Scaling Index Method with examples of 
its application in the second section. In the third section we demonstrate possible 
combinations of SIM with existing numerical techniques and compare the diagnostic 
performance of the numerical methods and their combinations with SIM by Pearson’s 
correlation analysis with respect to the maximum compressive strength (MCS) measured in 
biomechanical tests. In the fourth section we summarize main conclusions and underline 
advantages and perspectives of the proposed Scaling Index Method. 

2. Scaling Index Method (SIM) 

The Scaling Index Method (SIM) characterises patterns of multi-dimensional point 
distributions by assessing local topological properties of the underlying structure. The 
method originated from the study of fractal measures of turbulent and chaotic systems 
(Benzi et al., 1984), onset of chaos (Jensen et al., 1985), scaling laws for chaotic attractors 
(Paladin & Vulpiani, 1987) and other multifractal objects (Grassberger et al., 1988). With the 
development of high-resolution image processing Scaling Index Method became an effective 
tool for analysis of different systems and structures in which nonlinear correlation plays an 
important role. It was successfully applied to texture detection and discrimination (Räth & 
Morfil, 1997), cosmological large-scale structures analysis (Räth et al., 2002), fluctuations in 
the cosmic microwave background (Rossmanith et al., 2009) and trabecular bone network 
assessment in the context of osteoporosis (Monetti et al., 2003, 2007; Mueller et al., 2006). 

2.1 Theoretical background 

In SIM a 3D binary image is described as a set of points ip


 with spatial coordinates x, y, z:  

 { }( , , ) , 1,...,i voxelsI x y z p i N= =


. (1) 
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In a 3D greyscale CT or MR image a discrete grey value gi(xi, yi, zi) of each voxel plays the 

role of a fourth dimension. Thus, both space and intensity information are combined in a 4D 

space vector and the image can be regarded as a set of points ( , , , )i i i i ip x y z g


 in a virtual 4D 

space. For each point ip


 we estimate the number of points of the structure in the vicinity 

with radius r, which determines the length scale on which the structure is analysed. We 

assume a power law behaviour for the cumulative point distribution function ρ 

 ( )( , ) i r
ip r rαρ ∝


 (2) 

with exponent α(r), which is called scaling index and has the meaning of a dimensionality of 

the object. For ordinary shapes like one-dimensional lines and two-dimensional surfaces 

scaling index α coincides with the usual topological dimension. By varying the scaling 

radius r one can characterise the same object with different scaling indices α. 
In the analysis of nonuniform structures and tissues scaling exponent varies from point to 
point and it is meaningful to consider pointwise scaling measure, which can be defined as 

the logarithmic derivative of ρ 

 
( ),log ( , )

( )
log

ii
i

p rp r r
r

r r

∂ρ∂ ρ
α = =

∂ ρ ∂


. (3) 

In order to calculate scaling indices α one needs to define the number of points within a 

multidimensional ball with radius r and centre ip


, i.e. to determine the cumulative point 

distribution ρ. In principle, any differentiable function and any distance measure between 

two points can be used for calculation of scaling indices α. In our applications we assume a 

Gaussian shaping function to weight the cumulative point distribution 

 
( )2

1

( , ) ij
N

d r

i
j

p r e
−

=

ρ =
, (4) 

where dij indicates a distance measure between two points in the multidimensional space 

(3D in case of binary image, or 4D in case of greyscale image). Because of the exponential 

form of the function ρ the impact of each point is weighted according to its distance dij from 

the central point ip


. This causes SIM to be a local method: the value of the scaling index 

depends on the number of neighbours in a small vicinity of radius r of the point for which α 

is calculated, while contributions of points with dij > r are negligible. For the case of isotropic 

scaling indices we use the Euclidean distance between two points 

 2 2 2

2
( ) ( ) ( )ij i j i j i j i jd p p x x y y z z= − = − + − + −

 
. (5) 

Anisotropic features of the tissue can be taken into account by using a generalized quadratic 
distance measure of the form 

 ( ) ( )
2 2 2( ) ,ij x i j y i j z i jd x x y y z zλ λ λ= − + − + −  (6) 

where λx, λy, λz are the weighting factors of the tree orthogonal spatial directions, 
respectively. In the case of human vertebrae with natural vertical loading along z-axis we set 
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λx = λy = 5 λz =1. The Scaling Index Method is well suited for quantifying topological aspects 
on a local level, especially to discriminate substructures with different dimensionality: 

values of α ≈ 1 correspond to rod-like components, 1.5 < α < 2.5 correspond to sheet-like 

substructure and α ≈ 3 describe tree-dimensional elements. By means of the SIM a 
topological characteristic is assigned to each point of the structure, which describes 
dimensionality of the local neighbourhood. In order to evaluate global topological features 
based on the local representation of the structure the values of scaling indices can be 
compiled into the probability density function (pdf) 

 [ ]( )( ) ,P probα = α ∈ α α + ∆α . (7) 

Combining all points of the structure with the same value of scaling index α one obtains 
structural decomposition of the object according to the local dimensionality of each point. 

2.2 Bone tissue engineering scaffolds 
One of the most essential features of the Scaling Index Method is its possibility to vary the 
length scale of the topological decomposition. We demonstrate the scaling flexibility of the 
SIM by applying to bone engineering scaffolds (Kerckhofs, 2008, 2010), which are examples 
of designed porous structures. Evaluation of the morphology, mechanical behaviour, 
material erosion and structural deterioration of such objects is of great importance for many 
applications in biology, medicine, pharmacy, engineering and other sciences. Regular 
architecture of the scaffolds gives us exact knowledge of the strut thickness, which we use as 

a base length for the choice of scaling radius r. For numerical calculations we use µCT 

images of scaffolds with a resolution of 14 µm. The scaffolds have a strut thickness of 178 

µm on average, what corresponds to 12 - 13 pixels length (Fig. 1). 
 

            

Fig. 1. Original µCT images of the bone engineering scaffolds. Left: side view; right: top 
view. 

In Table 1 we show results of two calculations: with scaling radius r = 12 pixels and r = 2 
pixels. When the scaling radius is comparable with the strut thickness (r = 12 pixels, second 
column of Table 1), all pixels except nodes have α ∈ [1,2] (blue and green colours), i.e. 
cylindrical struts are recognised as “thick” one-dimensional elements and the probability 
distribution function P(α) reaches its maximum at α ≈ 1.7. When the scaling radius is much  
 

www.intechopen.com



Scaling Index Method (SIM): A Novel Technique for  
Assessment of Local Topological Properties of Porous and Irregular Structures 

 

279 

C
ro

ss
 s

ec
ti

on
 

y=
y m

ax
/2

 

 

 
 

 

 
 

C
ro

ss
 s

ec
ti

on
 

z=
z m

ax
/2

 

 

 
 

 

 
 

P
ro

ba
bi

li
ty

 d
is

tr
ib

u
ti

on
 

fu
n

ct
io

n
 P

( α
) 

     

P
ar

am
et

er
s 

of
 

co
m

pu
ta

ti
on

s 
  

Scaling radius: r=12 pixels; 
 

CPU time: 14 hours; 
 

P(α) mean=1.88; 
 

 
Scaling radius: r=2 pixels; 

 
CPU time: 12min; 

 

P(α) mean=2.80; 
 

 

Table 1. Scaling index representation of the bone tissue engineering scaffolds. Colour 

coding: blue 1 < α < 1.5, green 1.5 < α < 2 ,yellow 2 < α <2.5, red 2.5 < α < 3. 
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smaller than the average strut thickness (r = 2 pixels, third column of Table 1), SIM provides 

a very good decomposition of structure elements on the surface and inner body voxels: all 

inner strut voxels have α ≈ 3 (red colour on images and the largest peak on the P(α) curve) 

and surface voxels have α ≈ 2.6 (yellow colour on images and second large peak on the P(α) 

curve). Such a α-decomposition can be used in studies of surface erosion, structure 

deformation under mechanical loading and other applications. 

2.3 Trabecular bone 
Different biological tissues with irregular structure are the most challenging objects for 

topological description. In our present paper we use specimens of cancellous bone as a 

typical example of such a tissue. We base our numerical analysis on 151 µCT images of 

trabecular network taken from the human vertebrae as previously described in Räth et al., 

2008. The scans were acquired for the central 6 mm in length of the specimen using a µCT 

scanner (Scanco Medical, Bassersdorf, Switzerland). The resulting µCT grey-value images 

with isotropic spatial resolution of 26 µm were segmented using a fixed global threshold 

equal to 22% of the maximal grey value to extract the mineralised bone phase. After 

scanning the 12 mm bone samples were tested by uniaxial compressive experiment and 

maximum compressive strength (MCS) was determined as the first local maximum of the 

force-displacement curve. The value of the MCS was used in correlation analysis to assess 

the diagnostic performance of different numerical methods and their combinations. 

 

     

Fig. 2. Original µCT images of the trabecular bone specimens taken from the human 
vertebrae. Left: strong bone with BV/TV=0.17 and MCS=157.00 N; right: weak bone with 
BV/TV=0.07 and MCS=17.87 N. 

The topological structure of the trabecular network is different for every specimen and 

reflects its biomechanical features. Typical characteristics of the strong bone (left image on 

Fig. 2) are following: large amount of plate-like structures, high values of bone mineral 

content (described by BV/TV) and large fracture load in biomechanical test (described by 
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MCS). Weak bone (right image on the Fig. 2) has rarefied trabecular network with a lot of 

rod-like trabecular elements and very small amount of plates, which consequently reflects 

in low bone mass and fracture load. We apply the Scaling Index Method both with 

isotropic and anisotropic distance measures dij, using scale radius r comparable to the 

average trabecular thickness. For anisotropic SIM we choose the natural direction of 

vertical loading of human vertebrae (in our notations z-coordinate) as a preferential 

direction. Analysing the P(α) spectrum of the trabecular structure (Fig. 3) one can 

distinguish between strong (green curve) and weak (red curve) bones. For specimens with 

strong trabecular structure the position of the maximum of the P(α) distribution is 

typically shifted to higher values of α. This systematic shift reflects the fact that strong 

bones have more plate-like structures and weak bones consist mainly of rod-like elements. 

This shift in P(α) spectrum is observed both for isotropic and anisotropic SIM and can be 

used as a structure texture measure for differentiation between strong and weak bones. 

The additional advantage of the anisotropic approach is the possibility to describe 

structures in different directions. From the anisotropic P(αz) spectrum (right plot on  

Fig. 3) one can conclude that strong bone (green curve) has much more plates along z 

direction (the largest peak around α ≈ 2.8) than on the horizontal plane (second maximum 

around 2 < α < 2.2). The weaker bone (red curve) has a large amount of horizontal plates, 

but less vertically elongated plates. 

 

 

Fig. 3. Probability distribution function of isotropic (left) and anisotropic (right) scaling 
indices for strong (green curves) and weak (red curves) bones. 

The Scaling Index Method provides very clear topological decomposition of the irregular 

porous structure. Combining all voxels with αz < αth (Fig. 4) or αz > αth (Fig. 5) we choose 
substructures with special topological characteristics and compare trabecular bone elements 

with different dimensionality. Starting with the small threshold value αth = 1.7 we select thin 
rod-like trabecular elements (first row of Fig. 4). Most of them are horizontally oriented and 

work for stability of the structure. Increasing threshold value up to αth = 2 we can observe all 
rod-like trabecular elements with any thickness (second row of Fig. 4). By slight increase of 

threshold value over 2 (αth >2.2, third row in Fig. 4) we add thin horizontal plates into 
consideration. 

www.intechopen.com



 
Computed Tomography – Special Applications 

 

282 

α
z 

<
 1

.7
 

  

α
z 

<
 2

 

  

α
z 

<
 2

.2
 

  
 

Fig. 4. Topological decomposition of the trabecular bone structure based on the anisotropic 

scaling index αz. Substructures are described by voxels with αz < αth. Left: strong bone with 
BV/TV=0.17 and MCS=157.00 N; right: weak bone with BV/TV=0.07 and MCS=17.87 N. 
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Fig. 5. Topological decomposition of the trabecular bone structure based on the anisotropic 

scaling index αz. Substructures are described by voxels with αz > αth. Left: strong bone with 
BV/TV=0.17 and MCS=157.00 N; right: weak bone with BV/TV=0.07 and MCS=17.87 N. 
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Assessment of the plate-like structure can be done by choosing all voxels with αz > αth (Fig. 

5). By taking 2 < αz < 2.4 we extract thin plate elements (first row in Fig. 5) and by increasing 
threshold we get more massive, almost three dimensional plates (second and third rows in 
Fig. 5). Comparison of the vertebrae specimens based on the topological decomposition of 
the trabecular structure demonstrates several differences in microarchitecture of the strong 
and weak bones. The microstructure of strong bones has less strut elements and more plates. 
Both strength and stability are provided by plate-like elements. Thick plates in direction of 
natural loading (left image of third row in Fig. 5) are main load bearing elements of the 
structure, while thin horizontal plates (left image of first row in Fig. 5) are responsible for 
stability of the bone. The trabecular network of weak bones consists of a large amount of 
rod-like elements oriented in all directions (right column in Fig. 4) and thin plate-like 
trabecular elements (right column in Fig. 5). Strength of the weak rarefied bones is ensured 
by both rod- and plate-like elements oriented along natural loading of the structure, while 
stability of the structure is provided by horizontal thin struts. 

3. Combination of the SIM with different numerical methods 

Structure analysis of the tissues with porous and irregular architecture is a very complicated 
task, which requires the application of a large variety of mathematical concepts. In the 
present section we show that the Scaling Index Method provides complementary 
information to the existing morphological and biomechanical methods. As an example, we 
demonstrate that including local topological characteristics into the analysis of the 
microarchitecture of the cancellous bone, improves qualitative understanding and 
quantitative evaluation of the trabecular network strength. We assess the diagnostic 
performance of the numerical techniques by means of Pearson’s correlation analysis with 
respect to the maximum compressive strength (MCS) obtained in biomechanical 
experiments. 

3.1 Morphometric parameters 
Morphometric parameters are an efficient numerical tools, which are widely implemented 

in the standard software delivered by the µCT scanner manufacture. They are determined 
from the 3D binary images by direct evaluation of typical mean space distances without 
assumptions of the particular structure model type (Hildebrand & Rüegsegger, 1997a; 
Hildebrand et al., 1999). Mean Trabecular Thickness (Tb.Th.) and mean Trabecular 
Separation (Tb.Sp.) are calculated by filling maximal spheres into the bone mineral tissue or 
bone marrow, respectively. Trabecular Number (Tb.N.) is defined as the number of plates 
per unit length and can be obtained as the inverse of mean distance between the mid-axes of 
the structure. Another important morphometric parameter is the Structure Model Index 
(SMI) (Hilderbrand & Rüegsegger, 1997b; Hildebrand et al., 1999; Ding & Hvid, 2000): 

 
2

2
12

1 4( )
SMI

ε + ε
= ⋅

+ ε + ε
. (8) 

The SMI characterises the observed structure by estimating the plate-to-rode ratio ε, which 
is calculated by means of differential analysis of the triangulated bone surface. 
In this work we implement a new approach for the estimation of the relative amount of 
plates to rods. We use the topological decomposition of the trabecular network based on the 
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scaling indices described in section 2.3. For the threshold value of the scaling indices αth we 

define rods and plates as voxels with α < αth and α > αth, respectively. Plate-to-rod ratio is 
then defined as: 

 1

1

( )

( )

voxels

voxels

N
i thi

N
th ii

H

H

=

=

α − α
ε =

α − α




. (9) 

Here Nvoxels is number of voxels composing the observed structure and H(x) is the Heaviside 
step function: 

 
0, 0

( )
1, 0

x
H x

x

<
= 

≥
. (10) 

Calculating plate-to-rod ratio ε for different threshold value αth we obtain novel parameters 

SMIα and SMIαz as function of αth. 
Pearson’s correlation analysis with respect to the experimental MCS demonstrates (Table 2) 
that among classical morphometric parameters the best correlation coefficient |rp| = 0.43 is 

shown by Tr.N. and SMI. By the novel nonlinear combination of SMI and scaling indices α 

or αz we can significantly improve prediction of bone strength and achieve a much higher 
value of the correlation coefficient: rp = -0.74. The observed improvement in diagnostic 
performance can be explained by the fact that we combine local topological and global 

morphometric characteristics in one parameter (SMIα or SMIαz in Table 2). 
 

Tb.Th. Tb.Sp. Tr.N. SMI SMIα SMIαz 

0.3 -0.41 0.43 -0.43 -0.73 -0.74 

Table 2. Pearson’s correlation coefficient rp for classical morphometric parameters and novel 

combination of SMI with isotropic (SMIα) and anisotropic (SMIαz) Scaling Index Method. 

Analysing rp(αth) curves for the novel parameters SMIα and SMIαz (Fig. 6) one can see, that 
the diagnostic performance of both parameters depends only slightly on the amount of thin 
horizontal rod-like trabecular elements (up to the threshold αth ≈ 1.8 for SMIα and up to the 

threshold αzth ≈ 2 for SMIαz value of the rp stays constantly high), but the underestimation of 
amount of plates (i.e. taken αth > 2) in the structure drastically decrease correlation 
coefficient. An additional important observation is the increase of the correlation coefficient 

within the range 2 < αzth < 2.2 for anisotropic SMIαz (right plot in Fig. 6). This region 
corresponds to the thin horizontal plates (last row in Fig. 4), which are important for 
stability of the bone, but do not work as load bearing elements. This means that the best 
diagnostic performance of the novel morphological parameter SMIαz is obtained when we 
separate structure not only according to the morphological form of trabecular elements 
(plates or rods), but rather according to their mechanical functionality within the structure 
(bearing of load or support of stability). 

3.2 Minkowski Functionals (MF) 
Minkowski Functionals (MF) provide a global morphological and topological description of 
structural properties of multidimensional data (Mecke et al., 1994). According to integral 
geometry n-dimensional body can be completely characterized by n+1 functionals, which  
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Fig. 6. Pearson’s correlation coefficient rp as a function of threshold value αth for novel 
combination of SMI with isotropic (left) and anisotropic (right) scaling indices. 

evaluate both size and shape of the object. In a three-dimensional space they represent the 
volume (MF1), surface area (MF2), integral mean curvature (MF3) and integral Gaussian 
curvature (MF4). Minkowski Functionals are derived from the theory of convex sets and 
expressed as volume integral for MF1 and surface integrals over boundary S with principal 
radii of curvature R1 and R2 for other functionals. 

               
( )

1( )

th

th

I

MF dV
ν

ν =  ,             
( )

3
1 2

1 1
( ) 1 2 ( )

th
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ν = +   

 
( )

2( )

th
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I

MF dS
∂ ν

ν =  ,            
( )

4
1 2

1
( )

th

th

I

MF dS
R R

∂ ν

ν =   (11) 

The first two functionals MF1 and MF2 describe morphology of the structure and coincide 
with morphometrical parameters bone volume BV/TV and surface BS/TV fractions. The 

fourth integral is also known as Euler characteristic χ, which characterises topological 

connectivity of the structure and can be expressed in terms of Betti numbers β0 (number of 

connected components), β1 (number of tunnels), β2 (number of cavities): 

 0 1 2χ = β − β + β . (12) 

In the case of binary images we have exactly four global characteristics, which can be used 
as texture measures for diagnostic of bone strength. For greyscale CT or MR images the 

bone mineral network must be segmented according to the intensity threshold value νth. 

Thus, Minkowski Functionals become a function of an excursion set I(νth), which is 

determined by all voxels with ν > νth or ν < νth. The calculation of the MF for the binary or 

images thresholded at a certain threshold νth can be reduced to the calculation of open 
vertices (nv), edges (ne), faces (nf) and number of the voxels (np), that belong to the excursion 

set I(νth) (Michielsen & Raedt, 2001). 

       1( )th pMF nν = ,                          3( ) 3 2th p f eMF n n nν = − +   

             2( ) 6 2th p fMF n nν = − + ,           4( )th p f e vMF n n n nν = − + − +  (13) 
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In the common approach an excursion set I(νth) is defined as the union of image voxels, 

which have a grey level g below or above a threshold νth = gth. Different values of threshold 
gth describe different tissues of the bone. Scaling Index Method offers a new possibility for 

binarizing images before calculation of MF (Monetti et al., 2009). Taking a scaling index αth 

as a threshold variable νth for excursion set I, we compose excursion set I(αth) with the 
structure elements which are selected according to their local topological properties (i.e. rod-
like and plate-like substructures). Thus we combine both local and global characteristics and 

for each Minkowski Functional MF1,2,3,4 obtain a new texture measures MFα1,2,3,4 and 

MFαz1,2,3,4. In Table 3 we demonstrate diagnostic performance of MF and their combination 
with isotropic and anisotropic SIM. We compare standard linear multiregression analysis 
and novel nonlinear combination of global (MF) and local (SIM) topological approaches. 
One can observe significant improvement of correlation coefficient for the third and the 
forth Minkowski Functionals (up to the value rp = 0.74), when they are calculated in 

combination with anisotropic SIM (MFαz3 and MFαz4). In general nonlinear combination 
global and local topological characteristics improves correlation with experimental MCS 
more significantly, than standard linear multiregression analysis. The best correlation with 

experimental MCS is obtained by choosing substructure with αz > 2.8, what corresponds to 
thick vertical plate-like trabecular elements (last row in Fig. 5). 
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0.74 

Table 3. Correlation coefficient for conventional Minkowski Functionals (first row), linear 
combination of MF with isotropic and anisotropic SIM (second row) and novel nonlinear 

combination of MF with isotropic (MFα) and anisotropic (MFαz) SIM (third row). 

3.3 Finite Element Method (FEM) 
Finite Element Method is the most powerful method in the description of biomechanical 
behaviour of structures under the external load (Rietbergen et al., 1995). The obvious 
advantage of the method is that by converting voxels of µCT images into finite element 
mesh it takes into account exact microarchitecture of the object and thus allows to study 
both apparent and tissue level biomechanical stresses in structures. In present section we 
show that the combination of tissue level biomechanical characteristics obtained by FEM 
with local topological measures calculated by SIM provides complementary understanding 
of load redistribution between topologically different structure elements. We apply the 
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linear elastic approach described by generalized Hook’s law with the fundamental 
assumption that deformations are under the yield level. Bone mineral tissue is described as 
isotropic and elastic material with Young’s modulus Y = 10 GPa and Poisson’s ratio ν = 0.3. 
According to the biomechanical experiments we apply Dirichlet boundary conditions to 
simulate a high friction compressive test in the uniaxial direction (we call it z direction) with 
constant strain εz = 1% prescribed on the top surface. As a main mechanical characteristic on 
tissue level we use the effective strain (Pistoia et al., 2002) 

 2eff U Yε = , (14) 

which is calculated from the strain energy density 

 ( )1 2 xx xx yy yy zz zz xy xy xz xz yz yzU = σ ε + σ ε + σ ε + σ ε + σ ε + σ ε  (15) 

normalised to Young’s modulus Y of the bone mineral material. The energy density U (15) 
describes the stored energy associated with elastic deformation caused by the external 
loading. Also linear elastic model is valid only below the yield limit and does not describe 
development of fractures, the numerically estimated failure load 

 cv r cvL F k= ⋅  (16) 

is often used as a predictive parameter in correlation analysis with respect to the 
experimentally measured MCS (Pistoia et al., 2002). We calculate failure load Lcv from the 
apparent total reaction force Fr at the top face At 

 t t
r zzF dA= σ  (17) 

by multiplying with a linear scaling factor kcv, which depends on the distribution of the 

effective strain εeff in the trabecular bone network 

 
1

1 ( )voxelsN
cv eff cvi

k H ε ε
=

= − . (18) 

Here Nvoxels is number of voxels composing the observed structure and H(x) is Heaviside 
step function (10). Absolute value of the failure load Lcv depends on the critical value of the 

effective strain εcv. The best Pearson’s correlation coefficient rp = 0.76 with respect to the 

MCS is obtained for critical value εcv = 0.002, which takes into account both large and small 
deformations in the trabecular bone under the vertical load. 
We generate a finite element model by converting bone voxels into equally sized and 
oriented hexahedral elements and calculate effective strain (14) for each voxel of the 
trabecular structure. Thus SIM and FEM propose alternative representation of the structure 

on tissue level. Each voxel can be characterised by two new properties: effective strain εeff 

obtained by FEM and scaling index α (or αz) obtained by SIM. Combination of SIM and FEM 
allows to analyse the redistribution of the deformation energy stored during compressive 
loading between the trabecular elements with different topological dimensionality. We 

calculate the average effective strain <εeff> for voxels having the same values of scaling 

indices (Fig. 7). Both in strong and weak bones maximum average effective strain <εeff> is 

accumulated in substructures with α > 2 (isotropic SIM) or αz ≈ 2.5 (anisotropic SIM), which 
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corresponds to plate-like trabecular elements, but according to the P(α) spectrum (Fig. 3) the 
amount of plates in weak bones is smaller than in strong ones. This means that plates along 
the direction of natural loading are the main load bearing substructure of the trabecular 
network and the relative amount of vertical plates plays the most important role for bone 

strength on a global level, while thin horizontal rod and plate structure elements play 
stabilizing role under different shear loading. 
 

  
Fig. 7. Effective strain εeff calculated with FEM averaged over the voxels with the same value 
of scaling indices calculated with SIM (left: isotropic, right: anisotropic). Red lines: weak 
bone, green lines: strong bone. 
 

 MF2 MF3 MF4 SMI 

Conventional methods 0.60 0.06 0.38 -0.43

C
om

bi
n

at
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n
 

w
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IM
 

isotropic (α) 0.70 0.69 0.47 -0.73

anisotropic (αz) 0.73 0.73 0.74 -0.74

Table 4. Increase of the Pearson’s correlation coefficient rp due to the nonlinear combination 

with the isotropic (α) and anisotropic (αz) Scaling Index Method. 

 

 FEM MF1 MFαz1 MFαz2 MFαz3 MFαz4 SMIαz 

MCS 0.76 0.73 0.72 0.73 0.73 0.74 -0.74 

FEM 1 0.94 0.95 0.94 0.94 0.94 -0.94 

Table 5. Pearson’s correlation coefficient for the seven strongest numerical methods with 
respect to the experimental MCS and numerical failure load estimated by FEM. 

3.4 Prediction of bone strength with different numerical methods 
We assess the diagnostic performance of the numerical methods described in the previous 
sections by means of correlation analysis with respect to the maximum compressive strength 
(MCS) experimentally measured in uniaxial compressive test. High values of the Pearson’s 
correlation coefficient rp are demonstrated only by two texture measures: failure load Lcv 
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estimated by FEM (rp = 0.76) and first Minkowski Functional MF1, which represents mineral 
bone volume fraction BV/TV (rp = 0.73). Second Minkowski Functional MF2, which coincides 
with bone surface fraction BS/TV and texture measures based on the isotropic and 
anisotropic Scaling Index Method (Räth et al., 2008) demonstrate only moderate correlation 
with MCS (0.6, 0.55 and 0.52 respectively). Morphological parameters, provided by standard 

software delivered by the µCT scanner manufacture, Tb.Th., Tb.Sp., Tb.N. and SMI, as well as 
MF3 and MF4 correlate very weak (rp < 0.5) with experiment, but in combination with local 
topological information provided by isotropic and anisotropic SIM, correlation coefficient 
significantly increases (Table 4). Thus, we have a group of seven methods (Table 5), which 
have good diagnostic performance in differentiating between strong and weak trabecular 
bone structure. They have high Pearson’s correlation coefficient with respect to the 
experimental MCS (rp > 0.7) and correlate very well with the best numerical texture 
measure, which is failure load estimated by FEM (r > 0.94). General feature of these methods 
is that all of them provide texture measures based both on structure quality and size. 

4. Conclusions 

Our study clearly shows that in order to give comprehensive description of materials and 
tissues with porous and irregular structures it is not sufficient to use only global methods. 
Local topological measures provide complementary information to the global characteristics 
and their proper evaluation is of a great importance for many scientific purposes. To the 
best of our knowledge, Scaling Index Method is a unique technique for assessing local 
topological properties of arbitrary structures. It is well suited for quantifying topological 
aspects on a local level, especially to discriminate substructures with different 
dimensionality or separate the inner body and the surface of the object. It can be applied 
both to greyscale and binary images. By varying the scaling parameter of the method one 
can characterise the same structure on different levels of dimensionality. SIM provides 
complementary information to biomechanical (FEM), morphological (SMI) and global 
topological (MF) methods. Nonlinear combination of SIM with existing numerical 
techniques improves both qualitative understanding and diagnostic performance of the 

methods. Calculation of SMI and MF based on the scaling index decomposition of the µCT 
images of human trabecular bone, which represent a typical example of the biological tissue 
with irregular structure, significantly improves the correlation with the experimentally 
measured MCS (Table 4). Comparison on the tissue level of the effective strain calculated by 
the FEM and scaling indices provided by SIM, shows that the plate-like elements in 
direction of natural loading are the main load bearing substructure of trabecular network 
both in strong and weak bones, but the amount of plates in weak bones is reduced in 
comparison with strong ones, which leads to the global decrease of the bone strength and 
stability on the global level. 
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