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Robust Adaptive Position/Force Control
of Mobile Manipulators

Tatsuo Narikiyo and Michihiro Kawanishi
Toyota Technological Institute

Japan

1. Introduction

A mobile manipulator is a class of mobile robot on which the multi-link manipulator is
mounted. This system is expected to play an important role both in the production process of
factory and in the medical care system of welfare business. To come up to this expectation, a
mobile manipulator is required to simultaneously track to both the desired position trajectory
and force trajectory. However, these tracking performances are subject to nonholonomic and
holonomic constraints. Furthermore, mobile manipulators possess complex and strongly
coupled dynamics of mobile bases and manipulators. Then, there are very few studies on
the problems of stabilization position/force control for mobile manipulators.
In (Chang & Chen, 2002; Oya et al., 2003; Su et al., 1999), position and force control methods
for mobile robot without manipulators have been addressed. Since in these studies
holonomic constraints representing the interaction between end-effector of the manipulator
and environment have not been considered, those approaches could not be applied to the
position/force control problems of the mobile manipulators. In (Dong, 2002; Li et al., 2007;
2008), adaptive and robust control approaches have been applied to the position/force
control problems of the mobile manipulators. In these approaches, since the chained form
transforms are required, synthesis methods of the control torques and adaptation laws of these
approaches are too complicated to apply. On the other hand, we have derived the stabilizing
controllers for a class of mobile manipulators(Narikiyo et al., 2008). In (Narikiyo et al., 2008)
we have proposed robust adaptive control scheme for the system with dynamic uncertainties
and external disturbances directly from the reduced order dynamics subject to both the
holonomic and nonholonomic constraints. Furthermore, in (Narikiyo et al., 2009) we have
developed this control scheme to control the system with both kinematic and dynamic
uncertainties. In these studies usefulness of these control schemes have been demonstrated
by numerical examples. However, proof of the closed loop stability has not been completed
under an inadequate assumption(Narikiyo et al., 2009).
In this study we complete the proof and relax the assumptions of (Narikiyo et al., 2009). Then
we implement these control schemes (Narikiyo et al., 2008; 2009) experimentally and apply
to the prototype shown in Fig.1 to demonstrate the effectiveness of these proposed control
schemes. It is also guaranteed theoretically that the tracking position and force errors to the
desired trajectories are asymptotically converged to zero by the proposed control schemes.
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2. Modeling of mobile manipulator

Fig. 1. Mobile manipulator

Fig.1 shows the prototype of mobile manipulator employed in experiments. Let qB ∈ Rn,
qM ∈ Rm and q = [qT

B qT
M]T ∈ Rn+m be the generalized coordinates of the mobile base,

manipulator and whole system, respectively. Then the equations of nonholonomic constraints
imposed on the mobile base are written as

JB(qB)q̇B = 0, (1)

where qB = [qT
B1 qT

B2]
T and JB(qB) = [JB1 JB2] ∈ R(n−k)×n, detJB1 �= 0. The equations of

holonomic constraints imposed on the manipulator are given by

Φ(q) = 0, (2)

where Φ(q) ∈ Rm−h. Let JM(q) = ∂Φ/∂q ∈ R(m−h)×(n+m), rankJM = m − h. Then (2) can be
rewritten as

JM(q)q̇ = 0. (3)

Furthermore, let

JM(q) =

[

∂Φ

∂qB

∂Φ

∂qM1

∂Φ

∂qM2

]

= [JM0 JM1 JM2] ,

qM = [qT
M1 qT

M2]
T, qM1 ∈ Rh, qM2 ∈ Rm−h and detJM2 �= 0. Then the equations of motion of

the mobile manipulator is written as

M(q)q̈ + C(q, q̇)q̇ + G(q) + d(q, t) = JT(q)λ + B(q)τ, (4)

J(q)q̇ = 0, (5)

where

M(q) =

[

M11(q) M12(q)
M21(q) M22(q)

]

, G(q) =

[

G11(q)
G21(q)

]

, C(q, q̇) =

[

C11(q, q̇)
C21(q, q̇)

]

,

B(q) =

[

B11(qB) 0
0 Im

]

, d(q, t) =

[

d11(q, t)
d21(q, t)

]

,

J(q) =

[

JB 0 0
JM0 JM1 JM2

]

, τ =

[

τB

τM

]

, λ =

[

λB

λM

]

.
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Indices {i, j = 1, 2} correspond to decompositions of qB, qM. d(t) denotes uncertain
disturbance. For λ = [λT

B λT
M]T, λB ∈ Rn−k denote reaction forces acted on the wheels

from the floor and λM ∈ Rm−h denote reaction forces acted on the end-effector from the
environment. The equation (4) has following properties(Slotine & Li, 1991).
Property 1:Ṁ − 2C is skew symmetric.
Property 2:For any ξ

M(q)ξ̇ + C(q, q̇)ξ + G(q) = Y(q, q̇, ξ, ξ̇)p0,

where p0 ∈ Rs0 denotes unknown parameter vector and Y ∈ R(n+m)×s0 is called regressor
matrix whose elements consist of known functions.
Let fB(qB) = [ f1(qB), ..., fk(qB)] be the bases of null space of JB(qB), then there exists η =
[η1, ..., ηk]

T such that (1) is equivalent to

q̇B = fB(qB)η. (6)

Using the suitable selection of fB(qB), η can be specified to be equal to forward linear velocity
u and angular velocity ω of the mobile base, that is, k = 2 and η = [η1 η2]

T = [u ω]T, without
loss of generality. Since η corresponds to angular velocity of wheels νB, there exists ϕ such
that νB = ϕη. Therefore (6) is rewritten as

q̇B = SB(qB)νB, (7)

where

SB(qB) = fB(qB)ϕ−1 =

[

−J−1
B1 JB2

Ik

]

.

Furthermore, let

S(qB) = Blockdiag {SB(qB), Im} ∈ R(n+m)×(k+m),

ν =

[

νT
B , q̇T

M1,−
{

J−1
M2

(

JM0 fB ϕ−1νB + JM1q̇M1

)}T
]T

∈ Rk+m,

then we have
q̇ = S(qB)ν. (8)

Differentiating (8), substituting it into (4) and multiplying both sides by ST(qB) from the left,
we have(Yamamoto & Yun, 1996)

M1(q)ν̇ + C1(q, q̇)ν + G1(q) + d1(q, t) = B1(q)τ + J
T
M(q)λM, (9)

where

M1(q) = ST(qB)M(q)S(qB),

C1(q, q̇) = ST(qB)
{

M(q)Ṡ(qB) + C(q, q̇)S(qB)
}

,

G1(q) = ST(qB)G(q), d1(q, t) = ST(qB)d(q, t),

B1(q) = ST(qB)B(q), JM =
[

JM0 fB ϕ−1 JM1 JM2

]

.

It is well known that Property 1 and 2 are invariant under changes of
coordinates(Murray et al., 1993). Then (9) has following properties similarly to (4).
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Property 3:Ṁ1 − 2C1 is skew-symmetric.
Property 4:For any ξ̄

M1(q)ξ̇ + C1(q, q̇)ξ + G1(q) = Y1(q, q̇, ξ, ξ̇)p1,

where p1 ∈ Rs1 denotes unknown parameter vector and Y1 ∈ R(k+m)×s1 is called the regressor
matrix whose elements consist of known functions. Furthermore, kinematic uncertainties of
the system give the following properties(Cheah et al., 2003; Fukao et al., 2000).
Property 5:SB(qB)νB in (7) can be written as

SB(qB)νB =
k

∑
i=1

⎛

⎝σi0(qB) +
hi

∑
j=1

θijσij(qB)

⎞

⎠ νBi.

Property 6:J
T
M(q)λM in (9) can be written as

J
T
M(q)λM = Z1(q, λM)ψ,

where θij is unknown parameter which consists of unknown parameters of mobile base, and
σij is known functions which consists of the coordinate qB, (i = 1, ..., k, j = 1, ..., hi). ψ ∈ Rc is

unknown parameter vector of the whole system and Z1(q, λM) ∈ R(k+m)×c is known matrix
function of the position/force coordinate q and λM , respectively.
Following assumptions are required to synthesize the control scheme.
Assump.1:There are no unknown parameters in B1(q) and detB1(q) �= 0 for all q. d1 and its
derivative are bounded and ‖d1‖ ≤ D. Where D is unknown.
Assump.2:JB, JM, J−1

B1 , J−1
M2 ∈ L∞ and these matrices are all continuously differentiable with

respect to q and kinematic parameters, and these derivatives are bounded.

3. Hybrid position/force control scheme

Let q∗ be the desired position trajectory, then there exist desired velocity input ν∗ =
[ν∗1 , ..., ν∗k , ν∗T

M ]T such that
q̇∗ = S(q∗B)ν

∗. (10)

Since [ν∗1 , ..., ν∗k ]
T are desired velocities of the mobile base, we can set [ν∗1 ν∗2 ]

T = ϕ[u∗ ω∗]T

and k = 2 without loss of generality. Where desired forward linear velocity u∗ and desired
angular velocity ω∗ of the mobile base. Using the relations such as ν∗M1 = q̇∗M1 and ν∗M2 = q̇∗M2,
ν∗M2(= q̇∗M2) can be determined by ν∗M1 and u∗, ω∗. For these values following assumptions
are required.
Assump.3:q∗, u∗, ω∗, q̇∗, u̇∗, ω̇∗, q̈∗, ü∗, ω̈∗ and ˙̈q∗ are bounded globally. And u∗ �= 0.

3.1 Reference robot

To specify error dynamics of trajectory tracking system we introduce the reference robot
shown in Fig.1. Trajectory error eB for base coordinates qB = [x y φ]T, trajectory error
eM1 for manipulator coordinates qM1 and trajectory error λ̃M for constrained forces are given
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Fig. 2. Reference robot and tracking errors

by

eB =

⎡

⎣

e1

e2

e3

⎤

⎦ =

⎡

⎣

(x∗ − x) cos φ + (y∗ − y) sin φ
−(x∗ − x) sin φ + (y∗ − y) cos φ

φ∗ − φ

⎤

⎦

eM1 = q∗M1 − qM1, λ̃M = λM − λ∗
M (11)

Using the results in (Fukao et al., 2000), desired velocity inputs νc = [νT
Bc νT

M1c νT
M2c]

T for
trajectory tracking are written as the following.

νBc = ϕuBc, uBc =

[

uc

ωc

]

=

[

u∗ cos e3 + K1e1

ω∗ + u∗K2e2 + K3 sin e3

]

νM1c = q̇∗M1 + KM1eM1

νM2c = −J−1
M2

(

JM0 fB ϕ−1νBc + JM1νM1c

)

(12)

Where Ki > 0, i = 1, 2, 3 and KM1 are arbitrarily assigned.
For the system (7) the following Lemma is shown in (Fukao et al., 2000).

Lemma 1. If νB = νBc is applied to (7), then the first derivatives of trajectory error coordinates are
given by the following equations.

ė1 = −K1e1 + (ω∗ + u∗K2e2 + K3 sin e3)e2

ė2 = −(ω∗ + u∗K2e2 + K3 sin e3)e1 + u∗ sin e3

ė3 = −u∗K2e2 − K3 sin e3 (13)

Then, limt→∞ eB = 0.
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However, since Lemma1 has not considered kinematic parameter uncertainties, νBc cannot
be applied to our problem. Therefore, we give the following assumption similar manner to
(Fukao et al., 2000).
Assump.4:There exist velocity inputs and adaptive laws:

νB = νBc(qB, q∗B, â)

˙̂ai = Ti(qB, q∗B, â) (14)

such that the closed loop system of (7) is stable at q∗B. Furthermore, there exists Lyapunov
function V1(qB, q∗B, ã) such that the time derivative of V1 along the closed loop system of (7)
with (14) is negative semi-definite. Where â is the estimate of an unknown parameter vector
a = [a1, ..., ak]

T, which is composed of θij, and ã = â − a is the estimated error.

3.2 Control laws for the system with both kinematic and dynamic uncertainties

In this section we propose the robust and adaptive position/force control scheme of the mobile
manipulators with both the kinematic and dynamic uncertainties. To begin with, we introduce
filter coordinates in a similar way to (Yuan, 1997) as follows. For any constant α1 we set
βM ∈ Rm as

β̇M = −α1βM − α1

[

ĴM1 ĴM2

]T
λ̃M, (15)

where ĴM(q, ψ̂) denotes the Jacobian matrix which is replaced ψ with estimate ψ̂ and

ĴM(q, ψ̂) =
[

ĴM0(q, ψ̂) fB(qB)ϕ̂−1 ĴM1(q, ψ̂) ĴM2(q, ψ̂)
]

=
[

ĴM0(q, ψ̂) ĴM1(q, ψ̂) ĴM2(q, ψ̂)
]

.

Secondly, we set

ν̃ = ν − νc, β = [0T
k βT

M ]T, ν̃ = Rs̃, δ = ν̃ + β,

χ = νc − β, s̃ = [ν̃T
B ν̃T

M1]
T, e = [eT

B eT
M]T, (16)

where

R =

⎡

⎢

⎣

Ik 0
0 Il

− Ĵ
−1

M2 ĴM0 − Ĵ
−1

M2 ĴM1

⎤

⎥

⎦
.

Finally we introduce variable ρ(t) which satisfies following conditions (Li et al., 2008).

(1) ρ(t) > 0, ∀t ∈ [0, ∞)

(2) lim
t→∞

ρ(t) = 0

(3) lim
t→∞

∫ t

0
ρ(τ)dτ = ρ0 < ∞

Under assumptions from Assump.1 to Assump.4, following theorem is derived.
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Theorem 1. Applying the following control law and adaptive laws to the mobile manipulator (4) and
(5),

τ = B−1
1

[

−Kdδ − F + Y1(q, q̇, χ, χ̇) p̂1 −

(

∂V1

∂q
Ŝ(qB, θ̂)

)T

+α2 Ĵ
T

M(q, ψ̂λ̃M)− Z1(q, λM)ψ̂

]

˙̂p1 = −Γ1YT
1 (q, q̇, χ, χ̇)δ (17)

˙̂ψ = Γ2ZT
1 (q, λM)δ

˙̂ai = Ti(qB, q∗B, â)

˙̂θi = Λi

(

∂V1

∂q
σi

)T

ν̃i

˙̂D = γ‖δ‖

then all internal signals are bounded and

lim
t→∞

e = 0, lim
t→∞

λ̃M = 0, (18)

where θ̂i is estimate of θi, σi = [σi1, · · · , σihi
], 1 ≤ i ≤ k, and Kd, Γ1, Γ2, Λi are positive definite matrix

with appropriate dimensions, α2 is arbitrary constant and

F(t) =
δD̂2

‖δ‖D̂ + ρ(t)
.

Letting parameter estimation errors be p̃ = p̂ − p and D̃ = D̂ − D, closed loop system can be
written as follows.

M1δ̇ = −(C1 + Kd)δ + Y1(q, q̇, χ, χ̇) p̃1 −

(

∂V1

∂q
Ŝ(qB, θ̂)

)T

+α2 Ĵ
T

Mλ̃M − Z1ψ̃ − (F + d1) (19)

Proof of this theorem is shown by the following Lemmas.

Lemma 2. For the closed loop system, δ, β ∈ L2, and ν̃, p̂, eM1, ėM1, νc, χ, q, q̇, θ̂, ψ̂, â, D̂ ∈ L∞.

(Proof)

We set V2 as

V2 = V1 +
1

2
δT M1δ +

1

2
α2α−1

1 βT β +
1

2
p̃T

1 Γ−1 p̃1

+
1

2

k

∑
i=1

θ̃T
i Λ−1

i θ̃i +
1

2
ψ̃TΓ−1

2 ψ̃ +
1

2γ
D̃2. (20)

Differentiating V2 along (19), we have

V̇2 =
∂V1

∂q
S(qB)(νc + ν̃) +

∂V1

∂q∗
S(q∗B)ν

∗ +
g

∑
i=1

∂V1

∂âi
Ti − δTKdδ

−
∂V1

∂q
Ŝ(qB)ν̃ − α2βT β +

k

∑
i=1

θ̃T
i Λ−1

i
˙̃θi − δT(F + d1) +

D̃ ˙̂D

γ
.
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In this computation, we used the relations ∂V1
∂q Ŝβ = 0 and:

ĴMR =
[

ĴM0 ĴM1 ĴM2

]

⎡

⎢

⎣

Ik 0
0 Il

− Ĵ
−1

M2 ĴM0 − Ĵ
−1

M2 ĴM1

⎤

⎥

⎦

=
[

0(m−l)×k 0(m−l)×l

]

.

Furthermore, by using the relation

∂V1

∂q
S̃(qB)ν̃ =

∂V1

∂q
(Ŝ − S)ν̃ =

∂V1

∂q

⎡

⎣

k

∑
i=1

⎛

⎝σi0(qB) +
li

∑
j=1

θ̂ijσij(qB)

⎞

⎠

−
k

∑
i=1

⎛

⎝σi0(qB) +
li

∑
j=1

θijσij(qB)

⎞

⎠

⎤

⎦ νBi =
∂V1

∂q

k

∑
i=1

σi θ̃i ν̃i

we have

V̇2 = V̇νB=νBC

1 − δTKdδ − α2βT β − δT(F + d1) +
D̃ ˙̂D

γ
, (21)

where

V̇νB=νBC

1 =
∂V1

∂q
S(qB)νc +

∂V1

∂q∗
S(q∗B)ν

∗ +
g

∑
i=1

∂V1

∂âi
Ti ≤ 0.

Last inequality sign ≤ is given by Assump.4. From the definition of F(t) and adaptive law of
D̂ following inequality is derived.

− δT(F + d1) +
D̃ ˙̂D

γ
= −δT δD̂2

‖δ‖D̂ + ρ(t)
− δTd1 +

D̂ ˙̂D

γ
−

D ˙̂D

γ

< −
‖δ‖2D̂2

‖δ‖D̂ + ρ(t)
+ ‖δ‖D +

D̂ ˙̂D

γ
−

D ˙̂D

γ

= −
‖δ‖2D̂2

‖δ‖D̂ + ρ(t)
+

D̂(γ‖δ‖)

γ
+

D

γ

(

γ‖δ‖ − ˙̂D
)

=
ρ(t)‖δ‖D̂

‖δ‖D̂ + ρ(t)
< ρ(t)

These inequalities lead the right hand of (32) to

V̇2 < −δTKdδ − α2βT β + ρ(t). (22)

Integrating both sides of this inequality and using definition of ρ(t), we have

V2(t)− V2(0) < −
∫ t

0
δTKdδdτ − α2

∫ t

0
βT βdτ + ρ0 < ∞. (23)

124 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics

www.intechopen.com



Robust Adaptive Position/Force Control

of Mobile Manipulators 9

This shows
V2(t) < V2(0) + ρ0 < ∞. (24)

Therefore, V2(t) is bounded, that is, qB, ã, δ, β, p̃1, D̃, θ̃, ψ̃ ∈ L∞, and δ, β ∈ L2. From definition
of variable ν̃, we have ν̃ ∈ L∞. Since unknown parameters are constant and bounded,
p̂, D̂, â, θ̂, ψ̂ ∈ L∞. From (12) and definitions of ν and νc, ν̃M1 = −ėM1 − KM1eM1 ∈ L∞. Then
eM1, ėM1 ∈ L∞. From (12), Assump.3 and Assump.4, we have νc, χ ∈ L∞. From Assump.2
and Assump.3, we have qM, q̇M ∈ L∞. Similarly from ν̃, νc ∈ L∞ and Assump.2, we have
q̇B, ėB ∈ L∞. Therefore q, q̇ ∈ L∞.

Lemma 3. Let M̂1 = M1( p̂1) and

∆(ψ, ψ̂) = J
T
M

(

ĴM Ĵ
T

M

)−1

ĴM +

(

Ĵ
T

M

)†

− Ik+m,

where

(

Ĵ
T

M

)†

is left annihilator of Ĵ
T

M. If there exist α1 and α2 such that

{

α1M̂1Blockdiag(0k, Im) + α2 Ik+m + ∆(ψ, ψ̂)
}

is nonsingular, then λ̃M ∈ L∞.

(Proof)

Substituting (15) and (16) into (19), we have

{

α1M̂1Blockdiag(0k, Im) + α2 Ik+m + ∆(ψ, ψ̂)
}

Ĵ
T

Mλ̃M

= M1(R ˙̃s + Ṙs̃) + (C1 + Kd)δ − Y1(q, q̇, χ, χ̇ + β̇) p̃1 − α1M̂1β

+

(

∂V1

∂q
Ŝ(qB, θ̂)

)T

+ ∆(ψ, ψ̂) Ĵ
T

Mλ∗
M + (F + d1). (25)

In this calculation, following relations are used.

Y1(q, q̇, χ, χ̇) p̃1 = Y1(q, q̇, χ, χ̇ + β̇) p̃1 −
{

M̂1(q)− M1(q)
}

β̇

Z1ψ̃ =

(

Ĵ
T

M − J
T
M

)

λ̃M +

(

Ĵ
T

M − J
T
M

)

λ∗
M

= −∆(ψ, ψ̂) Ĵ
T

Mλ̃M − ∆(ψ, ψ̂) Ĵ
T

Mλ∗
M

Multiplying (25) by ĴM M−1
1 from left, we have

ĴMM−1
1

{

α1M̂1Blockdiag(0k, Im) + α2 Ik+m + ∆(ψ, ψ̂)
}

× Ĵ
T

Mλ̃M = ĴM

[

Ṙs̃ + M−1
1 {(C1 + Kd)δ

−Y1(q, q̇, χ, χ̇ + β̇) p̃1 + α1M̂1β

+

(

∂V1

∂q
Ŝ(qB, θ̂)

)T

+ ∆(ψ, ψ̂) Ĵ
T

Mλ∗
M + (F + d1)

}]

. (26)
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By definition and Assump.3 ν̇c ∈ L∞ and χ̇ + β̇ = ν̇c, we have

Y1(q, q̇, χ, χ̇ + β̇) ∈ L∞.

Therefore, if α1 and α2 are selected such that

{

α1M̂1Blockdiag(0k, Im) + α2 Ik+m + ∆(ψ, ψ̂)
}

is nonsingular, then λ̃M ∈ L∞.

Lemma 4. Z1, ν̇c, β̇, χ̇, Y1(q, q̇, χ, χ̇), F(t) ∈ L∞.

(Proof)

Z1 ∈ L∞ is derived from Lemma 2 and 3. ν̇c ∈ L∞ is derived from definition of νc, Assump.2
and adaptive laws of â, ψ̂. β̇ ∈ L∞ is derived directly from (15). Then χ̇ = ν̇c − β̇ ∈ L∞. These
relations imply Y1(q, q̇, χ, χ̇) ∈ L∞. And finally,

‖F(t)‖ = ‖
δD̂2

‖δ‖D̂ + ρ(t)
‖ < ‖

δD̂2

‖δ‖D̂
‖ = D̂ ∈ L∞.

Lemma 5.
lim
t→∞

e = 0

(Proof)

From definitions and Lemma 4, we have δ̇ ∈ L∞. Since δ, β ∈ L2, by Barbalatat’s
Lemma(Kristic et al., 1995; Slotine & Li, 1991) we have limt→∞ δ = 0 and limt→∞ β = 0. This
means limt→∞ ν̃ = 0. By Lemma1 limt→∞ eB = 0. Since limt→∞ ν̃ = 0 and

ν̃M1 = −ėM1 − KM1eM1,

limt→∞ eM1 = 0. Then limt→∞ e = 0.
From above 5 Lemmas and next Lemma the proof of Theorem 1 is completed.

Lemma 6.
lim
t→∞

λM = λ∗
M

(Proof)

From (19), Lemma 3 and Lemma 4, δ̇ ∈ L∞. And from definitions, β̇ ∈ L∞, ˙̃ν ∈ L∞. Then
q̈ ∈ L∞, R̈ and ν̈c ∈ L∞. These lead us to Ẏ1(q, q̇, χ, χ̇ + β̇) ∈ L∞.

Differentiating both sides of (26), we have ˙̃λM ∈ L∞, that is λ̇M ∈ L∞.Then, by above Lemmas
and definition of βM , β̈M ∈ L∞. This shows that β̇M is uniformly continuous. And βM → 0 is
shown in previous Lemma. Therefore from Barbalat’s Lemma(Kristic et al., 1995; Slotine & Li,

1991) we have limt→∞ β̇M = 0. Since [ ĴM1 ĴM2]
T in (15) is full column rank, we have

lim
t→∞

λ̃M = 0.
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3.3 Control laws for the system only with the dynamic uncertainties

In this section we propose the robust and adaptive position/force control scheme of the mobile
manipulators with only the dynamic uncertainties. Since kinetic parameters are known, the

Jacobian matrix ĴM(q, ψ̂) has no uncertainties. Therefore (15) and R̂ are replaced with

β̇M = −α1βM − α1 [JM1 JM2]
T λ̃M, (27)

R =

⎡

⎣

Ik 0
0 Il

−J−1
M2 JM0 fB ϕ−1 −J−1

M2 JM1

⎤

⎦ .

Then the robust adaptive control scheme proposed in (Narikiyo et al., 2008) can be applied
to the system with dynamic uncertainties. This control scheme is shown in the following
theorem.

Theorem 2. Let the kinematic parameters be known. Applying the following control law and adaptive
laws to the mobile manipulator (4) and (5),

τ = B−1
1 [−Kdδ − F + Y1(q, q̇, χ, χ̇) p̂

−

(

∂V1

∂q
S(qB)

)T

+ J
T
M(−λ∗

M + α2λ̃M)]

˙̂p = −ΓYT
1 (q, q̇, χ, χ̇)δ (28)

˙̂D = γ‖δ‖

then internal signals are bounded and

lim
t→∞

e = 0, lim
t→∞

λ̃M = 0, (29)

where

F(t) =
δD̂2

‖δ‖D̂ + ρ(t)
.

Substituting (28) into (4), we can obtain the following closed loop system.

M1δ̇ = −(C1 + Kd)δ + Y1(q, q̇, χ, χ̇) p̃ −

(

∂V1

∂q
S(qB)

)T

+(1 + α2) J̄T
Mλ̃M − (F + d1) (30)

˙̂p = −ΓY1(q, q̇, χ, χ̇)δ

˙̂D = γ‖δ‖

β̇M = −α1βM − α1[JM1 JM2]
Tλ̃M

Proof of the theorem 2 is completed by the following Lemmas as similar to the proof of
Theorem 1.

Lemma 7. For the closed loop system, δ, β ∈ L2,ν̃, Rs̃, p̂, eM1, ėM1, νc, χ, q, q̇ ∈ L∞ and

lim
t→∞

e1 = 0, lim
t→∞

e3 = 0.
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(Proof)

We set V2 as

V2 = V1 +
1

2
δT M1δ +

1 + α2

2α1
βT β +

1

2
p̃TΓ−1 p̃

+
1

2γ
D̃2. (31)

Differentiating V2 along (30), we have

V̇2 =
∂V1

∂q
S(qB)(νc + ν̃) +

∂V1

∂q∗
S(q∗B)ν

∗

−δTKdδ − (1 + α2)βT β − δTST(qB)

(

∂V1

∂q

)T

+(1 + α2)λ̃M J̄MRs̃ − δT(F + d1).

Furthermore, by using definitions of V1 = V1(qB, q∗B) and δ,

∂V1

∂q
S(qB)ν̃ =

∂V1

∂q
S(qB)δ

is derived and by using the relation

J̄MR =
[

JM0 fB ϕ−1 JM1 JM2

]

⎡

⎣

Ik 0
0 Il

−J−1
M2 JM0 fB ϕ−1 −J−1

M2 JM1

⎤

⎦

=
[

0(m−l)×k 0(m−l)×l

]

,

we have

V̇2 = −K1e2
1 −

K3

K2
sin2 e3 − δTKdδ − (1 + α2)βT β − δT(F + d1). (32)

F(t) and adaptive laws lead the right hand of (32) to

V̇2 < −K1e2
1 −

K3

K2
sin2 e3 − δTKdδ − (1 + α2)βT β + ρ(t). (33)

Integrating both side of this inequality and using definition of ρ(t), we have

V2(t)− V2(0) < −K1

∫ t

0
e2

1dτ −
K3

K2

∫ t

0
sin2 e3dτ

−
∫ t

0
δTKdδdτ − (1 + α2)

∫ t

0
βT βdτ + a < ∞.

(34)

This shows
V2(t) < V2(0) + a < ∞. (35)

Therefore, V2(t) is bounded, that is, e1, e2, δ, β, p̃, D̃ ∈ L∞, and e1, sin e3, δ, β ∈ L2. From
definitions of variables ν̃, we have Rs̃, p̂, D̂ ∈ L∞. From (12) and definitions of ν and νc,
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ν̃M1 = −ėM1 − KM1eM1 ∈ L∞. Then eM1, ėM1 ∈ L∞. Furthermore, from (12) and Assump.3,
we have νc, χ ∈ L∞ and eM1, ėM1 ∈ L∞. From Assump.2, we have qM, q̇M ∈ L∞. Similarly
from ν̃, νc ∈ L∞ and Assump.2, we have q̇B, ėB ∈ L∞. Therefore q, q̇ ∈ L∞. Finally, from
e1, sin e3 ∈ L2 and Barbalat’s Lemma(Slotine & Li, 1991), we have

lim
t→∞

e1 = 0, lim
t→∞

e3 = 0.

Lemma 8. Let M̂1 = M1( p̂). If there exist α1, α2 such that
{

α1 M̂1Blockdiag(0k, Im) + (1 + α2)Ik+m

}

is nonsingular, then λ̃M ∈ L∞.

(Proof)

From (30) we have

(1 + α2) J̄T
Mλ̃M = M1(R ˙̃s + Ṙs̃) + M1 β̇ + (C1 + Kd)δ

−Y1(q, q̇, χ, χ̇) p̃ + (F + d1).

By using the relation

Y1(q, q̇, χ, χ̇) p̃ = Y1(q, q̇, χ, χ̇ + β̇) p̃

−
{

M̂1(q)− M1(q)
}

β̇,

above equation is converted into

{

α1 M̂1Blockdiag(0k, Im) + (1 + α2)Ik+m

}

J̄T
Mλ̃M

= M1(R ˙̃s + Ṙs̃) + (C1 + Kd)δ

−Y1(q, q̇, χ, χ̇ + β̇) p̃ − α1 M̂1β + (F + d1). (36)

Multiplying (36) by J̄M M−1
1 from left, we have

J̄M M−1
1

{

α1M̂1Blockdiag(0k, Im) + (1 + α2)Ik+m

}

× J̄T
Mλ̃M = J̄M

[

Ṙs̃ + M−1
1 {(C1 + Kd)δ

−Y1(q, q̇, χ, χ̇ + β̇) p̃ − α1M̂1β + (F + d1)
}]

. (37)

Furthermore, since (12) and Assump.3 lead to ν̇c ∈ L∞ and χ̇ + β̇ = ν̇c, we have

Y1(q, q̇, χ, χ̇ + β̇) ∈ L∞.

Therefore, if α1andα2 are selected such that
{

α1 M̂1Blockdiag(0k, Im) + (1 + α2)Ik+m

}

is nonsingular, then λ̃M ∈ L∞.
Since from these Lemmas and Barbalat’s Lemma(Slotine & Li, 1991) we have

lim
t→∞

e = 0, lim
t→∞

λ̃M = 0,

proof of the theorem is completed.
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Fig. 3. Mobile manipulator used for simulations and experiments

4. Simulations and experiments

4.1 Mobile manipulator

Schematic model of mobile manipulator used for simulations and experiments is shown in
Fig.3. This mobile manipulator consists of 3 wheel mobile base and 3 link manipulator.
mB, mW and m1, m2, m3 denote masses of base, wheels and manipulator links, respectively.
IB,IW ,Im and I1, I2, I3 denote moment of inertia of base, wheel axis, wheel and manipulator
links, respectively. These dynamic parameters are unknown. Kinematic parameters are
denoted in Fig.3. Numerical values of kinematic parameters are estimated as follows. 2b =
0.316, r = 0.098, d = 0.11, L1 = 0.143, L2 = 0.19, L3 = 0.342, l1 = 0.0715, l2 = 0.095, l3 = 0.171.
On the other hand, dynamic parameters are hardly identified. However, in simulations we
use following estimates; mB = 5.0, mW = 1.25, IB = 0.137, IW = 0.00313, Im = 0.00582, 2b =
0.316, m1 = 1.25, m2 = 0.5, m3 = 0.75, I1 = 0.00259, I2 = 0.00173, I3 = 0.00201. Unknown
parameter vector p1 ∈ R26 is consisting of these parameters and is given by

p1 = [p1
1, p1

2, · · · , p1
26]

T,

where

p1
1 =

r2

4
(mB + m1 + m2 + m3),

p1
2 =

r2d

2b
(mB + m1 + m2 + m3),

p1
3 =

r2

4b2

{

(mB + m1 + m2 + m3)d
2 + IB + 2IW

}

,

p1
4 = mWr2 + Im, p1

5 = (m2l2 + m3L2)g,

p1
6 =

r

2
(m2l2 + m3L2), p1

7 =
1

2
(m2l2

2 + m3L2
2),
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p1
8 =

r2

4b
(m2l2 + m3L2), p1

9 =
rd

2b
(m2l2 + m3L2),

p1
10 =

r

4b
(m2l2

2 + m3L2
2), p1

11 =
r2d

4b2
(m2l2 + m3L2),

p1
12 =

r2

8b2
(m2l2

2 + m3L2
2), p1

13 = m3l3g, p1
14 =

1

2
m3rl3,

p1
15 = m3L2l3, p1

16 =
1

2
m3l2

3 , p1
17 =

1

4b
m3r2l3,

p1
18 =

1

2
m3rdl3, p1

19 =
1

2b
m3rl3L2, p1

20 =
1

4b
m3rl2

3 ,

p1
21 =

1

4b2
m3r2dl3, p1

22 =
1

4b2
m3r2L2l3,

p1
23 =

1

8b2
m3r2l2

3 , p1
24 = I1, p1

25 = I2, p1
26 = I3.

Generalized coordinates are also shown in this Figure. Base coordinates (x, y, φ) can be
detected by 3D camera system and others can be detected by encoders. Nonholonomic
constraints imposed on this system are written as follows.

ẋ sin φ − ẏ cos φ = 0

ẋ cos φ + ẏ sin φ + bφ̇ = rθ̇r

ẋ cos φ + ẏ sin φ − bφ̇ = rθ̇r

Coordinates (θr, θl) are related with forward velocity u and angular velocity ω as

[

θ̇r

θ̇l

]

=

[

1
r

b
r

1
r − b

r

] [

u
ω

]

.

Then (θr, θl) can be eliminated from the equations of motion by using (u, ω) as generalized
velocities. Therefore, kinematic equations (8) are given by

⎡

⎢

⎢

⎣

ẋ
ẏ
φ̇
θ̇1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

r
2 cos φ r

2 cos φ 0
r
2 sin φ r

2 sin φ 0
r

2b − r
2b 0

0 0 1

⎤

⎥

⎥

⎦

⎡

⎣

νr

νl

νM1

⎤

⎦ . (38)

4.2 Simulation for the system with both the kinetic and dynamic uncertainties

Mobile manipulator used for simulation is shown in Fig.3. In this simulation both the
kinematic and dynamic parameters are all unknown.
In this simulation, the mobile base is controlled to track to the desired position/orientation
trajectory on the floor and the end-effector of the manipulator is controlled to be constrained
on the ceiling with desired reaction force. Then, nonholonomic constraints imposed on this
system are same as shown before. On the other hand, holonomic constarint imposed on this
system is

Φ(q) = L1 + L2 sin θ2 + L3 sin(θ2 + θ3)− L = 0.
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Fig. 4. Trajectory on (x, y) plane

This holonomic constraint represents that the end-effector of manipulator is constrained on
the ceiling.
Desired trajectory of the manipulator is given by

θ∗1 = 1.2(1 − cos 0.25t), θ∗2 =
π

4

and desired force trajectory λ∗
M is 10. Desired position trajectories of the base q∗B = [x∗ y∗ φ∗]T

are generated by the reference robot given by

q̇∗ = fB(q
∗
B)η

∗. (39)

To obtain the mixed straight and curved line, desired velocities η∗ = [u∗ ω∗]T are defined as
follows.

{

u∗ = 0.1
(

1 − cos π
2.5 t
)

ω∗ = 0 (0 ≤ t < 2.5)

{

u∗ = 0.2
ω∗ = 0 (2.5 ≤ t < 5)

{

u∗ = 0.1
(

1 + cos π
2.5 t
)

ω∗ = 0 (5 ≤ t < 7.5)

{

u∗ = 0.1π
(

1 − cos 2π
2.5 t
)

ω∗ = −u∗ (7.5 ≤ t < 10)
{

u∗ = 0.1π
(

1 − cos 2π
2.5 t
)

ω∗ = u∗ (10 ≤ t < 12.5)

{

u∗ = 0.1
(

1 + cos π
2.5 t
)

ω∗ = 0 (12.5 ≤ t < 15)
{

u∗ = 0.2
ω∗ = 0 (15 ≤ t)

Initial conditions are q̇(0) = 0, q(0) = [0 0 − π/20 0; π/4, π/3]T and p̂1(0) = 0, âi(0) =
0, θ̂i(0) = 0, D̂(0) = 0, ψ̂(0) = [0.1 0.1]T. Disturbance vector is d1(q) = [1 1 0.5 0.5 0.5]T. For
this system design parameters are asigned as Kd = 10 × I4, Γ1 = Γ2 = γ = Λ1 = Λ2 = 1, α1 =
5 × I3, α2 = 25, γ1 = γ2 = 100, K1 = K2 = K3 = KM11 = KM12 = 10 and

ρ(t) =
1

(1 + t
10 )

2
.
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Fig. 5. Position tracking errors

Fig. 6. Force tracking error

Fig.4 shows a desired trajectory and a tracking trajectory. Broken line shows a desired
trajectory generated by the reference robot and solid line shows a tracking trajectory of the
mobile manipulator. In spite of quite a large initial tracking error, tracking error is converged
sufficiently small. Fig.5 and Fig.6 show the trajectory tracking errors of each coordinate and
force tracking error, respectively.

4.3 Experiments

Fig.7 and 8 show a snapshot of experiments and the end-effector of the mobile manipulator
respectively. In order to reduce the adverse effects of friction from the wall rolling ball is
mounted on the top of the end-effector and to detect the reaction force from the wall force
sensor is equipped under the rolling ball. In experiments mobile manipulator is controlled
to move on the straight line parallel to the wall with assigned speed and simultaneously
end-effector is controlled to press against the wall with assigned force. Since the end-effector
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Fig. 7. Snapshot of experiments

is constrained on the wall, following holonomic constraint Φ(q) is imposed.

Φ(q) = y + d sin φ + {L2 cos θ2 + L3 cos(θ2 + θ3)}

× sin(φ + θ1)− L = 0,

where L denotes distance between the wall and P0 which is center of wheel axis. Then θ2 is
also eliminated by using the holonomic constraint.

Force

1.5cm

Force

sensor

2.8cm

Fig. 8. End-effector

4.3.1 Application to the system only with the dynamic uncertainties

In case when kinetic parameters are known, we can apply control laws given in Theorem 2 and
we can use estimates of kinematic parameters shown in Subsection 4.1. Control parameters
are give as follows. Kd = 5, K1 = 5, K2 = 50, K3 = 10, KM1 = [10 10], α1 = 5, α2 = 5, Γ =
0.2, γ = 1. ρ(t) is given as

ρ(t) =
1

(t/Kρ + 1)2
,

where Kρ is constant and is assigned 500 in this experiments.
Experimental situation is shown in Fig.7. Mobile manipulator is controlled to move on the
straight line with constant speed 5cm/sec. End-effector is controlled to press against the wall
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Fig. 10. Force error trajectory

with constant force 2N. Fig.9 shows position error trajectories of the mobile base. Even though
the mobile base is declined about 20 degrees parallel to the wall initially, position errors are
settled to the neighbourhood of origin. Fig.10 shows force error. Also the force error is settled
similarly to the position error trajectories.

4.3.2 Application to the system with both the kinetic and dynamic uncertainties

In this experiment we assume that not only dynamic parameters but also kinematic
parameters are unknown. Then we apply control laws given in Theorem 1. In these control
laws, unknown parameters are defined as follows.

a1 =
1

r
, a2 =

b

r
,

θp1 =

[ r
2
r

2b

]

, θp2 =

[ r
2
r

2b

]

.
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Furthermore, from Property 6

J
T
M(q)λM = Z1(q, λM)ψ

=

⎡

⎢

⎢

⎢

⎢

⎣

λM sin φ λM cos φ λM cos(φ + θ1) cos θ2

λM sin φ −λM cos φ −λM cos(φ + θ1) cos θ2

0 0 0
0 0 0
0 0 0

λM cos(φ + θ1) cos(θ2 + θ3) 0
−λM cos(φ + θ1) cos(θ2 + θ3) 0

0 λM cos(φ + θ1) cos θ2

0 −λM sin(φ + θ1) sin θ2

0 0

0
0
0

−λM sin(φ + θ1) sin(θ2 + θ3)
−λM sin(φ + θ1) sin(θ2 + θ3)

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

then we have

ψ1 =
1

2
r, ψ2 =

1

2

rd

b
, ψ3 =

1

2

L2d

b
,

ψ4 =
1

2

L3d

b
, ψ5 = L2, ψ6 = L3.

Therefore control scheme given in Theorem 1 is overparameterized scheme. Control
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Fig. 11. Position error trajectories

parameters are as follows.Kd = 5, K1 = 5, K2 = 50, K3 = 10, KM1 = [10 10], α1 = 5, α2 =
5, Γ1 = 0.01, Γ2 = 0.01, γ = 0.01, γ1 = 10, γ2 = 10, Λ1 = 1, Λ2 = 1. ρ(t) is same as that given
in case when kinetic parameters are known.
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As similar in case when kinetic parameters are known, mobile manipulator is controlled to
move on the straight line with constant speed 5cm/sec. End-effector is controlled to presss
against the wall with constant force 2N. Fig.11 shows position error trajectories of the mobile
base. Similarly to the previous experiment, even though the mobile base is declined about 20
degrees to the wall initially, position errors are settled to the neighbourhood of origin. Fig.12
shows force error. Also the force error is settled similarly to the position error trajectories.

5. Concluding remark

In this study robust adaptive hybrid position/force control problems have been investigated.
Proposed control schemes can be applied to the system which has not only dynamic
uncertainties but also both the kinematic and dynamic uncertainties. Furthermore unknown
disturbances have been considered. It is guaranteed theoretically that the tracking position
errors and force errors are asymptotically converged to zero and all internal signals are
bounded. This means that all estimated parameters are also bounded and still remained to
be small. However, some estimated parameters are monotonically increasing, especially D̂.
Since D̂ is updated by

˙̂D = γ‖δ‖,

D̂ is increased in so far as δ �= 0. Furthermore in this experiments sensor noise and
unmodeled nonlinearities hinder the proposed control schemes from achievement of the
perfect regulation δ = 0. These lead us to the fact that the estimate D̂ becomes large with
the passage of time. Therefore, in the practical situation to avoid the numerical difficulties of
D̂ resulted from the long-term control, D̂ should be set constant value when the estimate D̂
exceeds the designated threshold or ‖δ‖ should be set 0 in the computation of the adaptive
laws if ‖δ‖ < ǫ, where ǫ is specified small number.
Usefulness of the proposed control schemes has been demonstrated by experiments.
Especially, since environmental uncertainties can be considered as the kinematic uncertainties,
the proposed control scheme given by Theorem 1 can be applied to the case when
environmental uncertainties arise.
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