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1. Introduction 

Some robust control methods have been developed in the past in order to increase tracking 
performance in the presence of parametric uncertainties. In the presence of parametric 
uncertainty, unmodelled dynamics and other sources of uncertainties, robust control laws 
are used. Corless-Leitmann [1] approach is a popular approach used for designing robust 
controllers for robot manipulators. In early application of Corless-Leitmann [1] approach to 
robot manipulators [2, 3], it is difficult to compute uncertainty bound precisely. Because, 
uncertainty bound on parameters depends on the inertia parameters, the reference trajectory 
and manipulator state vector. Spong [4] proposed a new robust controller for robot 
manipulators using the Lyapunov theory that guaranties stability of uncertain systems. In 
this approach, Leithmann [5] or Corless-Leithman [1] approach is used for designing the 
robust controller. One of the advantage of Spong’s approach [4] is that uncertainty on 
parameter is needed to derive robust controller and uncertainty bound parameters depends 
only on the inertia parameters of the robots. Yaz [6] proposed a robust control law based on 
Spong’s study [4] and global exponential stability of uncertain system is guaranteed. 
However, disturbance and unmodelled dynamics are not considered in algorithm of [4, 6]. 
Danesh at al [7] develop Spong’s approach [4] in such a manner that control scheme is made 
robust not only to uncertain inertia parameters but also to robust unmodelled dynamics and 
disturbances. Koo and Kim [8] introduce adaptive scheme of uncertainty bound on 
parameters for robust control of robot manipulators. In [8], upper uncertainty bound is not 
known as would be in robust controller [4] and uncertainty bound is estimated with 
estimation law in order to control the uncertain system. A new robust control approach is 
proposed by Liu and Goldenerg [9] for robot manipulators based on a decomposition of 
model uncertainty. Parameterized uncertainty is distinguished from unparameterized 
uncertainty and a compensator is designed for parameterized and unparameterized 
uncertainty. A decomposition-based control design framework for mechanical systems with 
model uncertainties is proposed by Liu [10]. 
In order to increases tracking performance of uncertain systems, design of uncertainty 
bound estimation functions are considered. For this purpose, some uncertainty bound 
estimation functions are developed [11-15] based on a Lyapunov function, thus, stability of 
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uncertain system is guaranteed. In early derivation of uncertainty bound estimation laws 
[11-13], only a single derivation is possible because selection of variable function is difficult 
for other derivation and first order differential equation is used. Only exponential function 
and logarithmic functions are used for derivations because it is diffucut to define variable 
functions for other derivations.  
In previous studies, some robust control laws are introduced, however, a method for 
derivation of adaptive bound estimation law for robust controllers is not proposed. 
Recently, a new approach for derivation of bound estimation laws for robust control of 
robot manipulators is proposed [14, 15]. A general equation is developed based on the 
Lyapunov theory in order to derive adaptive bound estimation laws and stability of 
uncertain system is guaranteed. In the approach [15], some functions depending on robot 
kinematics and control parameters and proper integration techniques can be used for 
derivation of new bound estimation laws. Then, new bound estimation laws are derived and 
this derivations also show how the general rule can be used for derivation of different 
bound estimation laws. After that, four new robust controllers are designed based on each 
bound estimation law. Lyapunov theory based on Corless-Leitmann [1] approach is used 
and uniform boundedness error convergence is achieved. This study also shows that bound 
estimation laws for robust control input do not only include these derivations but also 
allows derivation of other bound estimation laws for robust controllers  provided that 
appropriate function and proper integration techniques are chosen. In this work, based on 
the study [15], some appropriate functions are developed and proper integration techniques 
are chosen. As results, new uncertainty bound estimation laws for robust control input are 
developed and new robust controllers are proposed. In derivations, some functions and 
integration techniques are used. 

2. A method for derivation of bound estimation laws         

In the absence of friction or other disturbances, the dynamic model of an n-link manipulator 
can be written as [16] 

     M(q)q C(q,q)q G(q) τ        (1) 

where q denotes generalised coordinates, Ǖ  is the n-dimensional vector of applied torques 

(or forces), M(q)  is a positive definite mass matrix, C(q,q)q   is the n-dimensional vector of 

centripetal and Coriolis terms and G(q) is the n-dimensional vector of gravitational terms. 

Equation (1) can also be expressed in the following form. 

        Y(q,q,q )Ǒ            (2) 

where π is a p-dimensional vector of robot inertia parameters and Y is an nxp matrix which 

is a function of joint position, velocity and acceleration. For any specific trajectory, the 

desired position, velocity and acceleration vectors are qd, dq and dq . The measured actual 

position and velocity errors  are dq q q  , and dq q q    . Using the above information, the 

corrected desired velocity and acceleration vectors for nonlinearities and decoupling effects 

are proposed as: 

 r dq q q     ; q qr d q        (3) 
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where  is a positive definite matrix. Then the following nominal control law is considered:                            

       
0 0 r 0 r 0

r r 0

Ǖ M (q)q  C (q,q)q G (q) Kǔ
     Y(q,q,q ,q )Ǒ Kǔ

   
 

  
  

  (4) 

where π0Rp represents the fixed parameters in dynamic model and Kǔ is the vector of PD 

action. The  corrected velocity error  is given as 

 ǔ q Λqrq q        (5) 

The control input Ǖ is defined in terms of the nominal control vector 0Ǖ  as 

 0 r r r r 0Ǖ Ǖ Y(q,q,q ,q )u(t) Y(q,q,q ,q )(Ǒ u(t))-Kǔ           (6) 

Where u(t) is the additional robust control input. It is assumed that there exists an unknown 
bound on parametric uncertainty such that 

 0Ǒ Ǒ ǒ       (7) 

Since ǒR+p is assumed to be unknown, ǒ should be estimated with the estimation law to 

control the system properly. ǒ(t)ˆ shows the estimate of  ǒ and  ǒ(t)  is   

 ǒ(t) ǒ ǒ(t)ˆ    (8) 

Substituting  (6) into (1) and after some algebra yields 

    r rM(q)ǔ C(q,q)ǔ Kǔ Y(q,q,q ,q )(Ǒ u(t))           (9) 

By taking into account above parameters and control algorithm, the Lyapunov function 
candidate is defined as [15, 16]. 

   T T T 21 1 1
V( ,q,ǒ(t)) ǔ M(q)ǔ q Bq ǒ(t) (t) ǒ(t)

2 2 2
            (10) 

where BRnxn is a positive diagonal matrix, (t )  is chosen as a pxp dimensional diagonal 

matrix changes in time. The time derivative of V along the trajectories is 

  T T T T T 21
V ǔ M(q) ǔ M(q)ǔ q Bq ǒ(t) (t) (t)ǒ(t) ǒ(t) (t) (t)

2
= + + + +              (11) 

Taking 2B K  , using the property - 2 0T [ M(q) C(q,q)]    nR   [17, 18], and taking 

time derivative of V of system (9) is 

 T T T T T T 2V -q Kq-q ΛKΛq ǔ Yu(t) ǔ YǑ ǒ(t) (t) (t)ǒ(t) ǒ(t) (t) ǒ(t)                    (12) 

Equation (12) is arranged as 

 
T T T T

T T 2

V -q Kq-q ΛKΛ q ǔ Yu(t) ǔ YǑ

      (ǒ ǒ(t)) (t) (t)(ǒ ǒ(t)) (ǒ ǒ(t)) (t) ǒ(t) 0ˆ ˆ ˆ ˆ

  

        

      


  (13) 
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ˆ(t ) (t )    (since  is a constant). Remembering that     and if u(t) is taken as the 

estimated term of uncertainty bound, that is u(t) ǒ(t)ˆ   then Equation (13 is written as 

   
T T T T

T T 2

V -q Kq-q ΛKΛq ǔ Y( ǒ(t)) ǔ Yǒ

    [ǒ ǒ(t)] (t) (t)[ǒ ǒ(t)] (ǒ ǒ(t)) (t)  ǒ(t)] 0

ˆ

ˆ ˆ ˆ ˆ

   

        

     


  (14) 

Equation (14) can be arranged as 

 
T T T

T T 2

V -q Kq-q ΛKΛq ǔ Y[ǒ-ǒ(t)]

        [ǒ-ǒ(t)] (t) (t)[ǒ-ǒ(t)] (ǒ -ǒ(t)) (t) (t)] 0

ˆ

ˆ ˆ ˆ ̂

 

     

     


  (15) 

Consequently, a suitable expression for the time derivative of V is obtained.                                                        

 T T T T 2V -q Kq-q ΛKΛq [(ǒ ǒ(t)] [Y ǔ (t) (t)(ǒ ǒ(t)) (t) ǒ(t)] 0ˆ ˆ ˆ                (16) 

where T T-q Kq-q ΛKΛq 0     . If the rest of Equation (16) is zero, system will be stable. 

Remaining terms in Equation (16) are 

 T T 2[(ǒ-ǒ(t)] [Y ǔ (t) (t)(ǒ ǒ(t)) (t) ǒ(t)] 0ˆ ˆ ˆ         (17) 

[(ǒ-ǒ(t)]ˆ is considered as a common multiplier then 

 T 2Y ǔ (t) (t)(ǒ ǒ(t)) (t) ǒ(t) 0ˆ ˆ        (18) 

Hence, we look for the conditions for which the equation 

T 2Y ǔ (t) (t)(ǒ ǒ(t)) (t) ǒ(t) 0ˆ ˆ        

is satisfied. Equation (18) can be written as 

 
T(t) (t)(ǒ ǒ(t)) (t) (t)ǒ(t) Y ǔˆ ˆ          (19) 

Then 

 -1 T(t) (t) (t)ǒ(t) (t) Y ǔ (t)ǒˆ ˆ         (20) 

Equation (20) is arranged as 

 -1 Td
(t) (t)) (t) Y ǔ (t)ǒ

dt
ˆ(      (21) 

Integration both side of Equation (21) yields 

 -1 T(t)ǒ(t) (t) Y ǔ (t)ǒdt Cˆ dt          (22)  

Then, a general equation for derivation derivation of bound estimation law is developed as 
[14, 15] 

 
-1 -1 T -1ǒ(t) (t) (t) Y ǔ (t) Cˆ [ dt]        (23) 
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The Equation (23) is a general equation for derivation of the bound estimation law and it is 

derived from Lyapunov function. As a result, ˆ (t )  all derived from Equation (23) 

guarantess stability of uncertain system. However, (t)-1 and ˆ (t )  are unknown and ˆ (t )  is 

derived depending on the function (t)-1. For derivation, selection of (t)-1 and integration 

techniques are very important. There is no certain rule for selection of (t)-1 and integration 

techniques for this systems. System state parameters and mathematical insight are used to 

search for appropriate function of (t)-1  as a solution of the Equation (23).  

2.1 First choice of (t)
-1

 

For the first derivation of ˆ (t ) , 1(t )  is chosen as a time varying function such that 

 

T T
i iY ǔdt) Y ǔdt)1        e ei i( (

i(t ) diag( sin( ))
        (24) 

Substituting Equation (24) into (23) yields 

 

T T
1 1 1 1

T T
2 2 2 2

T T
p p

Y ǔdt) Y ǔdt)
1 1 11

Y ǔdt) Y ǔdt)
22 1 2 2

Y ǔdt) Y ǔdt)

e e

e e

e ep p

( ( T

( ( T

( (p T
p p

sin( )(Y )ˆ (t)

ˆ (t) sin( )(Y )
(t) [ dt]

........ ................
ˆ (t )

sin( )(Y )

 

 

 

  
  


 



  
   
            
   
     

 

 1

1

1

1p

(t )
.. .....





   
   
       
   
    

  (25) 

After integration, the result is 

 

T
1 1

T
2 2

T
p

Y ǔdt)
1 1 11

Y ǔdt)
22 1 12 2

Y ǔdt)

e 1

1e

1
e p

(

(

( pp
p p

( / )cos( )ˆ (t )

ˆ (t ) ( / )cos( )
(t ) (t )C

.......... .....................
ˆ (t )

( / )cos( )







  
  


 

 

       
                  
     

         







  (26) 

Then  

 

T T T
1 1 1 1 1 1

T T T
2 2 2 2 2 2

T T
p p

Y ǔdt) Y ǔdt) Y ǔdt)2
1 11

Y ǔdt) Y ǔdt) Y ǔdt)2
2 2 2

Y ǔdt) Y ǔdt)2

/ )e e e

/ )e e e

/ )e e

  

  

 

 
  


 

   
       
 
     p p

( ( (

( ( (

( (p
p p

( sin( )cos( )ˆ (t)

ˆ (t ) ( sin( )cos( )
..... ................

ˆ (t )
( sin(

T
p

T T
1 1 1 1

T T
2 2 2 2

T T
p p

1

2

Y ǔdt)

Y ǔdt) Y ǔdt)
1

Y ǔdt) Y ǔdt)
2

Y ǔdt) Y ǔdt)
p

e

e e

e e
          

e e



 

 

 












 
  
  
      
  
     

 
  
 
  
 
 
 
  
 

p

p p

( p

( (

( (

( (

.....

)cos( )

sin( )

sin( )
C

.....

sin( )

  (27) 
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If 0ˆ ( )   is taken as initial condition, constant C is equivalent to Cos(1). So, the estimation 

law for the uncertainty bound is derived as.  

 

T T T
1 1 1 1 1 1

T T T
2 2 2 2 2 2

T T
p p

Y ǔdt) Y ǔdt) Y ǔdt)2
1 11

Y ǔdt) Y ǔdt) Y ǔdt)2
2 2 2

Y ǔdt) Y ǔdt)2

/ )e e e

/ )e e e

/ )e e

  

  

 

 
  


 

   
       
 
     p p

( ( (

( ( (

( (p
p p

( sin( )cos( )ˆ (t)

ˆ (t ) ( sin( )cos( )
..... ................

ˆ (t )
( sin(

T
p

T T
1 1 1 1

T T
2 2 2 2

T T
p p

1

2

Y ǔdt)

Y ǔdt) Y ǔdt)
1

Y ǔdt) Y ǔdt)
2

Y ǔdt) Y ǔdt)
p

e

e e

e e
              1

e e



 

 

 












 
  
  
      
  
     

 
  
 
  
 
 
 
  
 

p

p p

( p

( (

( (

( (

.....

)cos( )

sin( )

sin( )
Cos( )

.....

sin( )

  (28) 

2.2 Second choice of (t)
-1

 

For the second derivation of ˆ (t ) , 1(t )  is defined as 

 

T
i

T
i

( Y ǔdt)
1

2 Y ǔdt)

e
        

1 e

i

i
i (

(t ) diag( )






 


    (29) 

Substituting Equation (29) into (23) yields 

  

T
1 1

T
1 1

T
2 2

T
2 2

T
p p

T
p

( Y ǔdt)

1 12 Y ǔdt)

11 ( Y ǔdt)

22 1 2 22 Y ǔdt)

( Y ǔdt)

2 Y ǔdt)

e

1 e

e

1 e

e

1 e p

T

(

T

(

p

T
p p(

(Y )

ˆ (t)

ˆ (t ) (Y )
(t) [ dt]

..........
.........ˆ (t )

(Y )













 


  



 



 
 

   
  

       
  
     
 
  

 1

1

1

1p

(t ) C
.....



   
   
       
   
    

   (30) 

After integration, the result is 

 

T
1 1

T
2 2

T
p p

( Y ǔdt)
1 1 11

( Y ǔdt)
22 1 2 2

( Y ǔdt)

e 1

1e

1
e

pp
p p

( / )arctan( )ˆ (t)

ˆ (t ) ( / )arctan( )
(t) (t ) C

.......... ..............
ˆ (t )

( / )arctan( )







  
  
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  (31) 

After multiplication by 1(t ) , the result will be 
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  (32) 

If 0ˆ ( )   is taken as initial condition, constant C is equivalent to -arctan(1). So, the 

estimation law for the uncertainty bound is derived as.  
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 (33) 

2.3 Third choice of (t)
-1

 

For the third derivation of ˆ (t ) , 1(t )  is defined as 

 
1 2 T T

i i i i iSin ( Y ǔdt) Cos( Y ǔdt)(t ) diag( )        (34)  

Substitution of Equation (34) into Equation (23) yields 
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 (35) 

After integration, the result is 
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  (36) 

If 0ˆ ( )   is taken as initial condition, constant C is equivalent to zero. So, the estimation 

law for the uncertainty bound is derived as .  
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  (37) 

If we substitute ,  , and ˆ (t )  into Equation (16), the right terms of Equation (16) 
T T 2[(ǒ-ǒ(t)] [Y ǔ (t) (t)(ǒ ǒ(t)) (t) ǒ(t)] 0ˆ ˆ ˆ       will be always zero and the derivation of the 

Lyapunov function will become a negative semidefinite function such that 

 
T TV -q Kq-q ΛKΛq 0      

  (38) 

So, the system is stable for all ˆ (t)  derived from Equation (23). 

3. Design of robust contol laws  

Based on the uncertainty bound estimation laws derived in section 2, and in [15], it is 
possible to develop robust control inputs.  

3.1 Robust control law 1  

In order to define first robust control input, the following theorem is proposed. 

Theorem:  

Additional control input in control law (6) is  

   

  

  

T
Ti

i i iT
i

i
T

Ti
i i i

i

(Y )
ˆ (t ) if (Y )

(Y )
(u(t))

(Y )
ˆ (t ) if (Y )

   


   



 


 

 



  (39) 
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Where ε>0. If the control input (39) is substituted into the control law (6) for the control of 
the model manipulator, then, the control law (6) is continuous and the closed-loop system is 
uniformly ultimate bounded. 

Proof 

It is assumed that there exists an unknown bound on parametric uncertainty such that 

 0Ǒ Ǒ ǒ       and          0Ǒ Ǒ       (40) 

If Φ, ˆ (t) ,   and ˆ (t)  are substituded into (13),  the time derivative of the Lyapunov 

function (13) is written as [14, 15].  

 

T T T T T

T T T T T

T T T

V -q Kq-q ΛKΛq ǔ Y (t) ǔ Y ǔ Y

     -q Kq-q ΛKΛq ǔ Y (t) ǔ Y ǔ Y( (t)

     -x ǔ Y (t) ǔ Y (t)

u
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ˆQx u

 
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    

  

      
         (41) 

Where T T Tx [q ,q ]    and Q=diag[TK, K]. Based on the Leitman [1], we can show that 

0V   for ||x||>w where  

  2
minw = (t)/2 (Q)̂       (42) 

Where λmin(Q) denotes the minimum eigenvalue of Q. Second term in Equation (41), if 
||YTǔ||>ε then 
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   (43) 

From the Cauchy-Schawartz inequality and our assumption on . If ||YT ǔ||<ε then   

 

T
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T T
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T

Yǔ Yu(t) ǔ Y( (t)) Y (t) (t)
Y

Y Y
                                Y (t) - (t)

Y

T

T

ˆ ˆ( ) u

ˆ ˆ( )

  

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

 
   
 
 
 
 
 
 

   (44) 

This last term achieves a maximum value of ˆ(t) / 4  when ||YT ǔ||=ε/2. We have that 

 TV - (t) 4ˆx Qx /      (45) 

Note that ˆ (t ) is bounded. The rest of the proof can be seen in [4, 8]. 
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3.2 Robust control law 2 

Based on the bound estimation law ˆ (t ) derived from general Equation (23), additional 

control input u(t) are defined [15]. The additional control input in control law (6) is defined 

as [15] 
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3.3 Robust control law 3 

i denote the ith component of the vector TY  , i  choose as the ith component of . Then, 

considering the ˆ (t) derived from Equation (23), u(t) for each ˆ (t)  is defined as as follows: 
For Equation (28), u(t)i is 
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For Equation (33),  
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For Equation (36):  
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3.4 Robust control law 4 

From Equations (43) and (44), it is ease to define the following control law. 

 

  

  

T
T

T

T
T

Y
ˆ (t ) if (Y )

(Y )
u(t)

Y
ˆ (t ) if (Y )

   


   



 
 


 


   (50) 

www.intechopen.com



Modelling of Bound Estimation Laws and  
Robust Controllers for Robot Manipulators Using Functions and Integration Techniques 

 

173 

4. Simulation results 

For illustration, a two-link robot manipulator is given in  Figure 1 [4]. Parameterisation of 
this robot is given by  
 

 

Fig. 1. Two-link planar robot [4]. 

  1=m11c12+m2l12+I1,                     π2= m2lc22+I2 ,              π3=m2l1lc2 ,   

  π4=m1lc1,                                         π5=m2l1,                         π6=m2lc2,  (51) 

With this parameterisation, the component yij  of Y(q,q,q )   in Equation 2 are given as 

  11 1y q  ;     12 1 2y q q   ;     2
13 2 1 2 2 2 1 2y cos(q )(2q q sin(q )(q 2q q ))        ;   

 y14= gccos(q1);      y15= gccos(q1);          y16= gccos(q1+q2) ;    

  y21=0;           22 1 2y q q    ;            2
23 2 1 2 1y cos(q )q sin(q )(q )    ;   

   y24=0 ;                  y25=0 ;                        y26= gccos(q1+q2).  (52) 

r rY(q,q,q ,q )   in Equation (4) have the components  

 11 r1y q   ; 12 r1 2y q qr    ;      

 13 2 r1 2 2 1 2 1 r2 2 r2y cos(q )(2q q sin(q )(q q q q q q )r r)            ;  

 y14=gccos(q1);      y15= gccos(q1) ;       y16= gccos(q1+q2)   

  y21=0;      22 r1 2y q qr   ;       ; 23 2 r1 2 1 r1y cos(q )q sin(q )(q q )      

   y24=0 ;               y25=0  ;             y26= gccos(q1+q2).       (53) 

x
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For illustrated purposes let us assume that the parameters of the unloaded manipulator are 
known and are given by Table 1. Using these values in Table 1, the ith component of π 
obtained by means of Equation (51) are given in Table 2. It is assumed that the parameters 
m2, lc2 and I2 are changed in the intervals 

 20 10m    ;   20 0 5cl .   ;   2

15
0

12
I   (54)  

Choosing the mean value for the range of possible i in Equation (54) yields the nominal 
parameter vector and the computed values for ith component of π0 is shown in Table 3 [4].  
 

m1 m2 l1 l2 lc1 lc2 I1 I2 

10 5 1 1 0.5 0.5 10/12 5/12 

Table 1. Parameters of the  unloaded arm [4]. 

 

π1 π2 π3 π4 π5 π6 

8.33 1.67 2.5 5 5 2.5 

Table 2. πi for the unloaded arm [4] 

 

01  02  03  04  05  06  

13.33 8.96 8.75 5 10 8.75 

Table 3. Nominal parameter vector π0 [4]. 

With this choice of nominal parameter vector 0 and uncertainty range given by (54), it is an 

easy matter to calculate the uncertainty bound  as follows: 

 
6

2 2
0

1

181 26i i
i

( ) .  


     (55) 

and thus 181 26 13 46. .   .  

For explanation, Spong’s algorithms are given. 
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  (56) 

As a measure of parameter uncertainty on which the additional control input is based, ǒ can 
be defined as  

 

1 2p
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i
i 1

ǒ
/




 
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   (57) 
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Having a single number ǒ to measure the parameter uncertainty may lead to overly 
conservative design, higher than necessary gains, etc. For this purpose, different “weights” 
or gains to the components of u may be assigned. This can be done as follows: Supposing 
that a measure of uncertainty for each parameter i  can be defined separately as: 

 i i           I=1,2,……….,p   (58) 

Let i denote the itch component of the vector TY  , i  choose as the itch component of , 
and consequently the itch component of the control input up is defined as [4]. 

    i i i i i
i

i i i i i

ǒ ǖ / ǖ         if   ǖ ε
u

(ǒ /ε )ǖ     if   ǖ ε
    

  (59)      

Since extended algorithm (56) is used, the uncertainty bounds for each parameter are shown 
separately in Table 4. The uncertainty bounds i in Table 4 are simply the difference 
between values given in Table 3 and Table 2, and the value of ǒ is the Euclidean norm of the 
vector with components ǒi  [4].  
 

       ǒ1          ǒ2         ǒ3       ǒ4        ǒ5          ǒ6 

        5     7.29       6. 25        0         5          6.25 

Table 4. Uncertainty bound [4]. 

For computer simulation, a fifth order polynomial function is used as a reference trajectory 
for both joints. In order to analyse performance of the proposed controllers, each control law 
with the same control parameters K and Ʌ is applied to the same model system using same 
trajectory. The control matrices Ʌ and K are chosen to be identical as Ʌ=diag(10 10) and 
K=diag(30 30) for all controllers. The obtained results are plotted in Figures 2-4. 
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Fig. 2. Response using the robust control law (39) with uncertainty bound estimation law 

(28) when =diag(10 10), K=diag(30 30), ǂ=1, ǃ=1. 
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Fig. 3. Response using the robust control law (39) with uncertainty bound estimation law 

(35) when =diag(10 10), K=diag(30 30), ǂ=0.8, ǃ=0.4. 
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Fig. 4. Response using the robust control law (39) with uncertainty bound estimation law 

(37) when =diag(10 10), K=diag(30 30), ǂ=0.5, ǃ=2. 
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As shown in Figures 2-4, tracking error is small and tracking performance changes 
according to uncertainty bound estimation laws.  

5. Conclusion 

In the past, some robust controllers are developed for robot manipulators. Corless-Leitmann 
[1] approach is a popular approach used for designing robust controllers for robot 
manipulators. Spong [4] proposed a new robust controller for robot manipulators and 
Leithmann [5] or Corless-Leithman [1] approach is used for designing the robust controller. 
In [4], uncertainty bound on parameter is needed to derive robust controller and uncertainty 
bound parameters depends only on the inertia parameters of the robots. However, constant 
uncertainty bound parameters cause pure tracking performances. In order to increase 
tracking performance of the uncetain system, uncertainty bound estimation laws are 
developed [11-13]. Uncertainty bound estimation laws are updated as a function of 
exponential [11, 12], logarithmic [13] and trigonometric [14] functions depending on robot 
kinematics parameters and tracking error. A first order differential equation function is 
developed for derivation of control parameters and only a single derivation of uncertainty 
bound estimation law is possible. A new method for derivation of a bound estimation law is 
not proposed in [11-13], because, definition of a new variable function for other derivation is 
diffucult.  
In the study [14], a general equation is developed from Lyapunov function and uncertainty 

bound  estimation laws depending on trigonometric functions are developed. However, a 

general method for derivation of uncertainty bound  estimation laws is not proposed. In a 

recent study [15], a general method for derivation of bound estimation laws based on the 

Lyapunov theory is proposed. In this method, functions and integration techniques are used 

for derivation of uncertainty bound estimation laws. Then, relations between the bound 

estimation laws and robust control inputs are established and four new robust control 

inputs are designed depending on each bound estimation law. It is possible to derive other 

different uncertainty bound estimation laws from general equation (23) if appropriate 

functions and integration techniques are defined. In this work, three different variable 

functions are defined and integration techniques are used in order to derive ˆ (t)  and 

relations between the uncertainty bouns and robust control laws are established. There is no 

distinct rule for definition of the (t) and integration techniques in order to derive ˆ (t ) . We 

use system state parameters and mathematical insight to search for appropriate function of 

(t)  as a derivtion of ˆ (t ) . This study also shows that robust controllers are not limited 

with these derivations. It will be also possible to derive another bound estimation laws from 

Equation (23) if appropriate function (t) and integration techniques are chosen.  
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