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1. Introduction

As the high field strength neodymium-iron-boron (NdFeB) magnets become commercially
available and affordable, the sinusoidal back electromagnetic force (emf) permanent magnet
synchronous motors (PMSMs) are receiving increasing attention due to their high speed,
high power density and high efficiency. These characteristics are very favourable for high
performance applications, e.g., robotics, aerospace, and electric ship propulsion systems
Rahman et al. (1996), Ooshima et al. (2004). PMSMs as traction motors are common in
electric or hybrid road vehicles, but not yet widely used for rail vehicles. Although the
traction PMSM has many advantages, just a few prototypes of vehicles were built and
tested. The following two new prototypes of rail vehicles with traction PMSMs, which
were presented at the InnoTrans fair in Berlin 2008, were the Alstom AGV high speed train
and the Skoda Transportation low floor tram 15T ForCity. The greatest advantage of the
PMSM is its low volume in contrast to other types of motors, which makes a direct drive of
wheels possible. However, the traction drive with PMSM must meet special requirements
typical for overhead-line-fed vehicles. The drives and especially their control should be
robust to a wide range of overhead line voltage tolerance (typically from −30% to +20%
), voltage surges and input filter oscillations. These features may cause problems during
flux weakening operation, which must be used for several reasons. The typical reason is
to obtain constant power operation in a wide speed range and to reach nominal power
during low speed (commonly 1/3 of the maximum speed). In the case of common traction
motors such as asynchronous or DC motors, it is possible to reach the constant power
region using flux weakening. This is also possible for traction PMSM, however, a problem
with high back emf arises. In the report by Dolecek (2009), the usage of a flux weakening
control strategy for PMSM as a prediction control structure is shown to improve the dynamic
performance of traditional feedback control strategies. This is obtained in terms, for instance,
of overshoot and rising time. It is known that, an accurate knowledge of the model and its
parameters is necessary for realizing an effective prediction control. To achieve desired system
performance, advanced control systems are usually required to provide fast and accurate
response, quick disturbance recovery and parameter variations insensitivity Rahman et al.
(2003). Acquiring accurate models for systems under investigation is usually the fundamental
part in advanced control system designs. For instance, proper implementation of flux
weakening control requires the knowledge of synchronous machine parameters. The most
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common parameters required for the implementation of such advanced control algorithms
are the classical simplified model parameters: Ld - the direct axis self-inductance, Lq - the
quadrature axis self-inductance, and Φ - the permanent magnet flux linkage. Prior knowledge
of the previously mentioned parameters and the number of pole pairs p allows for the
implementation of torque control through the use of current vector control. Techniques
have been proposed for the parameters’ identification of PMSM from different perspectives,
such as offline Kilthau et al. (2002), Weisgerber et al. (1997) and online identification of PMSM
electrical parameters Mobarakeh et al. (2001), Khaburi et al. (2003). These technique are based
on the decoupled control of linear systems when the motor’s mechanical dynamics are
ignored. Using a decoupling control strategy, internal dynamics may be almost obscured, but
it is useful to remember that there are no limitations in the controllability and observability
of the system. In the report by Mercorelli et al. (2003) a decoupling technique is used to
control a permanent magnets machine more efficiently in a sensorless way using an observer.
The work described by Liu et al. (2008) investigates the possibility of using a numerical
approach Particle Swarm Optimization (PSO) as a promising alternative. PSO approach uses a
system with a known model structure but unknown parameters. The parameter identification
problem can be treated as an optimisation problem, involving comparison of the system
output with the model output. The discrepancy between the system and model outputs is
minimised by optimisation based on a fitness function, which is defined as a measure of how
well the model output fits the measured system output. This approach utilises numerical
techniques for the optimisation, and it can incur in difficult non-convex optimisation problems
because of the nonlinearity of the motor model. Despite limitation on the frequency range of
identification, this paper proposes a dynamic observer based on an optimised decoupling
technique to estimate Ldq and Rs parameters. The proposed optimisation technique, similar
to that presented by Mercorelli (2009) applies a procedure based on minimum variance error
to minimise the effects of non-exact cancelation due to the decoupling controller. In the
meantime, the paper proposes a particular observer that identifies the permanent magnet
flux using the estimated Ldq and Rs parameters. The whole structure of the observer is totally
new. The limit of this observer for the estimation of the permanent magnet flux is given
by the range of work frequency. In fact, examining the theoretical structure of the observer,
these limits appear evident and are validated with simulated data, as the estimation becomes
inaccurate for low and high velocity of the motor. Because of the coupled nonlinear system
structure, a general expression of limits is not easy to find. The paper is organised in the
following way: a sketch of the model of the synchronous motor and its behaviour are given in
Section 2, Section 3 is devoted to deriving, proposing and discussing the dynamic estimator,
and Section 4 shows the simulation results using real data for a three-phase PMSM.

2. Model and behavior of a synchronous motor

To aid advanced controller design for PMSM, it is very important to obtain an appropriate
model of the motor. A good model should not only be an accurate representation of system
dynamics but should also facilitate the application of existing control techniques. Among a
variety of models presented in the literature since the introduction of PMSM, the two-axis
dq-model obtained using Park’s transformation is the most widely used in variable speed
PMSM drive control applications Rahman et al. (2003) and Khaburi et al. (2003). The Park’s
dq-transformation is a coordinate transformation that converts the three-phase stationary
variables into variables in a rotating coordinate system. In dq-transformation, the rotating
coordinate is defined relative to a stationary reference angle as illustrated in Fig. 1. The
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dq-model is considered in this work.

Fig. 1. Park’s transformation for the motor
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The dynamic model of the synchronous motor in d-q-coordinates can be represented as
follows:

[
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]

=
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, (3)

and

Mm =
3

2
p{Φiq(t) + (Ld − Lq)id(t)iq(t)}. (4)

In (3) and (4), id(t), iq(t), ud(t) and uq(t) are the dq-components of the stator currents
and voltages in synchronously rotating rotor reference frame, ωel(t) is the rotor electrical
angular speed, the parameters Rs, Ld, Lq, Φ and p are the stator resistance, d-axis and q-axis
inductance, the amplitude of the permanent magnet flux linkage, and p the number of couples
of permanent magnets, respectively. At the end, Mm indicates the motor torque. Considering
an isotropic motor with Ld ≃ Lq = Ldq, it follows:

[
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dt

]

=
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and

Mm =
3

2
pΦiq(t), (6)
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with the following movement equation:

Mm − Mw = J
dωmec(t)

dt
, (7)

where pωmech(t) = ωel(t) and Mw is an unknown mechanical load.

3. Structure of the decoupling dynamic estimator

The present estimator uses the measurements of input voltages, currents and angular velocity
of the motor to estimate the "d-q" winding inductance, the rotor resistance and amplitude
of the linkage flux. The structure of the estimator is described in Fig. 2. This diagram shows
how the estimator works. In particular, after having decoupled the system described in (5), the
stator resistance Rs and the inductance Ldq are estimated through a minimum error variance

approach. The estimated values R̂s and Ldq are used for to estimate of the amplitude of the

linkage flux (Φ̂).

Fig. 2. Conceptual structure of the whole estimator

3.1 Decoupling structure and minimum error variance algorithm

To achieve a decoupled structure of the system described in Eq. (5), a matrix F is to be
calculated such that,

(A + BF)V ⊆ V , (8)

where u(t) = Fx(t) is a state feedback with u(t) = [ud(t), uq(t)]
T and x(t) = [id(t), iq(t)]

T,

A =

⎡
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and V = im([0, 1]T) of Eq. (8), according to Basile et al. (1992), is a controlled invariant
subspace. More explicitly it follows:

F =

[

F11 F12

F21 F22

]

, and

[

ud(t)
uq(t)

]

= F

[

id(t)
iq(t)

]

,
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then the decoupling of the dynamics is obtained via the following relationship:

im

([

− Rs
Ldq

ωel(t)

− Rs
Ldq

ωel(t)

])

+ im

([

1
Ldq

0

0 1
Ldq

]

[

F11 F12

F21 F22

] [

0
1

]

)

⊆ im

[

0
1

]

, (10)

where the parameters F11, F12, F21, and F22 are to be calculated in order to guarantee condition
(10) and a suitable dynamics for sake of estimation. Condition (10) is guaranteed if

F12 = −ωel(t)Ldq. (11)

did(t)

dt
= −

Rs

Ldq
id(t) +

ud(t)

Ldq
, (12)

Because of the possible inexact decoupling, it follows that:

dîd(t)

dt
= −

Rs

Ldq
îd(t) +

ud(t)

Ldq
+ n(∆(ωel(t)(Ldq − L̂dq))), (13)

where n(∆(Ldq − L̂dq)) is the disturbance due to the inexact cancelation.

Proposition 1. Considering the disturbance n(∆(Ldq − L̂dq)) of Eq. (12) as a white noise, then

the current minimum variance error σ
(

eid
(t)

)

= σ
(

id(t) − îd(t)
)

is obtained by minimising the
estimation error of the parameters Ldq and Rs.

Proof 1. If Eqs. (12) and (13) are discretised using Implicit Euler with a sampling frequency equal to
ts, then it follows that:

îd(k) =
îd(k − 1)

(1 + ts
Rs
Ldq

)
+

ts

Ldq(1 + ts
Rs
Ldq

)
ud(k), (14)

îd(k) =
îd(k − 1)

(1 + ts
Rs
Ldq

)
+

ts

Ldq(1 + ts
Rs
Ldq

)
ud(k) + n(k). (15)

It is possible to assume an ARMAX model for the system represented by (15) and thus

id(k) = îd(k) + a1 îd(k − 1) + a2 îd(k − 2) + b1ud(k − 1)+

b2ud(k − 2) + n(k) + c1un(k − 1) + c2un(k − 2). (16)

Letting eid
(k) = id(k)− îd(k) as mentioned above, it follows that:

eid
(k) = a1 îd(k − 1) + a2 îd(k − 2) + b1ud(k − 1) + b2ud(k − 2)+

n(k) + c1n(k − 1) + c2n(k − 2), (17)

where the coefficients a, b, c1, c2, are to be estimated, and n(k) is assumed as white noises. The next
sample is:

eid
(k+ 1) = a1 îd(k)+ a2 îd(k− 1)+ b1ud(k)+ b2ud(k− 1)+ n(k+ 1)+ c1n(k)+ c2n(k− 1).

(18)
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The prediction at time "k" is:

êid
(k + 1/k) = a1 îd(k) + a2 îd(k − 1) + b1ud(k) + b2ud(k − 1) + c1n(k) + c2n(k − 1). (19)

Considering that:

J = E{e2
id
(k + 1/k)} = E{[êid

(k + 1/k) + n(k + 1)]2},

and assuming that the noise is not correlated to the signal eid
(k), it follows:

E{[êid
(k + 1/k) + n(k + 1)]2} = E{[êid

(k + 1/k)]2}+

E{[n(k + 1)]2} = E{[êid
(k + 1/k)]2}+ σ

2
n , (20)

where σn is defined as the variance of the white noises. The goal is to find îd(k) such that:

êid
(k + 1/k) = 0. (21)

It is possible to write (17) as

n(k) = eid
(k)− a1 îd(k − 1)− a2 îd(k − 2)− b1ud(k − 1)−

b2ud(k − 2)− c1n(k − 1)− c2n(k − 2). (22)

Considering the effect of the noise on the system as follows:

c1n(k − 1) + c2n(k − 2) ≈ c1n(k − 1), (23)

and using the Z-transform, then:

N(z) = Îd(z) − a1z−1 Îd(z) − a2z−2 Îu(z) − b1z−1Ud(z) − b2z−2Ud(z) − c1z−1N(z) (24)

and

N(z) =
(1 − a1z−1 − a2z−2)

1 + c1z−1
Îd(z)−

(b1z−1 + b2z−2)

1 + c1z−1
Ud(z). (25)

Inserting Eq. (25) into Eq. (19) after its Z-transform, and considering the approximation stated in (23)
and Eq. (21), the following expression is obtained:

Îd(z) = −
(a1 + c1 + b1z−1)

b1(1 + c1z−1) + b2(1 + c1z−1)
Ud(z). (26)

Using the Z-transform for Eq. (14) it follows:

Id(z) =
ts

Ldq + tsRs − Ldqz−1
Ud(z). (27)

Comparing (26) with (27), we are left with a straightforward diophantine equation to solve. The
diophantine equation gives the relationship between the parameters Θ = [a1, b1, b2, c1] as follows:

− b1 = 0 (28)

a1 + c1 = ts (29)

b1 + b2 = Ldq + tsRs (30)

b1c1 + b2c1 = −Ldq. (31)

Guessed initial values for parameters Ldq, Rs are given. This yields initial values for the parameters
Θ = [a1, b1, b2, c1]. New values for the vector Θ are calculated using the recursive least squares
method.
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Remark 1. The approximation in equation (23) is equivalent to considering ‖c2‖ << ‖c1‖. In
other words, this means that a noise model of the first order is assumed. An indirect validation of this
assumption is given by the results. In fact, the final measurements show in general good results with
the proposed method.

Remark 2. At the end, the recursive least-squares method gives an estimation of the parameters
Ldq and Rs. These calculated parameters Ldq and Rs minimize the current minimum variance error

σ(eid
(t)) = σ(id(t)− îd(t)).

3.2 The dynamic estimator of Φ

If the electrical part of the system "q" and "d" axes is considered, then, assuming that ωel(t) �=
0, iq(t) �= 0, and id(t) �= 0, the following equation can be considered:

Φ(t) = −
Ldq

diq(t)
dt + Rsid(t) + Ldqωel(t)iq(t) + uq(t)

ωel(t)
. (32)

Consider the following dynamic system:

dΦ̂(t)

dt
= −KΦ̂(t)−K

( L̂dq
diq(t)

dt + R̂sid(t)

ωel(t)
+

L̂dqωel(t)iq(t) + uq(t)

ωel(t)

)

, (33)

where K is a function to be calculated. Eq. (33) represents the estimators of Φ. If the error
functions are defined as the differences between the true and the observed values, then:

eΦ(t) = Φ(t)− Φ̂(t), (34)

and
deΦ(t)

dt
=

dΦ(t)

dt
−

dΦ̂(t)

dt
. (35)

If the following assumption is given:

‖
dΦ(t)

dt
‖ << ‖

dΦ̂(t)

dt
‖, (36)

then in Eq. (35), the term
dΦ(t)

dt is negligible. Using equation (33), Eq. (35) becomes

deΦ(t)

dt
= KΦ̂(t) +K3

( L̂dq
diq(t)

dt + R̂sid(t)

ωel(t)
+

L̂dqωel(t)iq(t) + uq(t)

ωel(t)

)

. (37)

Because of Eq. (32), (37) can be written as follows:

deΦ(t)

dt
= KΦ̂(t)−KΦ(t), (38)

and considering (34), then
deΦ(t)

dt
+KΦ(t) = 0. (39)

K can be chosen to make Eq. (39) exponentially stable. To guarantee exponential stability, K
must be

K > 0.
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To guarantee ‖ dΦ(t)
dt ‖ << ‖ dΦ̂(t)

dt ‖, then K >> 0. The observer defined in (33) suffers from the
presence of the derivative of the measured current. In fact, if measurement noise is present
in the measured current, then undesirable spikes are generated by the differentiation. The
proposed algorithm must cancel the contribution from the measured current derivative. This
is possible by correcting the observed velocity with a function of the measured current, using
a supplementary variable defined as

η(t) = Φ̂(t) +N (iq(t)), (40)

where N (iq(t)) is the function to be designed.
Consider

dη(t)

dt
=

dΦ(t)

dt
+

dN (iq(t))

dt
(41)

and let
dN (iq(t))

dt
=

dN (iq)

diq(t)

diq(t)

dt
=

KL̂dq

ωel(t)

diq(t)

dt
. (42)

The purpose of (42) is to cancel the differential contribution from (33). In fact, (40) and (41)
yield, respectively,

Φ̂(t) = η(t)−N (iq(t)) and (43)

dΦ̂(t)

dt
=

dη(t)

dt
−

dN (iq(t))

dt
. (44)

Substituting (42) in (44) results in

dΦ̂(t)

dt
=

dη(t)

dt
−

KL̂dq

ωel(t)

diq(t)

dt
. (45)

Inserting Eq. (45) into Eq. (33), the following expression is obtained1:

dη(t)

dt
−

KL̂dq

ωel(t)

diq(t)

dt
= −KΦ̂(t)−K

( L̂dq
diq(t)

dt + R̂sid(t)

ωel(t)
+

L̂dqωel(t)iq(t) + uq(t)

ωel(t)

)

, (46)

then

dη(t)

dt
= −KΦ̂(t)−K

(

R̂sid(t) + L̂dqωel(t)iq(t) + uq(t)
)

ωel(t)
. (47)

Letting N (iq(t)) = kappiq(t), where a parameter has been indicated with kapp, then from (42)

⇒ K =
kappωel(t)

L̂dq
, and Eq. (43) becomes:

Φ̂(t) = η(t)− kappiq(t). (48)

Finally, substituting (48) into (47) results in the following equation:

dη(t)

dt
= −

kappωel(t)

L̂dq

(

η(t)− kappiq(t)
)

+
kapp

L̂dq

(

R̂sid(t) + L̂dqωel(t)iq(t) + uq(t)
)

,

Φ̂(t) = η(t)− kappiq(t). (49)

1 Expression (33) works under the assumption (36): fast observer dynamics.
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Using the implicit Euler method, the following velocity observer structure is obtained:

η(k) =
η(k − 1)

1 + ts
kappωel(k)

L̂dq

+
ts

k2
appωel(k)iq(k)

L̂dq
+ kappωel(k)iq(k) +

ts R̂skappid(k)

L̂dq

1 + ts
kappωel(k)

L̂dq

iq(k)+

ts
kapp

L̂dq

1 + ts
kappωel(k)

L̂dq

uq(k),

Φ̂(k) = η(k)− kappiq(k), (50)

where ts is the sampling period.

Remark 3. Assumption (36) states that the dynamics of the approximating observer should be faster
than the dynamics of the physical system. This assumption is typical for the design of observers.

Remark 4. The estimator of Eq. (50) presents the following limitations: for low velocity of the motor
(ωmec.(t) << ωmecn (t)), where ωmecn(t) represents the nominal velocity of the motor), the estimation
of Φ becomes inaccurate. Because ωel(t) divides the state variable η, the observer described by (50)
becomes hyperdynamic. Critical phases of the estimation are the starting and ending of the movement.
Another critical phase is represented by high velocity regime. In fact, it has been proven through
simulations that if ωmec(t) >> ωmecn(t), then the observer described by (50) becomes hypodynamic.
According to the simulation results, within some range of frequency, this hypo-dynamicity can be
compensated by a suitable choice of kapp.

Remark 5. The Implicit Euler method guarantees the finite time convergence of the observer for any
choice of kapp. Nevertheless, any other method can demonstrate the validity of the presented results.
Implicit Euler method is a straightforward one.

4. Simulation results

Simulations have been performed using a special stand with a 58-kW traction PMSM. The
stand consists of a PMSM, a tram wheel and a continuous rail. The PMSM is a prototype
for low floor trams. The PMSM parameters are: nominal power 58 kW, nominal torque 852
Nm, nominal speed 650 rpm, nominal phase current 122 A and number of poles 44. The
model parameters are: R = 0.08723 Ohm, Ldq = Ld = Lq = 0.8 mH, Φ = 0.167 Wb.
Surface mounted NdBFe magnets are used in PMSM. The advantage of these magnets is their
inductance, which is as great as 1.2 T, but theirs disadvantage is corrosion. The PMSM was
designed to meet B curve requirements. The stand was loaded by an asynchronous motor.
The engine has a nominal power 55 kW, a nominal voltage 380 V and nominal speed 589 rpm.
Figures 3, 4, and 5 show the estimation of Rs stator resistance, Ldq inductance, and Φ magnet
flux, respectively. These simulation results are obtained using values of kapp equal to 2 and 20
respectively. From these results, in particular from flux estimation, an improvement, passing
from values of kapp = 2 kapp = 20, is visible. From these figures, the effect of the limit of the
procedure discussed in remark 4 is visible at the beginning of the estimation. Figure 6 shows
the angular velocity of the motor. In the present simulations, t = 0 corresponds to ωel(t) = 0.
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5. Conclusions and future work

This paper considers a dynamic estimator for fully automated parameters identification for
three-phase synchronous motors. The technique uses a decoupling procedure optimised by a
minimum variance error to estimate the inductance and resistance of the motor. Moreover, a
dynamic estimator is shown to identify the amplitude of the linkage flux using the estimated
inductance and resistance. It is generally applicable and could also be used for the estimation
of mechanical load and other types of electrical motors, as well as for dynamic systems
with similar nonlinear model structure. Through simulations of a synchronous motor used
in automotive applications, this paper verifies the effectiveness of the proposed method in
identification of PMSM model parameters and discusses the limits of the found theoretical
and the simulation results. Future work includes the estimation of a mechanical load and the
general test of the present algorithm using a real motor.
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