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1. Introduction 

Repetitive control is one control algorithm based on the Internal Model Principle (Francis & 

Wonham, 1976) and has been widely implemented in various applications. A repetitive 

control based system has been shown to work well for tracking periodic reference 

commands or for rejecting periodic disturbances. Although the idea has been verified as 

early as 1981 (Inoue et al., 1981), a rigorous analysis and synthesis of repetitive controllers 

for continuous-time systems was not proposed until 1989, by Hara et al. (Hara et al., 1988). 

Tomizuka et al. (Tomizuka et al., 1989) addressed the analysis and synthesis of discrete-time 

repetitive controller, considering the fact that digital implementation of a repetitive 

controller is simpler and more straightforward. Since then, repetitive control has gained 

popularity in applications where periodic disturbances rejection or repetitive tracking are 

required, see (Wang et al., 2009; Cuiyan et al., 2004) and the references therein. These 

include controls of disk drive servo (Tomizuka et al., 1989; Guo, 1997; Moon et al., 1998), 

hydraulic closed-loop servo for material testing (Srinivasan & Shaw, 1993), vibration 

suppression (Hillerstrom, 1996), rejection of load disturbances in steel casting process 

(Manayathara et al., 1996), servo control for a positioning table (Yamada et al., 1999), X-Y 

table (Tung et al., 1993), noncircular turning process (Alter & Tsao, 1994), motor speed 

ripple reduction (Godler et al., 1995; Rodriguez et al., 2000), and eccentricity compensation 

(Garimella & Srinivasan, 1996). 

In literatures, repetitive controllers are synthesized and operate in time domain, which is 
in accordance with the fact that models or differential equations of physical systems are 
mostly derived using time as the independent variable. One of the key steps for designing 
a repetitive controller is to determine the period, or equivalently, the number of delay 
taps (q−1, q is the one step advance operator). This can usually be done by analyzing the 
periodic tracking or disturbance signal using techniques such as fast Fourier transform 
(FFT). To ensure effectiveness of the design, an underlying assumption is that the 
frequency constitutions of the periodic tracking or disturbance signal do not vary with 
respect to time, which corresponds to a stationary or time-invariant frequency spectrum 
of the signal. This assumption can be satisfied when the design objective is to track a pre-
specified periodic trajectory. However, it might be violated for disturbance rejection 
problems where the frequency constitutions of the disturbance are time-varying. For a 
motion system with rotary components such as gear-train, the disturbances due to gear 
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eccentricity or tooth profile error are inherently angular displacement dependent or 
spatially periodic. They are periodic with respect to angular displacement, but not 
necessarily periodic with respect to time. Gear eccentricity induces disturbances with 
period equal to one revolution and tooth profile error induces disturbances with 
fundamental frequency equal to the number of teeth per revolution. The spatial periods 
for these two types of disturbances do not change with the angular velocity. However, the 
corresponding temporal frequencies will be proportional to the angular velocity and vary 
accordingly when the system operates at variable speeds. As an example, for a single 
stage motor/gear transmission system operating an output speed of v revolution per 
second, the eccentricity error of the final gear will show up as a periodic disturbance with 
temporal frequency of v Hz. As the operating speed changes, a proportional changes to 
the temporal frequency of the disturbance will occur whereas its spatial frequency is fixed 
at 1 cycle per revolution. Suppose that a repetitive controller is implemented using a 
constant-angular-displacement sampling period (spatially sampled) approach, e.g., m 
samples per revolution of the final gear, to tackle this disturbance. The number of 
required delay taps, which reflects the period of the disturbance, will be a constant m 
regardless of the angular velocity. On the other hand, a repetitive controller synthesized 
using the conventional approach, i.e., based on the temporal frequency of the disturbance 
(v Hz), and implemented with constant-time sampling period will not be effective if the 
number of delay taps for the repetitive controller is not tuned/adapted in real-time in 
accordance with the angular velocity. If the period fluctuation is small, methods have 
been shown to improve the robustness of the repetitive controller by increasing the notch 
width in the frequency domain of the repetitive controller at the cost of reduced 
attenuation for the periodic disturbance (Onuki & Ishioka, 2001). When the period 
variation is large, there are two approaches to address the varying period in a repetitive 
control framework. For situation where the period variation can not be measured or 
unknown, adaptive control approaches have been shown to be effective in adapting the 
period of the repetitive controller (Hillerstrom, 1996; Manayathara et al., 1996; Wit & 
Praly, 2000) at the expense of response time and transient response. When the period 
variation is known or can be measured, such as the case in gear noise induced 
disturbance, better trade-off between period adaptability and effectiveness of repetitive 
control can be made. 
Recent researches started studying control problems of rejecting/tracking spatially periodic 
disturbances/references in spatial domain, i.e., using spatially sampled repetitive 
controllers. As explained earlier, a spatially sampled repetitive controller has its repetitive 
kernel (i.e., e-st or z-N with positive feedback) synthesized and operate with respect to 
angular displacement. Hence its capability for rejecting/tracking spatially periodic 
disturbances/references will not degrade when the controlled system operates at varying 
speed. Note that a typical repetitive control system consists of repetitive (i.e., a repetitive 
kernel) and non-repetitive (e.g., a stabilizing controller) portions. Given a time-domain 
open-loop system and with the repetitive kernel to be synthesized and implemented in 
spatial domain, design of the non-repetitive portion that properly interfaces the repetitive 
kernel and the open-loop system actually poses a challenge. (Nakano et al., 1996) initiated a 
fundamental design of spatially sampled repetitive controller in 1996. Although the 
proposed design is rudimentary due to its focus on simple linear time-invariant systems, it 
has recently motivated several more advanced designs (Mahawan & Luo, 2000; Chen et al., 
2006). The design started by transforming a given open-loop system in time domain into one 

www.intechopen.com



 
Spatially Sampled Robust Repetitive Control 

 

57 

in spatial domain. Specifically, the variable of time is rendered implicit for the transformed 
system in spatial domain with angular displacement being the new independent variable. 
This is attained by using the relationship between angular displacement and velocity along 
with imposing an assumption of bijective mapping between time and angular displacement. 
The resulting nonlinear system was linearized at a fixed angular velocity and a stabilizing 
controller with built-in repetitive control action was synthesized. In (Chen et al., 2006), 
robust control methods were employed to address issues associated with using a linearized 
plant model in the controller synthesis and actuator saturation. Although effective for small 
angular velocity fluctuations, the effectiveness of a linearized approach is limited when the 
application requires a large variation in operating speed. (Mahawan & Luo, 2000) 
demonstrated the feasibility of augmenting a spatially sampled repetitive controller to a 
time-sampled stabilizing controller, where no reformulation and linearization of the open-
loop plant model is required. However, the complexity of the method lies in the need to 
solve an optimization problem in real-time to synchronize the hardware and software 
interrupts associated with time and spatial sampling, respectively. In addition, although 
reasonable for trajectory tracking, the assumption of a known mapping between time and 
angular displacement is rarely applicable for disturbance rejection applications. The lack of 
considerations to modeling uncertainty is another area that can be improved from the 
methods proposed in (Nakano et al., 1996) and (Mahawan & Luo, 2000). Instead of 
linearizing the resulting nonlinear plant model, (Chen and Chiu, 2008) shows that the 
nonlinear plant model can be formulated into a quasi-linear parameter varying (quasi-LPV) 
system, where the angular speed is one of the measurable varying parameters. Leveraging 
existing results in controller synthesis for LPV systems (Becker & Packard, 1994; Apkarian et 
al., 1995; Gahinet, 1996; Gahinet & Apkarian, 1994, 1995) and the robust repetitive design 
formulation outlined in (Chen et al., 2006; Hanson & Tsao, 2000), an LPV gain-scheduling 
controller can be obtained that addresses bounded modeling uncertainties, actuator 
saturation and spatially periodic disturbances. 
This book chapter will provide the reader with a review and summary of recent advances in 
design of spatially sampled repetitive control systems. Specifically, we will elaborate on a 
few designs which account for the robustness property of the system, i.e., capability in 
tackling modeling uncertainties and actuator saturation. Current issues and future research 
directions will also be discussed. The outline of this chapter is as follows: 
Section 2 demonstrates how to transform a generic time-domain system into its counterpart 
in spatial domain. It is also shown that nonlinearity such as actuator saturation may be 
properly modeled and incorporated into the spatial-domain open-loop system. 
Section 3 presents a design of spatially sampled robust repetitive control. A well-known 
approach for designing controllers for nonlinear systems with a well defined operating 
point is to first linearize the system around the nominal operating point. Once the linear 
system is extracted, linear robust design paradigm can be applied to establish a design 
framework with embedded repetitive controller. 
Section 4 presents another design of spatially sampled robust repetitive control. By 
reformulating the transformed spatial-domain system as a quasi-linear parameter varying 
(quasi-LPV) system, we gain access to the LPV design framework for gain-scheduling 
controllers. Hence, an LPV gain-scheduling repetitive control (LPVRC) system can be 
synthesized by augmenting the repetitive controller with the LPV controller. The LPVRC 
design is superior to others in the sense that 1) It requires less computation effort when 
compared to nonlinear design; 2) It is robust to spatially periodic disturbances when 
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compared to temporal-based design; 3) It allows wider operation range when compared to 
designs using linearization approaches. 
Section 5 concludes the chapter and points out issues and future research directions relevant 
to spatially sampled robust repetitive control. 

2. Problem formulation – Position-invariant rotary systems 

In this section, we show how a generic nonlinear time-invariant (NTI) model can be 

transformed into a nonlinear position-invariant (NPI; as opposed to the definition of time-

invariant) model by choosing an alternate independent variable (angular displacement 

instead of time) and defining a new set of states (or coordinates) with respect to the angular 

displacement. Note that the transformation described here is equivalent to a nonlinear 

coordinate transformation or a diffeomorphism. The NPI model will be used for the 

subsequent design and discussion. In Section 2.1, we further demonstrate this 

transformation for a typical linear time-invariant (LTI) rotary system with actuator 

saturation, which will be utilized in subsequent design. 

Consider the mathematical model of a single-input single-output (SISO) nth-order NTI 

system with model uncertainties, and subject to output disturbance, i.e., 

 
               

       
t f t f t g t g

n y

x t = f x t , f +Δf x t , f + g x t , f +Δg x t , f u t

y =Ψx t + d t = x t + d t

     
 (1) 

where      1

T

nx t x t x t    ,  0 0 1   ,  u t  and  y t  correspond to control 

input and measured output angular velocity of the system, respectively. ( )yd t  represents a 

class of  position-dependent disturbances which constitutes bounded spatially periodic and 

non-periodic components. Here we refer non-periodic disturbances to signals whose Fourier 

transform or power spectral density is zero above a certain finite frequency. The only 

available information of the disturbances is the number of distinctive spatial frequencies and 

the spectrum distribution for non-periodic disturbance components.   ,t ff x t   and 

  ,t gg x t   are known vector-valued functions with unknown but bounded system 

parameters, i.e., 1f f fk       and 1g g gl      ;   ,t ff x t   and 

  ,t gg x t   represent unstructured modeling inaccuracy, which are also assumed to be 

bounded. Instead of using time t  as the independent variable, consider an alternate 

independent variable ( )t  , i.e., the angular displacement. Since by definition 

 
0

( ) ( ) (0),
t

t d        

where ( )t  is the angular velocity, the following condition 

 
   ( ) 0,   t >0

d
t

dt
 (2) 

will guarantee that ( )t  is strictly monotonic such that   1( )t  exists. Thus all the 

variables in the time domain can be transformed into their counterparts in the  -domain, 

i.e., 
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1 1

1 1

1

ˆ ˆ( ) ( ( )),  ( ) ( ( )),

ˆˆ( ) ( ( )),  ( ) ( ( )),

ˆ( ) ( ( )),

x x y y

u u d d

     

     

    

 

 



 

 



  

where we denote ̂  as the  -domain representation of  . Note that, in practice, (2) can 

usually be satisfied for most rotary motion system where the rotary component rotates only 
in one direction. Since 

 
ˆ ˆ( ) ( ) ( )

ˆ( )
dx t d dx dx

dt dt d d

   
 

    

(1) may be rewritten as 

 
             

   

ˆ( )
ˆ ˆ ˆ ˆ ˆ ˆ( ) , , , ,

ˆ ˆˆ ˆ ˆ( ) ( ) ( ) .

t f t f t g t g

y n y

dx
f x f x g x g x u

d

y x d x d

          


    

           

    
 (3) 

Equation (3) can be regarded as an NPI system with the angular displacement   as the 

independent variable. Note that the concept of transfer function is still valid for linear 

position-invariant systems if we define the Laplace transform of a signal ˆ( )g   in the 

angular displacement domain as 

  


  
0

ˆ ˆ( ) ( ) sG s g e d .  

This definition will be useful for describing the linear portion of the overall control system. 

2.1 Transformation of an LTI rotary system with actuator saturation 

Suppose a state space realization of an LTI model for a typical rotary system can be 
expressed as 

 

( ) ( )

( ) ( )

( ) 0 ( )

v u

z zv zu

y yv

x t A B B x t

z t C D D v t

y t C D u t

    
         
        


 (4) 

where x(t) is the system state vector, ( )x t  denotes the time derivative of the state vector, v(t) 

is the output disturbance vector that contains spatially periodic components, z(t) denotes the 
output vector related to system performance, y(t) is the measurement vector, and u(t) is the 
control input vector. Those signals are linearly related by the matrices shown in (4), i.e., A, 
Bv, Cz, etc. and all of the matrices and vectors are assumed to have compatible dimensions. If 

(t) is a strictly monotonic function of t such that its inverse t = 1(t) exists and does not 

vanish, variables in time domain will have a well defined counterpart in the -domain, i.e., 

 
1 1

1 1 1

( ) ( ( )),  ( ) ( ( )),

( ) ( ( )),  ( ) ( ( )),  and ( ) ( ( )).

x x z z

y y v v u u

   

     

 

  

 

  

  
    
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Suppose the angular velocity can be measured in real-time and written as 

 0( ) ( ) 0,C x        (5) 

where 0 is the nominal angular velocity and C  is an appropriate output matrix. Applying 

the aforementioned transformation, substituting (5) into (4), and imposing the saturation 
function 

 
max max

min max

min min

,  

( ) ,  

,  

u u u

sat u u u u u

u u u


  
 

  

on ( )u , we have 

 
0 0 0( ) ( ) ( ) ( ) ( )

( ) ( ) .

( ) 0 ( ( ))

v u

z zv zu

y yv

x A C x B C x B C x x

z C D D v

y C D sat u

      
 
 

       
         
        

    
 
 

 (6) 

The system expressed by (6) is an angular displacement reformulated (ADR) system with 

the angular displacement  as the independent variable. 

3. Linear spatially sampled robust repetitive control 

Linear robust controller design is aiming at synthesizing a feedback controller so that 
stability and performance of the overall (closed-loop) control system is insensitive (i.e., 
robust) to external disturbances and model uncertainties. There are four popular terms used 
to characterize the performance of a linear feedback control system, namely nominal 
stability, nominal performance, robust stability, and robust performance (Zhou & Doyle, 
1997). We say that a feedback control system is stable if its output signals are bounded when 
subject to bounded input signals. A feedback control system meets (steady-state) 
performance if it is stable and the ratio of the sizes (measured by a mathematical norm, e.g., 
2-norm) of its output to input signals is bounded above by certain frequency dependent 
number. In most cases, stability comes first, and performance comes next in the priority of 
the design. Nominal stability/performance is to be satisfied by controller design only for a 
plant, i.e., the model of the to-be-controlled system (free of parameter uncertainty), while 
robust stability/performance is to be satisfied by more challenged design for a set of plants, 
which include the nominal one and those due to plant parameter variation. Linear fractional 
transformation (LFT) is a popular and effective technique to formulate and pose a robust 
control design problem as will be demonstrated next. 

3.1 Synthesis of the robust controller 

Start the design by first looking at the LFT representation of the desired closed loop control 

system depicted in Fig. 1, which incorporate two motors as the actuators. An LFT 

representation basically consists of three blocks: generalized plant, generalized uncertainty, 

and the stabilizing controller. Several variables and components need to be explained here. 

First, the generalized plant ( )P z  (i.e., discrete-position system with z denoted the variable 
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used in the z-transform) includes the plant, and all linear weighting filters whose magnitude 

responses are used to specify the frequency-wise bounds on the output signals and 

modeling uncertainty. All mathematical operations within the generalized plant are either 

addition of two signals or scalar multiplication of signals, which renders ( )P z  linear. Note 

that only motor actuators are considered in the framework and driven by the control input u 

calculated by the controller ( )K z . Other type of actuators can also be considered. Second, 

the inputs to the controller y are output signal measurement, e.g. velocity error from the 

rotary component. Third, the variable w includes those external signals such as periodic 

disturbances while the variable z includes those physical quantities which are important to 

system performance. Furthermore, p and q represent the input and output of the generalized 

uncertainty which is formed by all the uncertainty blocks from the generalized plant. The 

uncertainty blocks are usually formed by the modeling error and plant nonlinearity. There 

exist standard procedures and techniques to ‘pull out’ uncertainties from the generalized 

plant (Zhou & Doyle, 1997). 
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Fig. 1. LFT representation of the EP closed-loop control system using motor actuators. 

Based on the LFT representation, a discrete-position state space realization of the to-be-
controlled system (the generalized plant plus the generalized uncertainty) can be written as 

  

1 1 2[ ] ,

,

,

,

k k M M k W k

IM
k k YW k

ID

k IQ k ZW k

x Ax B B u B w

C
y x D w

C

z C x D w

q p

   

 
  
 

 

 

 (7) 
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and the optimal stabilizing controller ( )K z  , parameters of which stabilize the system and 

also minimize the size of the transfer function from w to z (or the ratio between the sizes of 

w and z if induced matrix norm is used) in the presence of the generalized uncertainty, can 

be represented as 

 1 1
1 2

2

( ) ( ) [ ] .K
K K K K

K

C
K z zI A B B D

C
 

   
 

 (8) 

The corresponding optimization (or robust performance) problem can be formulated as 

 
minimize ( )

subject to ( ) stabilizes the system,

wzH z

K z
  

where ( )wzH z  is the transfer function from w to z, and   is some induced matrix norm. 

The decision variables to be found are KA ,  1 2K KB B ,  1 2
T

K KC C and KD . It has been 

shown that the above problem is nonconvex and a sophisticated search algorithm (e.g., D-K 

iteration) needs to be implemented in order to locate the global optimal solution. An 

alternative way is to consider a suboptimal controller which is the solution to the following 

problem 

 
minimize ( )

subject to ( ) stabilizes the system,

qw pzH z

K z

   

where ( )qw pzH z  is the transfer function from  q w  to  p z , and   is some induced 

matrix norm. This is the so-called mixed-sensitivity optimization problem and is convex. 

There have been standard software tools for solving this type of problems (Gahinet & 

Nemirovski, 1995). 

3.2 Discrete-position model of the system 

Suppose that the open-loop LTI system P(s) has a state space realization, i.e., 

 

( )
( ) ( )

( ) ( ) ( ),

u

y yv

dx t
Ax t B u t

dt
y t C x t D v t

 

 
 (9) 

where ( )v t  denotes disturbances at the plant output. Equation (9) is basically a simplified 

version of (4). Instead of using time t as the independent variable, we can pick angular 

position, ( )t , as the independent variable, i.e. ( )t  . Thus in the  -domain Eq. (9) can be 

expressed as 

 

  

  

( )
( ) ( )

( ) ( ) ( ),

u

y yv

d dx
Ax B u

dt d

y C x D v

   


  

 

 
 (10) 
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where  1( ) ( ( ))x x f  ,  1( ) ( ( ))u u f  ,  1( ) ( ( ))y y f  , and  1( ) ( ( ))v v f  .  

Linearize the equation around the nominal angular velocity 0 , we have 

 

  

  
0 0

( )
( ) ( )

( ) ( ) ( ).

u

y yv

Bdx A
x u

d

y C x D v

  
  

  

 

 

 (11) 

Equation (11) is a linear position invariant (LPI) system with the angular position ( )t  as the 

independent variable. Note that this transformation will render those position-dependent 

disturbances within v  periodic and stationary. The performance of a repetitive controller 

synthesized in the -domain will not be compromised. Properly choosing spatial sampling 

frequency T  (in number of samples per revolution), we can discretize Eq. (11) and acquire 

a discrete-position model, i.e. 

 
  

  

 
  




 
    

 
 

0 0
1

0 0

.

A ATT
u

k k k

k ky yvk

B
x e x e d u

y C x D v

 (12) 

The procedures summarized in the literature (Chen & Chiu, 2001) can now be applied to the 
plant model expressed in Eq. (12) for synthesizing a two degree of freedom (TDOF) discrete-
position robust repetitive controller. 
 

e

w

 0.5P z  1W z

 2W z  f z 2 z
2q 2p

z











 1 z





 3C z

 4C z





4y

3y3u

4u

1q 1p

10.5 (1 )u   
Model uncertainty

Nz q z




3q3p

 3 zRepetitive control

performance

e

w

 0.5P z 0.5P z  1W z 1W z

 2W z 2W z  f z 2 z
2q 2p

z











 1 z





 3C z 3C z

 4C z 4C z





4y

3y3u

4u

1q 1p

10.5 (1 )u   
Model uncertainty

NzNz q z q z




3q3p

 3 zRepetitive control

performance

 

Fig. 2. The proposed TDOF robust repetitive control system. 
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3.3 TDOF robust repetitive controller 

To reduce system sensitivity or increase system robustness to unmodeled dynamics or 

nonlinearity (i.e. actuator saturation), we can formulate the control problem within a unified 

linear design framework, i.e. using LFT. The proposed TDOF control structure is depicted in 

Fig. 2. The actual plant is represented as a saturation element 10.5(1 )   with 1| | 1   

followed by a nominal model ( )P z  with output multiplicative uncertainties 2 2W  . 2W  is 

the frequency-dependent uncertainty weighting filter such that 2 1  . It can be picked to 

be any stable filter with its magnitude upper bounding the multiplicative error between the 

model and the actual plant, i.e. 

 
   

   2

ˆ

,  

jw jw

jw

jw

P e P e
W e w

P e


    (13) 

Furthermore, the kernel of the repetitive controller   Nq z z  is replaced by a fictitious 

uncertainty 3 . Also another fictitious uncertainty f  is connected between the disturbance 

input and plant output. 1W  is the frequency-dependent weighting filter that approximates 

human contrast sensitivity function (Chen et al., 2003). Thus, a TDOF controller is obtained 

by solving the following mixed-sensitivity optimization problem given by 
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, (14) 

where 

 

 

1

2

3 4

Motor/Gear transmission system

Performance weighting

Uncertainty weighting

 The TDOF controller

P

W

W

K C C






  

With upper and lower LFT denoted by  ,uF    and  ,lF   , respectively (Zhou & Doyle, 

1997), the robust performance of the designed control system can further be evaluated by 

looking at the structure singular value of   , ,l uF F M R K  with respect to the uncertainty 

block  1 2, , fdiag     , i.e.    , ,l uF F M R K . Note that     NR z q z z  is the kernel of 

the repetitive controller. 

3.4 Effect of nominal angular velocity variation on temporal-based repetitive control 

A repetitive control system creates comb-like notches in the system sensitivity function at 
periodic disturbance frequencies. For a motor/gear rotary system where significant 
disturbance sources come from gear eccentricity or tooth profile error, temporal frequencies 
of those disturbances will be proportional to the nominal angular velocity. Thus the 
performance of temporal-based repetitive control systems will deteriorate as the nominal 
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angular velocity varies. The velocity variation can be caused by friction, which is usually 
time-varying and difficult to be taken into account during design of the controller. Based on 
the proposed TDOF repetitive controller design, Fig. 3 shows the effect of nominal velocity 
variation on the performance of the sensitivity reduction. Parameters of the repetitive 
controller were specified to reject a disturbance located at 16 Hz when the system is 
operating at a nominal angular velocity of 3.14 rad/s. It can be seen that as the nominal 
velocity deviates from the desired value, the ability of the repetitive controller to reject the 
disturbance at 16 Hz degrades significantly. As shown in Fig. 3, a 0.2% variation in the 
nominal speed has an order of magnitude effect in the effectiveness of disturbance rejection. 
This high sensitivity to operating velocity is the motivation for pursuing the spatial-based 
repetitive control. 
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Fig. 3. Effect of nominal angular velocity variation on performance of the repetitive 
controller. 

3.5 Spatial-based repetitive control 

The proposed discrete-position repetitive controller was implemented on a typical 600-dpi 
laser printing system. An optical encoder was mounted on the main rotary component, i.e., 
an organic photoconductor (OPC) drum. A spatial sampling scheme that uses the encoder 
pulses (instead of a master clock) to trigger the interrupt of the control algorithm at intervals 
of equal angular position was implemented. Instead of counting number of pulses within a 
sampling period, the angular velocity was determined by monitoring the amount of time 
elapsed for fixed number of encoder pulses. This method actually enables low-cost encoders 
to achieve high-resolution velocity measurement. The spatial sampling frequency was set at 
2000 samples/rev such that the discrete-position repetitive controller has a period of 
N=2000/16=125. The engine started printing when velocity data of 10 revolutions were 
collected from the OPC drum for analysis. Fig. 4 shows the measured angular velocity from 
the OPC drum. Note that as the paper goes through the printing process, it slightly 
increased the load on the transmission system. This impact decreased the nominal angular 
velocity from 3.14 rad/s to 3.07 rad/s. However, the frequency spectrums, as shown in Fig. 
5, indicated that the performance of the discrete-position repetitive control system was not 
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degraded by this variation in the nominal velocity. Fig. 5 also shows that capability of the 
temporal-based repetitive controller was compromised due to frequency shifting of those 
periodic disturbances. 
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Fig. 4. Measured OPC angular velocity during printing. 
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Fig. 5. Experimental PC velocity variation spectrum. 

4. Linear parameter varying spatially sampled repetitive control 

Several controller design approaches, e.g., design by linearization as shown previously and 
design for linear periodic system using the lifting technique (Chen & Francis, 1995; Hanson 
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& Tsao, 2000), can be considered for the ADR system represented in (6). In this section, we 
first demonstrate that the ADR system with actuator saturation can be formulated into a 
linear parameter varying (LPV) system. Next, we show that with additional 
parameterization, LPV gain-scheduling controller synthesis methods (Becker & Packard, 
1994; Apkarian et al., 1995) can be applied to the ADR system. Finally, repetitive control and 
anti-windup (Wu et al., 2000) formulations can be incorporated into the LPV framework to 
reject spatially periodic disturbances and avoid actuator saturation. 

4.1 State-dependent linear parameter varying (LPV) system 

Assume that the angular velocity described by (5) can be measured in real-time and the 

input u  and the output ( )sat u  of the actuator saturation is accessible. By defining two 

varying parameters 

 
1 ( )

and ,
sat u

u
 


 


 

  

we can rewrite (6) as 
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 (15) 

where 
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

  

Equation (15) represents a linear parameter-varying (LPV) system with two varying 

parameters whose values are accessible in real-time. Strictly speaking, (15) represents a 

quasi-LPV system since one of the varying parameters (ρ) is a function of the system states 

(Shamma & Athans, 1992).  

Without the actuator saturation constraint, i.e.  = 1, (15) can be written as an affine LPV 

system, 
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y C D u

    
 
 

    
         
        

 
 
 

. (16) 

Affine LPV representation has many desirable properties that can facilitate subsequent 

controller design. For the quasi-LPV system represented by (15), by defining an augmented 

varying parameter 

     
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such that ( , )u u uB B B     , (15) can be represented by a pseudo-affine LPV system with 

three varying parameters (, , ), i.e., 

 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) .

( ) 0 ( )

v u

z zv zu

y yv
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y C D u

   
  
 

    
         
         

   
 

 
 (17) 

The name pseudo-affine is used since  is not an independent parameter but depends on the 

other two parameters  and . The impact of over-parameterizing the parameter space will 

be discussed in later section. Controller synthesis problem for a pseudo-affine LPV system 

(17) or an affine LPV system (16) can be reduced to solving a finite set of linear matrix 

inequalities (LMIs) under conditions satisfied by the parameter variation set and the 

input/output matrices.  

The following example demonstrates the process of reformulating a simple 2nd order motor 

system model to a pseudo-affine LPV system in the angular displacement domain. Consider 

a transfer function representation of an LTI model for a permanent magnet brushless dc 

motor, 

    
 2

( ) ( ) ( ) ( ) ( )
c

Z s Y s V s U s V s
s as b

, (18) 

where ( )U s  is the voltage input to the motor, ( )V s  is the output disturbance, and ( )Y s  and 

( )Z s  are the undisturbed and disturbed angular position output, respectively. A state space 

model for (18) can be obtained by defining a set of state variables 

   1 2( ) ( ) ( ) ( )
T T

x t x t y t y t  , i.e., 
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Since 
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x t dt x x
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        

   
    ,  

where (t) and (t) are the motor angular position and angular velocity, respectively. We 
can represent (19) as an ADR pseudo-affine LPV system by defining three varying 
parameters, 

 1 ( )    , ( )sat u u    , and   .  

From (17), the associated LPV system can be written as 
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1 1
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

.  

4.2 Synthesis of gain-scheduling controller for an affine LPV system 

We will briefly summarize the results pertinent to the synthesis of an LPV gain-scheduling 

controller. Note that these results are originally derived for time-based systems, i.e., using 

time as the independent variable. However, they are equally applicable for an ADR system 

using angular displacement as the independent variable. 

For the LPV system represented by (17), suppose a parameter-dependent output feedback 

dynamic controller is to be designed from y  to u , represented by 
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 (20) 

where  = (, , ) forms a parameter vector. Equation (20) is a full-order design in the sense 

that  nx R  implies  n
Kx R . Note that the controller is parameterized by the measurable but 

varying parameter vector ψ, which explains the gain-scheduling characteristics. Define 

    T

cl Kx x x , the closed-loop LPV system with (17) and (20) can be expressed as 
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In the above equations, all I’s and 0’s are identity and zero matrices, respectively, with 

compatible dimensions for block matrix addition and multiplication. Denote the above LPV 

closed-loop system as Pcl. Define the Laplace transform of a signal ( )g   in the angular 

displacement domain to be 

 
0

( ) ( ) sG s g e d 
     .  

The quadratic LPV γ-performance problem can be summarized in the following theorem: 
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Theorem 3.1 The LPV closed-loop system Pcl is exponentially stable and the scaled H norm 

of the system is less than a scalar  > 0, i.e., 

      

 
      1 2 1 2 1 2 1 21( )( ( )) ( ) ( ) ,cl cl cl cl clL P L L C sI A B D L  (21) 

for all  belonging to a parameter variation set , if there exists a symmetric positive 

definite  matrix X  Rnn and a scaling matrix L reflecting certain parameter structure such 

that 
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B X L D

C D L

 (22) 

Proof: See (Becker & Packard, 1994) or (Gahinet & Apkarian, 1994). 

With the help of the projection lemma and the completion lemma, the following theorem 

can be derived to provide the necessary and sufficient conditions for the solvability of the 

(quadratic) LPV γ-performance problem stated above. 

Theorem 3.2 For a given   , let NR() and NS() denote orthonormal bases of the null 

spaces of    
 ( ) ( )T T

u zuB D  and    
 ( ) ( )y yvC D , respectively. The LPV γ-performance 

problem is solvable if and only if there exist symmetric matrices (R, S)  Rnn and symmetric 

scaling matrices L and J such that the following matrix inequalities 

 

( ) ( ) ( ) ( )
( ) 0 ( ) 0

( ) ( ) 0,
0 0

( ) ( )

T T
z vT

R R
z zv

T T
v zv

A R RA RC B
N N

C R J D
I I

B D L

   
 

  

  

 
    

     
    

  

   
 

 
 (23) 

 

( ) ( ) ( ) ( )
( ) 0 ( ) 0

( ) ( ) 0,
0 0

( ) ( )

T T
v zT

S ST T
v zv

z zv

A S SA SB C
N N

B S J D
I I

C D L

   
 

  

  

 
    

     
    

  

  

 
 

 (24) 

 
 

 
 

0
R I

I S
 (25) 

 LJ I  (26) 

hold for all   . 

Proof: Follows the proof in the appendix of (Gahinet & Apkarian, 1995). The only difference 

being that most matrices are now parameter dependent. 

If the LPV γ-performance problem is solvable, the two symmetric matrices R and S along 

with the value of  and the system matrices (  ( )A ,  ( )vB ,  ( )uB , etc.) can be used to 

synthesize the controller matrices (  ( )KA ,  ( )KB ,  ( )KC , and  ( )KD ) (Becker & Packard, 

1994; Gahinet, 1996). 
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Remark The scaling matrix L in the above theorems takes into account the structural 

information on the mapping relating input v  and output z  in (17), which can include 

unmodeled dynamics, errors in sensing the varying parameters, and uncertain parameters 
which can not be measured in real-time. However, the resulting matrix inequalities are 
nonconvex, mainly due to (26), and computational techniques such as scaling/controller 
iteration or D/K iteration will be required to solve for matrices R and S. 
To simplify the subsequent derivation, we will be conservative and ignore the structural 

information of the mapping between v  and z . This is equivalent to setting L = J = I and 

removing the constraint defined by (26) from the above theorem. The advantage of doing so 
is that (23)-(25) become LMIs in R and S and the optimization becomes a convex problem 
that can be solved using numerical solvers based on interior point method, e.g., (Gainet et 
al., 1995). To check the solvability of the problem for the system given by (17) using 
Theorem 3.2, the following substitution is used 

 

( ) ,  ( ) ,  ( ) ,

( ) ,  ( ) ,  ( ) ( ),

( ) ,  ( ) .

v v u u

z z zv zv zu zu

y y yv yv

A A B B B B

C C D D D D

C C D D

     

   

 

  

  

 

  
   
 

  

Since  constitutes infinite number of elements, inequalities (23)-(25) pose solvability issue 
with infinite number of LMI constraints. It was suggested in (Becker & Packard, 1994) that 
the parameter space be gridded and a controller is synthesized such that it satisfies the 
solvability conditions at the finite number of parameter values. However, for fixed grid 
spacing, the number of grid points grows rapidly as the number of parameters increases. 
Another way to reduce the number of constraints is to take advantage of the properties of 
polytopic LPV systems. 
Definition An LPV system is polytopic if the state-space matrices of the system depend 
affinely on the varying parameters that lie within a polytope, i.e., 

 
1 1

: 1,  0 ,
r r

i i i i
i i

   
 

      
  
    

where r is the number of vertices of the polytope and i is the parameter vector 
corresponding to a vertex of the polytope. 

Proposition Let f :   R be a convex function where  is a convex set with vertices i’s, 

i.e., 
1 1

: 1,  0
r r

i i i i
i i

   
 

      
  
  . Then f(x) <   for all x   if and only if f(i) <   for i=1, 

2,…, r (Berkovitz, 2002). 
For a polytopic LPV system satisfying the following two assumptions: 

i. ( ) 0yuD   ; that is, no direct transmission from u  to y , 

ii. ( )u uB B   , ( )y yC C   , ( )zu zuD D   , and ( )yv yvD D   ; that is, those matrices are 

constant matrices that are independent of the varying parameters,  

it can be easily shown (using the above proposition) that (23) and (24) in Theorem 3.2 hold if 

and only if they hold for the matrices corresponding to the vertices of the parameter 

polytope, i.e.,   ( )iA ,  ( )v iB ,  ( )z iC ,  ( )zv iD  for i=1, 2,…, r (Apkarian et al., 1995). In other 
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words, only the 2 1r  LMIs corresponding to the vertices of the parameter polytope need 

to be formed for solving matrices R and S in Theorem 3.2. 

The affine-LPV system represented in (16) qualifies as a polytopic system with matrix 

 0yuD  and the matrices A, Bv, and Bu depend on the varying parameter . Although the 

pseudo-affine LPV system represented by (17) has similar structure as (16) with  0yuD  and 

the matrices A ,  vB , uB , and 
zuD  depend on varying parameters, it is not polytopic due to 

the dependency of the varying parameter η on the two varying parameters   and  . In 

such cases, a polytope can usually be found to bound and replace the parameter variation 

set. To satisfy the assumption (ii), parameter dependency of the uB  or the Bu matrix can be 

removed by filtering the input channel, as will be discussed in section 3.3. For systems 

without direct transmission between u  and z , e.g. the brushless dc motor system 

demonstrated in section 3.1, it is easy to verify that   0zu zuD D .  

4.3 Incorporating spatial-sampled repetitive control and actuator anti-windup 

The overall control structure is summarized in Fig. 6. Here ( )G   along with the actuator 

saturation block represents the pseudo-affine LPV system,  denotes the modeling 

uncertainty, and W1 and W2 are weighting filters whose frequency-dependent magnitudes 

are used to bound the performance specifications and model uncertainty. The repetitive 

controller is denoted by RC and the LPV controller to be designed is denoted by K(). The 

open-loop LPV system (within the dashed-line block in Fig. 6) can be expressed as 

 

( ) ( ) ( ) ( ) ( )( )

( ) ( )( )
,

( )( ) ( )
( )( ) 0

p v u

q qp qv qu

z zp zv zu

y yp yv

A B B B xx

C D D D pq

vz C D D D
uy C D D

    
 

 


                             

    
 




 (27) 

which differs from (17) in that unstructured model uncertainty, connecting output q  to 

input p , and weighting filters are also incorporated. The current formulation considers two 

types of perturbations. One is due to the varying parameters, which is bounded and can be 

measured in real-time. The other is due to modeling error, which is also bounded but can 

not be measured in real-time. In (27), without actuator saturation constraint, i.e.  = 1, we 

have  =  and the matrices 
quD  and 

zuD  become constant matrices and independent of 

varying parameters. 

To account for spatially periodic disturbances, we will consider a low-order and attenuated 

spatial-based repetitive controller that takes the form of 

 
2 2

2 2
1

21
( )

1 2

k
i ni ni

ir i ni ni

s s
RC s

s s s

  
   

 


  
 

  
  

or equivalently in state space representation 

 
2

rc rc rc rc

rc rc

x A x B y

y C x

 


  
 

,  
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where k is the number of spatially sinusoidal disturbances that is to be compensated.  ni is 

the ith disturbance frequency in rad/rev. Damping ratios associated with the poles, i, and 

zeros, i, of the repetitive filter need to satisfy the condition 0 < i < i < 1, to ensure 

sensitivity reduction at spatial frequency  ni rad/rev. The gain of the repetitive controller 

RC( s ) can be adjusted by varying i and i. A low-pass filter with roll-off frequency r 

rad/rev is included to attenuate the controller gain in the high frequency region that is 
similar to the q-filter used in a digital repetitive controller. As shown in Fig. 6, the repetitive 

controller takes y  as input and creates a new input 
2y  to the ‘to-be-designed’ LPV 

controller K(). 
To address actuator saturation, an anti-windup scheme as proposed in [36] can be 
formulated that feeds the difference between the actuator input and output back to the 
controller. This corresponds to creating a new input for the LPV controller, i.e., 

   
1 ( 1) .y u   

If the control u  does not saturate, i.e., 1  , then 1 0y   and this additional input is 

deactivated. If the control u  saturates, i.e., 1  , then 1 0y  , which provides additional 

degree of freedom for manipulating the control u . 
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Fig. 6. LPV gain-scheduling control system with repetitive controller. 
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The open-loop LPV system with repetitive and anti-windup control (within the dashed-line 
block in Fig. 6) can be shown to have the following state-space representation: 

 

1

2

( ) 0 ( ) ( ) ( )( )
0 ( )( )

0 ( )( )

( ) 0 ( )

( ) 0 0
( )

0 0 0 0 1
( )

0 0 0 0

p v u

rc y rc rc yp rc yv
rc

q qp qv qu

z zp zv zu

y yp yv

rc

A B B B
x

B C A B D B D xx

C D D D xq

z C D D D

y C D D
y

y
C

   



 

 


                                    

   
 

 






( )

( ) .

( )

( )

rc

p

v

u






 
 
 
 
 
 
  





 (28) 

Note that the LPV controller K() now has three inputs 1 2( , , )y y y    and one output u . The 

parameter dependency of the input and output matrices (e.g., uB  and yC ), if any, can be 

removed by considering the dynamics of the sensors and actuators (Apkarian et al., 1995). 

Let 

 

1 1 1 1

2 2 2 2 1

3 3 3 23

0 0 0 0

0 0 0 0 ,

0 0 0 0

o o o o

o o o o

o o oo

x A x B y

x A x B y

A x B yx

         
                   
                  

  
  
  

  

 
1 1

1 2 2

2 3 3

ˆ 0 0

ˆ 0 0 ,

ˆ 0 0

o o

o o

o o

y C x

y C x

y C x

     
          
          





  

where 1 2
ˆ ˆ ˆ( , , )y y y  represent the new outputs, and 

 
ˆ ,

,
i i i i

i i

x A x B u

u C x

 


 
 

  

where û  represent the new input. This action is equivalent to passing each input or output 

channel of the open-loop LPV system in (28) through a low-pass filter 

 

1

1

( ) ( ) ,  1,2,3 or

( ) ( )

j oj oj oj

i i i

H s C sI A B j

F s C sI A B





  

 

 

 
,  

respectively, before connecting to the LPV controller K(), as depicted in Fig. 7. The 

bandwidth of the low-pass filters depends on the sensor and actuator dynamics. For 

negligible senor or actuator dynamics, the bandwidth can be assigned to be much larger 

than that of the open-loop system to minimize possible interference. With the inclusion of 

the anti-windup formulation and the input/output filters, the overall open-loop LPV system 

with parameter-free input-output matrices can be found to be 
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û

2ŷ
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Fig. 7. LPV gain-scheduling control system with repetitive controller, anti-windup scheme, 
and sensor/actuator dynamics. 

By making the following definitions 
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we can rewrite the above system as 

  

 
 

                       

 
 
 

( ) ( )

( ) ( ) ,

0

V U

Z ZV ZU

Y YV

X XA B B

Z C D D V

C D UY

 (30) 

where the system and input/output matrices are of appropriate dimensions and can be 
identified from (2). Note that the matrices BU and CY are free of varying parameters. 

4.4 Discretization of angular displacement reformulated systems 

A spatial sampling scheme that uses the output pulses of an optical shaft encoder (instead of 

a clock signal) to trigger the interrupt of the control algorithm at intervals of equal angular 

displacement was implemented. The constant angular displacement based sampling 

effectively discretized the control system in the angular displacement domain. Note that an 

ADR system, see (15), without varying parameters can be viewed as an LTI system with 

angular displacement  as the independent variable as compared with time t. Theorems or 

methods used to derive the discrete equivalent of LTI systems, e.g., z-transform (impulse 

invariant), zero-order hold (step invariant), and bilinear or trapezoid rule, can be applied to 

ADR systems with slightest modification. What needs to be kept in mind is that the 

sampling behavior has changed from equal time interval (in sec) to equal angular 

displacement interval (in revolution). 

4.5 Experimental setup and validation 

Rotational velocity regulation in a laser printer will be used to verify the effectiveness of the 

proposed spatially sampled repetitive control in rejecting spatially periodic disturbances. A 

600-dpi monochrome laser printer is used as the experimental platform that comprised of 

one brushless dc motor, with a set of gear and a photosensitive drum. The hardware setup is 

depicted in Fig. 8. The motor velocity is regulated by adjusting the voltage input to a pulse 

width modulated (PWM) power drive. A digital encoder with a resolution of 50,000 

pulses/rev is mounted on the photosensitive drum to measurement of angular 

displacement and velocity. To maintain the desired dot placement accuracy, the 

photosensitive drum is expected to rotate at a nominal angular velocity of 0.5 rev/sec. This 

corresponds to a motor voltage input of 2.56 volts. The saturation limits for the input 

voltage are identified to be 0.5 volts around the nominal value, i.e., max 3.06u   and 

min 2.06u  . According to the frequency spectrum of the measured speed fluctuations, 

spatially periodic components at spaitial frequencies of 32, 48, and 96 cycles/rev need to be 

reduced, since they caused visible bands in printed images. A 2nd order transfer function 

from the motor voltage input to the drum angular velocity output is obtained to 

approximate the actual frequency response of the experimental platform, i.e. 
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Fig. 8. Experimental setup for the closed-loop control of a typical 600-dpi monochrome laser 
printer. 

The output multiplicative modeling errors are obtained by comparing the frequency 
responses of the plant model and the experimental platform, as shown in Fig. 9. Note that 
the spatial frequency response shown in Fig. 9 is obtained from the temporal frequency 
response where the spatial frequency in cycle per revolution is scaled by the nominal 
angular velocity. A stable 1st order filter that upper bounds the multiplicative model 
uncertainty can be found to be 
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Fig. 9. Output multiplicative uncertainties for the experimental platform approximated 
using a 2nd or 3rd order transfer function. The solid line is the magnitude of a 1st order filter 
that upper bounds the uncertainties. 
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Note that the affine nature of the open-loop LPV system (29) will be intact after inclusion of 
the parameter independent filter, W2. The selection of W1 requires more considerations. First 

of all, the LPV controller will be independent of the saturation indicator  if the performance 

weighting does not depend on  [36]. In other words, the design problem using parameter-
free W1 will degenerate to one without actuator saturation. Secondly, if a parameter 
dependent W1 filter is chosen, the affine nature of the LPV open-loop system will be 
preserved after incorporating the filter. Thus, a feasible W1 filter can assume the following 
state space realization 

  1 1

1

( ) ,

ˆ ,

w b w

w

x b x ez

z e x kz

 


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which has the transfer function 
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Note that the magnitude curve of W1 can be specified by tuning the constant values of b , b, 

e, and k. Specifically, k can be used to specify the lower bound for the W1 magnitude at high 

frequencies (i.e., as s  ); the coefficient b can be used to specify the lower bound of the 

corner frequencies; coefficients b and e can be used to specify the exact corner frequencies 

and the W1 magnitude at low frequencies (i.e., as 0s  ). The parameter variation set   is 

determined to be 

  ( , , ) :  1 10, 0.1 1,              .  

 

 

Fig. 10. Parameter variation set   and the selected (convex) polytope   which bounds the 
set. 
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The upper and lower bounds of  and  are empirically determined based on a velocity 

variation from –80 % to +100% around the nominal value of 0.5 rev/sec and a 10-to-1 

saturation limit, respectively. The parameter variation set   is not convex but can be 

shown to lie within a polytope  with four vertices located at 1 (10,1,10)  , 

2 (10,0.1,1)  , 3 (1,1,1)  , and 4 (1,0.1,0.1)   (see Fig. 10). The polytope  will be used 

for the following design. Given that   [0.1, 1] in , the parameters of the weighting filter 

W1 can be properly determined to reflect the different performance requirement for the 

unsaturated ( = 1) and saturated ( < 1) system. Fig. 11 shows the magnitude curves of W1 

with k = 0.03, b = 212, b = 0.1b and e=5/3×b  as   [0.1, 1]. The magnitude curve of W2 

is also shown in the figure. The low-pass filters ( )jH s  and ( )F s  are selected as 
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Fig. 11. The parameter-dependent performance weighting W1 and uncertainty weighting W2. 

where the frequency value of 1000 cycles/rev is specified to reflect the negligible sensor and 
actuator dynamics. The low-order attenuated repetitive controller can be expressed as 
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where the periodic disturbances are at 32, 48 and 96 cycles/rev. A feasible LPV controller is 
determined based on the above parameters, which attains γ = 1.1669. The controller can be 
written as 
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where 
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We can view (31) and (32) as an LPV repetitive controller (LPVRC). For practical 
implementation, the vertex controllers need to be transformed into their discrete-position 
invariant counterparts, e.g., using bilinear transformation. The nominal performance (NP), 
robust stability (RS), and robust performance (RP) curves for the four vertex systems are 
shown in Fig. 12. 
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Fig. 12. NP, RS and RP curves for the four vertex closed-loop systems. 
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The experiment was performed by activating the LPVRC controller and rotating the 
photosensitive drum for 40 revolutions with step change in nominal velocity. During the 
operation, the nominal motor input voltage was changed at the 10th, 20th and 30th revolution, 
which shifted the nominal drum angular velocity. This can be seen in Fig. 13, which depicts 
the histories of drum angular velocity, motor input voltage and the three varying 
parameters with respect to the drum angular position. Fig. 14 compares the spatial 
frequency spectrum of the velocity signals within each 10-revolution interval to that of the 
uncompensated system. We can see that the performance of the LPVRC controlled system is 
insensitive to changes in nominal drum angular velocity. Note that the magnitude increases 
near dc frequency are due to the transient responses. As a comparison, Fig. 15 shows the 
responses when the system is under the control of a fixed temporal repetitive controller. As 
expected, a fixed-period repetitive controller operating in the time domain is unable to 
effectively compensate for the disturbances whose temporal periods change with the 
rotational speed of the system. 
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Fig. 13. Histories of drum angular velocity, motor input voltage and the three varying 
parameters with respect to drum angular position. 

The spatial sampling scheme proposed in this section raises a practical issue when 
synthesizing digital full-order repetitive controllers. The available sampling frequencies 
when conducting the scheme depends on the encoder resolution. For example, if the 
resolution of an encoder is 5000 pulses/rev, the highest sampling frequency achievable 
using the scheme will be 5000 cycles/rev. Other available sampling frequencies, depending 
on implementable divide-by-N circuits, might be 2500 (when the pulses are divided by 2), 
500 (divided by 10), etc. Due to limited choices of sampling frequencies, the number of delay 

taps N for the repetitive kernel (i.e. qN), which is the ratio of the sampling frequency and the 
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disturbance frequency, might end up being non-integral when tackling certain disturbance 
frequencies. 
Other nonlinear control design approaches (e.g., sliding mode and adaptive control) can 
also be employed. However, it is not clear if frequency-wise tradeoff between performance 
and stability can be easily performed within those nonlinear design frameworks. 
It is also worth mentioning that the LPV gain-scheduling design may encounter the 
following implementation issues: 
i. The state-dependent varying parameters may leave the parameter variation set. 
ii. The measurement of the varying parameters may be contaminated by noise. 
iii. There may be delay induced in the measurement of the varying parameters. 
A feasible solution for the first issue is to setup the parameter variation set more accurately. 

Note that (22) implies that ( ) ( ) 0T
cl clA X XA    , and we can pick a Lyapunov function 

( ( )) ( ) ( )T
cl cl clV x x Xx      for the closed-loop system such that dV/d < 0. Thus, the state of the 

closed-loop system starting from 0( )clx   will stay within an ellipsoid  centered at the 

equilibrium point and defined by 

  0 0( ) ( ) ( ) ( ) ( ) .T T
cl cl cl cl clx x Xx x Xx             
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Fig. 14. Frequency spectra of the velocity signals for the open-loop and closed-loop systems. 
Spectra for the closed-loop system are divided into four, with each corresponding to signals 
measured from each 10-revolution interval (psd is abbreviation for power spectrum density) 
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The ellipsoid  provides a bound for the state-dependent varying parameters, e.g., . If a 
bound for the initial states can be established or estimated, a bound for the state-dependent 
varying parameters can be estimated, and the polytope  which contains the parameter 

variation set   can be determined more accurately. Since the proposed LPV control system 
has the property of being robust to unstructured but bounded uncertainty (specified by W2 
and ), the issues of measurement noise and uncertainty can be accounted for in the 
proposed formulation if they can be incorporated into the W2 filter and the  block. 
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Fig. 15. Frequency spectra of the velocity signals for the closed-loop system using fixed 
period temporal repetitive control. 

5. Conclusion 

In this chapter, the notion of spatial-based repetitive control system and its historical 
development were introduced. Two designs, which were experimentally verified on a rotary 
motion system, representative of recent advancement in this field were presented. The 
designs, which are applicable to a generic class of LTI systems, address important practical 
issues such as actuator saturation and modelling uncertainty. However, several drawbacks 
and limitations are worth notice. First of all, the designs resorted to linear robust control 
paradigm and account for only unstructured uncertainty. It is well known that such control 
approach might lead to limited performance if information regarding the uncertainty (e.g., 
structure) is not properly utilized. Second, the LPVRC design relies on a common Lyapunov 
function, which also results in conservative design. The design is further degraded if the 
number of varying parameters increases or the varying parameter space is nonconvex. 
Finally, both designs along with other exiting ones are applicable only to rotary systems 
operating unidirectionally. The LPVRC design can improve by employing parameter 
varying Lyapunov function (Apkarian & Adams, 1998). On the other hand, since the open-
loop spatial-based system, i.e., (3) or (6), is nonlinear, we may apply nonlinear control 

www.intechopen.com



 
Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics 

 

84

paradigm to directly approach the nonlinearities. Existing nonlinear robust control schemes 
are capable of tackling various types of modelling uncertainty. Some have built-in 
parametric adaptation mechanism or can integrate with an existing parametric identification 
scheme to improve the performance of the design. Theoretical results (with numerical 
simulation) of several designs based on adaptive feedback linearization, adaptive 
backstepping, and adaptive iterative learning control have been reported (Chen & Yang, 
2007, 2008, 2009; Yang & Chen, 2008, 2011). 
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