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1. Introduction

Robust stability of LTI systems with parametric uncertainty is a very interesting topic to study,
industrial world is contained in parametric uncertainty. In industrial reality, there is not a
particular system to analyze, there is a family of systems to be analyzed because the values
of physical parameters are not known, we know only the lower and upper bounds of each
parameter involved in the process, this is known as Parametric Uncertainty (Ackermann et al.,
1993; Barmish, 1994; Bhattacharyya et al., 1995). The set of parameters involved in a system
makes a Parametric Vector, the set of all vectors that can exists such that each parameter is kept
within its lower and upper bounds is called a Parametric Uncertainty Box.
The system we are studying is now composed of an infinite number of systems, each system
corresponds to a parameter vector contained in the parametric uncertainty box. So as to
test the stability of the LTI system with parametric uncertainty we have to prove that all the
infinite number of systems are stable, this is called Parametric Robust Stability. The parametric
robust stability problem is considerably more complicated than determine the stability of an
LTI system with fixed parameters. The stability of a LTI system can be analyzed in different
ways, this chapter will be analyzed by means of its characteristic polynomial, in the case of
parametric uncertainty now exists a set with an infinite number of characteristic polynomials,
this is known as a Family of Polynomials, and we have to test the stability of the whole family.
The parametric robust stability problem in LTI systems with parametric uncertainty is solved
in this chapter by means of two tools, the first is a recent stability criterion for LTI systems
(Elizondo, 2001B) and the second is the mathematical tool “Sign Decomposition” (Elizondo,
1999). The recent stability criterion maps the prametric robust stability problem to a robust
positivity problem of multivariable polynomic functions, sign decomposition solves this
problem in necessary and sufficient conditions.
By means of the recent stability criterion (Elizondo, 2001B) is possible to analyze the
characteristic polynomial and determine the number of unstable roots on the right side in
the complex plane. This criterion is similar to the Routh criterion although without using the
traditional division of the Routh criterion. This small difference makes a big advantage when
it is analized the robust stability in LTI systems with parametric uncertainty, the elements of
the first column of the table (Elizondo, 2001B) they are multivariable polynomic functions and
these must be positive for stability conditions. Robust positivity of a multivariable polynomial
function is more easier to prove that in the case of quotients of this class of functions, therefore,
the recent criterion (Elizondo, 2001B) is easier to use than Routh criterion. There are other
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criterions whose its elements are multivariable polynomic functions, such as the Hurwitz
criterion and Lienard-Chipart criterion (Gantmacher, 1990), but both use a huge amount
of mathematical operations in comparison with the recently stablished stability criterion
Elizondo et al. (2005). When industrial cases are analyzed, the difference of mathematical
operations is paramount, if the recently stability criterion takes several hours to determine the
robust stability, the other criterions take several days. For these reasons the recently stability
criterion is used in this chapter instead of other criterions.
Sign Decomposition (Elizondo, 1999) also called by some authors as Sign definite Decomposition
is a mathematical tool able to determine in necessary and sufficient conditions the robust
positivity of multivariable polynomic functions by means of extreme points analysis. Sign
Decomposition begun as incipient orthogonal ideas of the author in his PhD research. It
was not easy to develop this tool as thus it happens in orthogonal works with respect to the
contemporary research line, the orthogonal ideas normally are not well seen. This is a very
difficult situation on any research work, there may be many opinions, but we must accept that
the world keeps working by the aligned but it changes by the orthogonals.
In LTI systems with parametric uncertainty applications, the multivariable polynomic
functions to be analyzed depend on bounded physical parameters and some bounds could
be negative. So sign decomposition begins with a coordinates transformation from the
physical parameters to a set of mathematical parameters such that all the vectors of the new
parameters are contained in a positive convex cone; in other words, all the new parameters are
non-negatives. In this way, the multivariable polynomic function is made by non-decreasing
terms, some of them are preceded by a positive sign and some by a negative sign. Grouping all
the positive terms and grouping all the negative terms, then factorizing the negative sign and
defining a “positive part” and a “negative part” of the function we obtain two non-decreasing
functions. Now the function can be expressed as the positive part minus the negative part. It
is obvious that both parts are independent functions, so they can be taken as a basis in with
a graphical representation using two axis, the axis of the negative part and the axis of the
positive part. Now, suppose that we have a particular vector contained in the parametric
uncertainty box , then evaluating the negative part and the positive part a point on the
“negative part, positive part plane” is obtained, this point represents the function evaluated
in the particular vector in . The forty five degree line crossing at the origin on the “negative
part, positive part plane” represents the set of functions with zero value, a point above this
line represents a function with positive value and a point below this line represents a function
with negative value.
The decomposition of the function in its negative and positive parts may look very simple and
non-transcendent but taking into account that the negative and positive parts are made by
the addition of non-decreasing terms, then the negative and positive parts are nondecreasing
functions in a vector space, this implies that the positive part and the negative part are bonded.
So, geometrically, any point representing the function evaluated at any parameter vector is
contained in a rectangle on the “negative part, positive part plane” and if the lowest right
vertex is above the forty five degree line then the function is robust positive, obtaining in this
way the basis of the “rectangle theorem”. By means of this theorem upper and lower bounds
of the multivariable polynomic function in the parametric uncertainty box are obtained.
Sign decomposition contains a set of definitions, propositions, facts, lemmas, theorems and
corollaries, sign decomposition can be applied to several disciplines; in the case of LTI systems
with parametric uncertainty, this mathematical tool can be applied to robust controllability,
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obsevability or stability analysis. In this chapter sign decomposition is applied to parametric
robust stability.
In this chapter the following topics are studied: recent stability criterion, linear time invariant
systems with parametric uncertainty, brief description of sign decomposition and finally a
solution for the parametric robust stability problem. All demonstrations of the criterions,
theorems, corollaries, lemmas, etc, will be omitted because they are results previously
published.

2. A recent stability criterion for LTI systems

The study of stability of the LTI systems begun approximately one and a half century
ago with three important criterions: Hermite in 1856 (Ackermann et al., 1993), 1854
(Bhattacharyya et al., 1995); Routh in 1875 (Ackermann et al., 1993), 1877 (Gantmacher, 1990)
and Hurwitz in 1895 (Gantmacher, 1990). Routh, using Sturm’s theorem and Cauchy Index
theory of a real rational function, set up a theorem to determine the number k of roots of
polynomial with real coefficients on the right half plane of the complex numbers.

Theorem 1. (Routh) (Gantmacher, 1990) The number of roots of the real polynomial p(s) =
c0 + c1s + c2s2 + · · · + cnsn in the right half of the complex plane is equal to the number of
variations of sign in the first column of the Routh’s table with coefficients: ai,j = (ai−1,1ai−2,j+1 −
ai−2,1ai−1,j+1)/ai−1,1 ∀i ≥ 3, ai,j = cn+1−i−2(j−1) ∀i ≤ 2

There are several results related to the Routh criterion, for example (Fuller, 1977; Meinsma,
1995), but they are not appropriate to use in the parametric uncertainty case and they use
more mathematical calculations than the Routh criterion.
In this chapter a recent criterion, an arrange similar to the Rouht table, it is presented. The
stability in this recent criterion depends on the positivity of a sign column. The recent criterion
has two advantages: 1) the numerical operations are reduced with respect to above mentioned
criterions; 2) the coefficients are multivariable polynomic functions in the case of parametric
uncertainty and robust positivity is easier to test than Routh criterion. The criterion is as
described below.

Theorem 2. (Elizondo, 2001B) Given a polynomial p(s) = c0 + c1s+ c2s2 + · · ·+ cn−1sn−1 + cnsn

with real coefficients, the number of roots on the right half of the complex plane is equal to the number
of variations of sign in the sign σ column on the follow arrange.

σ1 cn cn−2 cn−4 · · ·
σ2 cn−1 cn−3 cn−5 · · ·
σ3 e3,1 e3,2 · · ·
...

...
...

ei,j = (ei−1,1ei−2,j+1 − ei−2,1ei−1,j+1), ∀3 ≤ i ≤ n + 1
ei,j = cn+1−i−2(j−1) ∀i ≤ 2

σi = Sign(ei,1) ∀i ≤ 2, σi = Sign(ei,1)
(i+1−m)/2

∏
j=1

Sign(em+2(j−1),1) ∀i ≥ 3

The procedure for calculating the elements (ei,j) is similar to the Routh table but without
using the division. On the other hand, the calculation of an element σi is more easier
than it looks mathematical expression. We can get the sign σi , multiplying the sign of the
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element (ei,1) by the sign of the immediate superior element (ei−1,1) and then jumping in
pairs. For example σ6 = Sign(e6,1)Sign(e5,1)Sign(e3,1)Sign(e1,1). Also σ1 = Sign(cn) and
σ2 = Sign(cn−2). So also it is not necessary to calculate the last element (en+1,1), only its
sign is necessary to calculate. Each row of (ei,j) elements is obtained by means of (ei−1,j)
and (ei−2,j) elements previously calculated and in Hurwitz criterion a principal minor is not
calculated from previous, then the Elizondo-González criterion is more advantageous than
Hurwitz criterion as shown in table (1)

Remark 3. a) Given the relation of the above criterion with the Routh criterion, the cases in that one
element ei,j is equal to zero or all the elements of a row are zero, they are treated as so as it is done in the
Routh criterion. b) The last element en+1,1 is not necessary to calculate, but it is necessary to obtain
only its sign

Mathematical operations in polynomials n degree

degree Hurwitz C. Elizondo
n × + o − × + o −

3 4 1 2 1

4 9 2 5 2
5 66 18 9 4

6 193 45 14 6

7 780 145 20 9

Table 1. A comparison of stability criterions.

2.1 Examples

Example 1. Given the polynomial p(s) = s5 + 2s4 + 1s3 + 5s2 + 2s + 2 by means of criterion 2
determine the number of roots in the right half of the complex plane and compare the results
with the Routh criterion.
Applying 2 criterion we obtain the left table. As an example of the procedure to obtain the
elements ei,j and σi, we have: e3,1 = 2 × 1 − 1 × 5, e3,2 = 2 × 2 − 1 × 2, σ6 = Sign(+)×
Sign(−56)× Sign(−3)× Sign(1), σ5 = Sign(−56)× Sign(−19)× Sign(2).

Elizondo-González 2001

σ1 = + 1 1 2
σ2 = + 2 5 2

σ3 = − −3 2

σ4 = + −19 −6
σ5 = + −56

σ6 = + +

Routh

1 1 2
2 5 2

−1.5 1

6.3333 2
1.4737

+

Table 2. Example 1. Comparison of stability criterions.

The left arrangement shows two sign changes in σ column so the polynomial has two roots
on the right half of the complex plane. By means of Routh criterion is obtained the right
table, it shows too two sign changes in the first column which is the same previous result. An
interesting observation (see table (2)) is that the left table presents a minus sign in the third
row of the σ column and the right table presents a minus sign in the same third row but in the
first column.
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Example 2. Given the polynomial p(s) = s5 + 2s4 + 2s3 + 2s2 + s + 3 by means of criterion 2
determine the number of roots in the right half of the complex plane and compare the results
with the Routh criterion.

Elizondo-González 2001

σ1 = + 1 2 1

σ2 = + 2 2 3
σ3 = + 2 −1

σ4 = + 6 6
σ5 = − −18

σ6 = + −

Routh

1 2 1

2 2 3
1 −0.5

3 3
−1.5

+

Table 3. Example 2. Comparison of stability criterions.

It is easy to see by means of two criterions that the polynomial has two roots on the right half
of the complex plane in accordance to the table (3).
Example 3. Given the polynomial p(s) = s5 + 1s4 + 2s3 + 2s2 + 2s + 1 by means of criterion 2
determine the number of roots in the right half of the complex plane.
When we try to make the table by means of Elizondo-González 2001 criterion or Routh
criterion, it is truncated because e3,1 = 0

σ1 1 2 2

σ2 1 2 1
σ3 0 1

Table 4. Example 3. Presence of a zero in the first column of elements.

Since the element e3,1 is equal zero (see table (4)) then this element is replaced by by an ǫ > 0,
thus obtaining the following arrangement.

σ1 1 2 2
σ2 1 2 1

σ3 ǫ 1
σ4 2ǫ − 1 ǫ

σ5 2ǫ − 1 − ǫ2

σ6 (2ǫ − 1 − ǫ2)ǫ

Table 5. Example 3. Solution of the problem of zero in the first column.

Applying the limit ǫ → 0 in table (5) is obtained the table (6).

σ1 = + 1 2 2

σ2 = + 1 2 1

σ3 = + ǫ 1
σ4 = − −1 ǫ

σ5 = + −1

σ6 = + −ǫ

Table 6. Example 3. Final result to the solution of the problem of zero in the first column.

From the table (6) is easy to see that the polynomial has two roots on the right half of the
complex plane.

7Parametric Robust Stability
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Example 4. Given the polynomial p(s) = s5 + 1s4 + 2s3 + 2s2 + 1s + 1 by means of criterion 2
determine the number of roots in the right half of the complex plane. Applying this criterion
we get as following.

σ1 1 2 1

σ2 1 2 1
σ3 0 0

Table 7. Example 4. A row equal zero.

The table (7) generated, it shows the third row equal zero. Then obtaining the derivative of the
polynomial “corresponding” to the immediately superior row p(s) = s4 + 2s2 + 1 is obtained
p(s) = 4s3 + 4s. Now the coefficients of this polynomial replace the zeros of the third row and
the procedure continues, obtaining in this way the follow arrangement.

σ1 = + 1 2 1
σ2 = + 1 2 1

σ3 = + 4 4

σ4 = + 4 4
σ5 = + ǫ

σ6 = + 4ǫ

Table 8. Example 4. Solution to the problem of a row equal zero.

We can see in table (8) that there is no sign change in sigma column, then there are not roots
in the right half complex plane.

3. Linear time invariant systems with parametric uncertainty

3.1 Parametric uncertainty

All physical systems are dependent on parameters qi and in the physical world does not know
the value of the parameters, only know the lower q−i and upper q+i bounds of each parameter,

so that q−i ≤ qi ≤ q+i , this expression is also written as qi ∈ [q−i , q+i ].
For example if we have several electrical resistances with color code of 1,000 ohm, if one
measures one of them, the measurement can be: 938, 1,024, or a value close to 1,000 ohm but
it is rather difficult that it is exactly 1,000 ohm. By means of tolerance code can be deduced
that the resistance will be greater than 900 and less than 1,100 ohm. Another example is
the mass of a commercial aircraft, it can fly with few passengers and little baggage or with
with many passengers and much baggage, then the mass of the plane is not known until the
last passenger to be registered, but not when the plane was designed, however the plane is
designed to fly from a minimum mass to a maximum mass.
The set of ℓ parameters involved in a system makes a Parametric Vector q = [q1, q2, · · · , qℓ]

T,
q ∈ ℜℓ and the set of all the possible parameter vectors that may exist makes a Parametric
Uncertainty Box Q = { q = [q1, q2, · · · , qℓ]

T
∣

∣ qi ∈ [q−i , q+i ] ∀i}. In the case of qi > 0 ∀i then

Q = { q = [q1, q2, · · · , qℓ]
T
∣

∣ qi > 0, qi ∈ [q−i , q+i ] ∀i } and Q is contained in a positive convex

cone P, Q ⊂ P ⊂ ℜℓ.
For the study of cases involving parametric uncertainty is necessary to define the minimum
and maximum vertices of the parametric uncertainty box, so the minimum vmin and

8 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics
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maximum vmax Euclidean vertices of Q are defined as so as
∥

∥vmin
∥

∥

2 = min
q∈Q

‖q‖2, ‖vmax‖2 =

max
q∈Q

‖q‖2.

3.2 Parametric robust stability in LTI systems

In the LTI systems with parametric uncertainty, the characteristic polynomial has coefficients
dependent on physical parameters, p(s, q) = c0(q) + c1(q)s + c2(q)s

2 + · · · cn(q)sn; so Routh
criterion is very difficult to use because it is necessary to test the robust positivity of
rational functions dependent on physical parameters. By means of Hurwitz criterion is
possible to solve the problem of parametric robust stability by means of robust positivity of
principal minors of a matrix dependent on physical parameters, this procedure uses a lot of
mathematical calculations. The robust positivity of rational function dependent on physical
parameters can be considered as so as a very much difficult problem since only the robust
positive test of multivariable polynomic function is very difficult problem (Ackermann et al.,
1993) (page 93). So the parametric robust stability problem in LTI systems with parametric
uncertainty in the general case is not an easy problem to solve, however in this chapter is
presented a solution.
The characteristic polynomials are classified according to its coefficient of maximum
complexity; from the simplest structure coefficient to the most complex are: Interval, Affine,
Multilinear and Polynomic. For example, the coefficients: ci(q) = qi, ci(q) = 2q1 + 3q2 + 5q3 +
q4, ci(q) = 5q1q2 + 2q2q4 + 5q3 + q4, ci(q) = 2q3

1q2 + 2q2
2q5

4 + q3, correspond to classification:
Interval, Affine, Multilinear and Polynomic respectively. The number of polynomials p(s, q)
that can exist is infinite since the number of vectors that exist is infinite, the collection of all
polynomials that exist is a Family of Polynomials P(s, Q) = {p(s, q)|q ∈ Q}.
The families of polynomials interval and afin are convex sets and these families have
subsetting test. This concept, subsetting test, means that a family of polynomials is robustly
stable if and only if all polynomials contained in the subsetting test are stable.
Kharitonov in (Kharitonov, 1978), by means of his theorem demonstrates that a family of
interval polynomials is robust stable if and only if a set of four polynomials are stable. In
(Bartlett et al., 1988) by means of their edge theorem, demonstrated that a family of afin
polynomials is robustly stable if and only if all the polynomials corresponding to the edges
of the parametric uncertainty box are stable. The multilinear an polynomic families are not
convex set and they do not have subsetting test. So parametric robust stability of these
families can not be resolved by tools based on convexity. In (Elizondo, 1999) was presented a
solution for parametric robust stability of any kind of family: Interval, Affine, Multilinear or
Polynomic. The solution is based on sign decomposition, and by means of this tool can also
solve the problem of robust controllability or robust observability.

3.3 Robust stability mapped to robust positivity

The parametric robust stability problem of LTI systems can be mapped to a problem of robust
positivity of polynomial functions for at least three ways.
The first two are: the Hurwitz and Lienard-Chipart criterions, the other is the recently
stability criterion (2). By Hurwitz or Lienard-Chipart criterions can do the mapping but as
explained these require making a lot of mathematical calculations. The criterion (2) requires
much less mathematical calculations that the criterions mentioned as was shown in table (1),
(Elizondo et al., 2005)

9Parametric Robust Stability
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4. Brief description of sign decomposition

In different areas of sciences the fundamental problem can be mapped to a problem of robust
positivity of multivariable polynomic functions. For example the no singularity of a matrix
can be analyzed by mean of the robust positivity of its determinant, so it is very useful to have
a mathematical tool that solves the problem of robust positivity of multivariable polynomic
functions. Practically there are three tools for this purpose: Interval Arithmetic (Moor, 1966);
Bernstein Polynomials (Zettler, et all 1998) and Sign Decomposition ((Elizondo, 1999)) whose
complete version is developed in (Elizondo, 1999) and its partial versions are presented in
(Elizondo, 2000; 2001A;B; 2002A;B), for simplicity only will be mentioned (Elizondo, 1999).
Interval arithmetic is very difficult to use because it requires much more calculations than
other methods. When robust positivity is analyzed in a very simple function, Bernstein
polynomials have advantages over sign decomposition, but when the function is not simple,
sign decomposition has advantages over Bernstein polynomials (Graziano et al., 2004). There
are several works using sign decomposition instead of Bernstein polynomials, some of them
are: (Bhattacharyya et al., 2009; Guerrero, 2006; Keel et al., 2008; 2009; Keel, 2011; Knap et al.,
2010; 2011)

4.1 Definition of sign decomposition

The following is a brief description of the more relevant results of Sign Decomposition
(Elizondo, 1999). By means of this tool it is possible to determine, in necessary and sufficient
conditions, the robust positivity of a multivariable polynomic function depending on ℓ

parameters, employing extreme points analysis.
Since mathematically exist the possibility that a parameter q̂i has negative value , then this tool
begins by a “coordinates transformation” from q̂i to qi such that the new parameters will be
positive qi > 0, then an uncertainty box Q = { q = [q1, q2, · · · , qℓ]

T
∣

∣ qi > 0, qi ∈ [q−i , q+i ] } is

makes, in other words, Q is in a positive convex cone P, Q ⊂ P ⊂ ℜℓ with minimum vmin and
maximum vmax Euclidean vertices. The transformation is very easy as shown in the equation
(1)

qi = q−i +
q̂i − q̂−i
q̂+i − q̂−i

(q+i − q−i ) (1)

From here on we will assume that if necessary, the transformation was made and work with
parameters qi > 0. Under this consideration will continue with the rest of this topic.

Definition 4. (Elizondo, 1999) Let f : ℜℓ → ℜ be a continuous function and let Q ⊂ P ⊂ ℜℓ

be a box. It is said that f (q) has Sign Decomposition in Q if there exist two bounded continuous
nondecreasing and nonnegative functions fn(·) ≥ 0, fp(·) ≥ 0, such that f (q) = fp(q) − fn(q)
∀ q ∈ Q. In this way there are defined the Positive Part fp(q) and Negative Part fn(q) of the
function.

Negative Part is only a name since Negative Part and Positive Part are nonnegative.

4.2 ( fn, fp) representation

Is obvious that for the general case, fn(·) and fp(·) are independent functions then they make

a basis in ℜ2 with graphical representation in the ( fn(·), fp(·)) plane in accordance with figure
( 1).

10 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics

www.intechopen.com



Parametric Robust Stability 9

If we take a particular vector q ∈ Q and evaluated the fn(q) and fp(q) parts, we obtain the
coordinates ( fn(q), fp(q)) of the function in the ( fn, fp) plane. The 45o line is the set of points
where the function is equal zero because fp(q) = fn(q) so f (q) = fp(q)− fn(q) = 0 . If a point
is above the 45o line means that fp(q) > fn(q) then f (q) > 0. If a point is below the 45o line
means that fp(q) < fn(q) then f (q) < 0.

Fig. 1. ( fn, fp) plane

It should be noted that independently of the number of parameters in which the function
depends on, the function will always be represented in ℜ2 via ( fn(q), fp(q)). For example,

the function f (q) = 4 − q2 + q1q3 + 8q2
1q2 − 9q1q2

2q3
3 such that q ∈ Q ⊂ P ⊂ ℜ3,

Q = { q = [q1, q2, q3]
T
∣

∣ qi ∈ [0, 1] }. The function has sign decomposition because it is
decomposed in two bounded continuous nondecreasing and nonnegative functions fp(q) =

4 + q1q3 + 8q2
1q2, fn(q) = q2 + 9q1q2

2q3
3 and f (q) = fp(q)− fn(q). The figure ( 2) was obtained

by plotting a hundred lines blue color, (one hundred fifty points per line) of variable q3 holding
(q1, q2) constant uniformly distributed in different positions. The process was repeated
varying q2 in green color and finally varying q1 in red color. According to the position shown
in the graph of the function with respect to the 45o line, it appears that the function is robustly
positive. But it must be demonstrated mathematically.

Fig. 2. Function in ( fn, fp) plane

11Parametric Robust Stability
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Some preliminary properties of the continuous functions f (q), g(q), h(q) with sign
decomposition in Q and for all u(q) nondecreasing function in Q, are proved in (Elizondo,
1999) as so facts, lemmas and theorems. This properties are employed on the following
theorems.
a) ( fn(q) + u(q), fp(q) + u(q)) is a ( fn, fp) representation of the function f (q) ∀q ∈ Q; b)

the representation ( fn(q) + u(q), fp(q) + u(q)) of the function is reduced to its minimum
expression: ( fp(q), fn(q)); c) f (q) + g(q); d) f (q)− g(q) and e) f (q)g(q) are functions with
sign decomposition in Q; f) if f (q) = g(q) + h(q), then the positive and negative parts of
f (q) − g(q) are reduced to their minimum expressions, as follows: f (q) − g(q) = ( f (q) −
g(q))p − ( f (q)− g(q))n, ( f (q)− g(q))n = fn(q)− gn(q), ( f (q)− g(q))p = fp(q)− gp(q).

4.3 The rectangle theorem

Since negative part and positive part are bounded continuous nondecreasing functions, then
the following inequalities ( 2) are fulfilled.

fn(νmin) ≤ fn(q) ≤ fn(νmax)
fp(νmin) ≤ fp(q) ≤ fp(νmax)

(2)

This means that a function f (q) with sign decomposition, evaluated at any vector q ∈ Q,
its negative part is contained in a segment and also the positive part is contained in another
segment. So, on ( fn, fp) plane the function is contained in a rectangle as expressed by the
following theorem according to figure ( 3 ).

Theorem 5. (Elizondo, 1999) Rectangle Theorem. Let f : ℜℓ → ℜ be a continuous function
with sign decomposition in a box Q ⊂ P ⊂ ℜℓ with minimum and maximum Euclidean vertices
vmin, vmax, then: a) f (q) is lower and upper bounded by fp(vmin) − fn(vmax) and fp(vmax) −

fn(vmin) respectively; b) The graphical representation of the function f (q), ∀q ∈ Q in ( fn, fp)

plane is contained in the rectangle with vertices ( fn(vmin), fp(vmin)), ( fn(vmax), fp(vmax)),

( fn(vmin), fp(vmax)) and ( fn(vmax), fp(vmin)); c) if the lower right vertex ( fn(vmax), fp(vmin))

is over the 45o line then f (q) > 0 ∀q ∈ Q; d) if the upper left vertex ( fn(vmin), fp(vmax)) is below
the 45o line then f (q) < 0 ∀q ∈ Q. In accordance with figure ( 3 ).

The above result seems to be very useful, we can say that the rectangle is the “house” where
the multivariable function lives in ℜ2. We can know the robust positivity of a function
analyzing only one point. It is important to note that this is only sufficient conditions, the
lower right vertex can be below the 45o line and the function could be robustly positive or not
be. But if the lower right vertex is above the 45o line then the function is robustly positive.
For example, the function f (q) = 4 − q2 + q1q3 + 8q2

1q2 − 9q3
3q1q2

2 such that q ∈ Q ⊂ P ⊂ ℜ3,

Q = { q = [q1, q2, q3]
T
∣

∣ qi ∈ [0, 1] }, has sign decomposition, its minimum and maximum

Euclidean vertices are νmin = [0, 0]T, νmax = [1, 1]T, their positive and negative parts are:
fp(q) = 4 + q1q3 + 8q2

1q2, fn(q) = q2 + 9q3
3q1q2

2. Then the lower bound is fp(v
min)− fn(v

max),

fp(vmin) = 4 + (0)(0) + 8(0)(0) = 4, fn(vmax) = 1 + 9(1)(1)(1) = 10, the lower bound is
4 − 10 = −9. The function could be robustly positive, but for now we do not know, It is
necessary see more signs of decomposition items.

Remark 6. Should be noted three important concepts:
The graph of the function does not "fills" the whole rectangle, but it is contained in.
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The graph of the function always "touches " the rectangle in lower left vertice and upper right vertice.
The graph of the function is not necessarily convex.

Fig. 3. Rectangle theorem

4.4 The polygon theorem

For the purpose of improving the results shown up to this point, the following proposition
is necessary. In some cases it is necessary to analyze the function in a Γ box contained in Q,
Γ ⊂ Q. The Γ box has Euclidean Vertices μmin and μmax. So, a vector in Γ is expressed as so as
q = μmin + δ, where δ is a vector in Γ, with origins in μmin.

Proposition 7. (Elizondo, 1999) Let f : ℜℓ → ℜ be a continuous function in Q ⊂ P ⊂ ℜℓ, let
Γj ⊂ Q be a box with its vertices set {μi} with minimum and maximum Euclidean vertices μmin,
μmax, let ∆ = {δ | δi ∈ [0, δmax

i ], δmax
i = μmax

i − μmin
i } ⊂ P ⊂ ℜℓ be a box with its vertices set

{δi} with minimum and maximum Euclidean vertices 0, δmax = μmax − μmin, and let q ∈ Γj a vector
such that q = μmin + δ where δ ∈ ∆. Then the function f (q) is expressed by its: linear, nonlinear and
independent parts, in its minimum expression for all q ∈ Γj.
f (q) = f min + fL(δ) + fN(δ) | δ ∈ ∆∀q ∈ Γj

f min � Independent Part = f (μmin)
fL(δ) � Linear Part = ∇ f (q)|μmin · δ ∀δ ∈ ∆

fN(δ) � Nonlinear Part = f (μmin + δ)− f min − fL(δ) ∀δ ∈ ∆

∇ f (q)|μmin · δ =
∂ f (q)

q1

∣

∣

∣

∣

μmin

δ1 +
∂ f (q)

q2

∣

∣

∣

∣

μmin

δ2 + · · ·+
∂ f (q)

qℓ

∣

∣

∣

∣

μmin

δℓ

Must be noted that f min = f (μmin). On other hand, it is clear that we can use the concepts of
positive part and negative part in the above proposition, So, fp(q)− fn(q) = f min

p − f min
n +

fLp(δ) − fLn(δ) + fNp(δ) − fNn(δ) obtaining the following equations (3) where the relation
between δ and q can be appreciated in the figure (4).

fp(q) = f min
p + fLp(δ) + fNp(δ)

fn(q) = f min
n + fLn(δ) + fNn(δ)

(3)

13Parametric Robust Stability
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Fig. 4. Gamma box

Theorem 8. Polygon Theorem (Elizondo, 1999). Let f : ℜℓ → ℜ be a continuous function with
sign decomposition in Q, let q, δ, Γj and ∆ in accordance with the proposition (7). Then, a) the
lower and upper bounds of the function f (q) are: Lower Bound = f min + fL min − fNn(δ

max) and
Upper Bound = f min + fL max + fNp(δ

max) ∀q ∈ Q, b) the bounds of incise ”a”, are contained

in the interval defined by the bounds of the rectangle theorem 3. fp(μmin) − fn(μmax) ≤ Lower

Bound ≤ Upper Bound ≤ fp(μmax) − fn(μmin), c) The graphical representation of the function
f (q) ∀q ∈ Γ in the ( fn, fp) plane is contained in the polygon defined by the intersection of the
rectangle of the rectangle theorem (5) and the space between the two 45o lines separated from the origin
by the Lower Bound and Upper Bound in accordance with figure (5).

Fig. 5. Bounding of the function

The symbolic expression of the nonlinear part used in the above theorem is not necessary to
obtain, because we will use only its numerical value. So, from the equations (3), the nonlinear
parts are obtained as so as equations ( 4).
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fNp(δ) = fp(q)− f min
p − fLp(δ)

fNn(δ) = fn(q)− f min
n − fLn(δ)

fLp(δ) = ∇ fp(q)
∣

∣

μmin · δ

fLn(δ) = ∇ fn(q)|μmin · δ

(4)

As an illustration of this theme, by means of rectangle theorem and polygon, we will analyze
the lower bound of a function in a gamma box. Consider the function corresponding to
the figure ( 2), f (q) = 4 − q2 + q1q3 + 8q2

1q2 − 9q3
3q1q2

2 such that q ∈ Q ⊂ P ⊂ ℜ3,

Q = { q = [q1, q2, q3]
T
∣

∣ qi ∈ [0, 1] }. Suppose that the function is analyzed into a gamma

box Γ ⊂ Q, with Euclidean vertices μmin = [0.2 0.2 0.2 ]T and μmax = [0.85 0.85 0.85 ]T.
In accordance with the Rectangle Theorem (3) the lower bound is fp(vmin) − fn(vmax) =

−0.1403. Applying the Polygon Theorem (8) the lower bound is f min + fL min − fNn(δ
max),

so it is necessary to obtain each of these expressions, the results are as follows: f min =
f (μmin) = 3.9034, fL min = −0.4457, fNn(δ

max) = 3.3825. The last value is obtained of
equations (4), thus the lower bound is 0.0752. By means of the Rectangle Theorem is obtained
f (q) > −0.1403 ∀q ∈ Γ, following the Polygon Theorem is obtained f (q) > 0.0752 ∀q ∈ Γ, so
the function is robustly positive in the Γ box.

4.5 The box partition theorem

By means of Rectangle Theorem (3) and Polygon Theorem (8) are obtained sufficient
conditions of robust positivity, so to obtain necessary and sufficient conditions is necessary
to obtain new results.
When it is not possible to know whether the function is positive or not in Q = [q−1 , q+1 ]
×[q−2 , q+2 ]× · · · × [q−

ℓ
, q+

ℓ
]. In this case it is possible to divide each variable [q−i , q+i ] in k parts,

generating k new intervals: [q−i , q1
i ], [q

1
i , q2

i ], · · · , [q
j
i , q

j+1
i ], · · · [qk−1

i , q+i ], let [γ−
i , γ+

i ] be a

k new interval, giving cause to the generation of kℓ new boxes Γi = [γ−
1 , γ+

1 ]× [γ−
2 , γ+

2 ]×

· · · × [γ−
ℓ

, γ+
ℓ
] with μmin, μmax ∈ Γi minimum and maximum Euclidean vertices of Γi and

Q =
⋃

i
Γi. Through these concepts, the following theorem is obtained.

Theorem 9. Box Partition Theorem (Elizondo, 1999). Let f : ℜℓ → ℜ be a continuous function
with sign decomposition in Q such that Q ⊂ P ⊂ ℜℓ is a box with minimum and maximum Euclidean
vertices vmin, vmax. Then the function f (q) is positive (negative) in Q if and only if a Γ boxes set exists,
such that Q =

⋃

j
Γj and Lower Bound ≥ c > 0 for each Γj box (Upper Bound ≤ c < 0 for each one

Γj box).

This theorem can be applied in two ways, one of them we call “ Analytical Partition” and
the other one “Constant Partition”. In analytical partition, the box where the function has a
negative lower bound is subdivided iteratively. In the case of the function is robustly positive
is also obtained information about where the function is close to losing positivity. By means
of constant partition is only obtained information on whether the function is robustly positive
or not.
To illustrate both procedures, we analyze the robust positivity of the function (Elizondo, 1999)
f (q) =

(

4 + q1 + 8q2
1q2

)

−
(

q2 + 9q1q2
2

)

, such that Q = { q = [q1, q2]
T
∣

∣ qi ∈ [0, 1] ∀i } . The
robust positivity is analyzed by means of the rectangle theorem because it is more easier to
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apply, although it must be said that the bounds of the polygon theorem are better than the
rectangle theorem.
Analytical Partition (Elizondo, 1999). In the subfigure 1 of figure (6) shows that the function
is robustly positive in boxes Γ1 and Γ3 but not in the boxes Γ2 and Γ4. So it is necessary
apply iteratively the partition box to the boxes where the function is not robust positive, in
this way is obtained the subfigure 2 of figure (6). Since there is a set of boxes such that Q =
⋃

j
Γj| f (q) > 0 ∀Γj, then the function is robustly positive in Q. The graphs were made to show

the procedure in visual way, but for more than two dimensions, using software we can get the
coordinates and dimensions of sub boxes where the function is close to losing positivity.

(a) Subfigure 1 (b) Subfigure 2

Fig. 6. Partition box

Constant Partition (Elizondo, 1999). In this procedure the domain of each one of the ℓ

parameters is divide in k equal parts (not necessarily equal), in this way, it is generated a
boxes set of kℓ sub boxes Γi such that Q =

⋃

j
Γj. The robust positivity of each Γi box can be

analyzed by a computer program so that the computer give us the final result about the robust
positivity of the function.
Another way is through a software which plot a × (blue) mark in the ( fn, fp) plane in each

( fn(μmin), fp(μmin)) and ( fn(μmax), fp(μmax)) coordinates corresponding to the minimum

and maximum vertices of each Γi box, and plot too a + (red) mark corresponding to the lower
bound of each Γi box, as can be appreciated in figure (7) that it was obtained with k = 13.
If a × (blue) mark is below the 45o line, means that there is at least one vector for which the
function is negative and therefore the function is not robustly positive. If all the × (blue) marks
are above the 45o line, and a + (red) mark is below the 45o line means that it is necessary to
increase the k number of partitions up to all the + (red) and × (blue) marks are above the 45o

line. If this is achieved then the function is robustly positive, as shown in figure (7).
In the figure (7) we can see that it is difficult to see that all + (red) marks are above the 45o

line, then with purpose to resolve this difficulty is proposed the following representation.
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Fig. 7. Function in ( fn, fp) plane

4.6 (α, β) Representation

In some cases as so as figure (7) it is not easy to determine in graphic way whether a point
close to the 45o line is over this line or not. So in (Elizondo, 1999) the (α, β) representation was
developed, α(q) = fp(q) + fn(q), β(q) = fp(q)− fn(q) , it is similar to rotated 45o the axis with
respect to ( fn, fp) representation implying some graphical and algebraic advantages over the
negative and positive representation.

Definition 10. (Elizondo, 1999) Let fn(q) and fp(q) be the negative and positive parts of a continuous
function f (q) with sign decomposition in Q. Let T be the linear transformation described below
such that T −1 exists, then it is called a representation of the function f (q), in (α, β) coordinates,
to the linear transformation (α(q), β(q)) = T( fn(q), fp(q)) and the inverse transformation of an
(α(q), β(q)) representation is a ( fn(q), fp(q)) representation of the function f (q).

T =

[

1 1
−1 1

]

T−1 = 1
2

[

1 −1
1 1

]

[

α(q)
β(q)

]

= T

[

fn(q)
fp(q)

] [

fn(q)
fp(q)

]

= T−1

[

α(q)
β(q)

]

α(q) = fp(q) + fn(q) fp(q) =
1
2 (α(q) + β(q))

β(q) = fp(q)− fn(q) fn(q) =
1
2 (α(q)− β(q))

With the purpose to show the advantages of the (α, β) representation, by means of
the rectangle theorem we analyze the same function in the previous subsection f (q) =
(

4 + q1 + 8q2
1q2

)

−
(

q2 + 9q1q2
2

)

applying k = 13. We can see in the figure (8) beta axis scale is
positive implying that all the bounds are positives and consequently the function is robustly
positive.
The function f (q) = 4 − q2 + q1q3 + 8q2

1q2 − 9q3
3q1q2

2 corresponding to the figure (2) is shown
in the figure (9) in (α, β) representation. We can see that beta axis scale is positive implying
the function is robustly positive.
The original idea to develop the representation (α , β) (Elizondo, 1999) was to solve a visual
geometric problem, but this representation has interesting algebraic properties on continuous
functions f (q), g(q), h(q) with sign decomposition in Q and for all u(q) nondecreasing
function in Q, (Elizondo, 1999) as the following:

17Parametric Robust Stability
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Fig. 8. Function in (α, β) representation

Fig. 9. Function in (α, β) representation

a) α(q) is a non-decreasing and non-negative function in Q; b) α(q) ≥ β(q); c) β(q) = f (q)
∀ f (q), ∀q ∈ Q; d) the (α(q) + u(q), β(q) + u(q)) is a α, β representation of f (q); e) the
(α(q) + u(q), β(q)) representation is reduced to its minimum expression (α(q), β(q)); f)

Addition f (q) + g(q) : α(q) = α f (q) + αg(q), β(q) = β f (q) + βg(q); g) Subtraction f (q)−
g(q) : α(q) = α f (q) + αg(q), β(q) = β f (q)− βg(q); h) Product f (q)g(q), α(q) = α f (q)αg(q),
β(q) = β f (q)βg(q); i) the (α, β) representation of −g(q) is as follows: (αg(q), −βg(q)); j) if
f (q) = g(q) + h(q) then the alpha an beta parts of f (q)− g(q) are reduced to its minimum
expression as follows α(q) = α f (q)− αg(q), β(q) = β f (q)− βg(q).
Computationally the (α, β) representation is better than ( fn, fp) because if the computer does
not generate the negative scale in the β axis it is implying that all “marks” are positives. This
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is an useful and interesting property, but above all properties there are three outstanding
properties, it would be very useful if they were fulfilled in complex numbers, they are as
follows:

Addition f (q) + g(q) α(q) = α f (q) + αg(q) β(q) = β f (q) + βg(q)
Subtraction f (q)− g(q) α(q) = α f (q) + αg(q) β(q) = β f (q)− βg(q)

Product f (q)g(q) α(q) = α f (q)αg(q) β(q) = β f (q)βg(q)
(5)

Most be noted that the alpha component of subtraction is correct with α(q) = α f (q) + αg(q),
it is an “addition” of alphas. It is also important to highlight the simplicity with which made
the addition, subtraction and product in alpha beta representation.

4.7 Sign decomposition of the determinant

Sign decomposition of the determinant was developed in (Elizondo, 1999) and it was
presented an application in (Elizondo, 2001A; 2002B), by simplicity only will mention
(Elizondo, 1999). In parametric robust stability is not very useful the sign decomposition
of the determinant, but it is a part of sign decomposition. We can analyze robust stability by
means of the Hurwitz criterion means the robust positivity of determinants, but it is so much
easier by means of criterion (2), see table (1). Taking account that the reader could work in
other areas where the nonsingularity of a matrix dependent in parameters is important, then
sign decomposition of the determinant is included in this chapter.

4.7.1 The (α, β) representation of the determinant

In order to achieve the procedure to determine the robust positivity in necessary and sufficient
conditions of a determinant with real coefficients depending on ℓ parameters qi, the following
fact is presented. By means of the (α, β) properties (5) is obtained the following fact, in
the development of the determinant appears the alpha part and beta part, as shown in the
following fact.

Fact 1. (Elizondo, 1999) Let M(q) be a (2× 2) matrix with elements mi,j(q) ∈ ℜ with representation
(αi,j(q) , βi,j(q)). Then the (α, β) representation of the determinant of the matrix M(q) is:

(det(M(q)))α = (α1,1(q)α2,2(q) + α2,1(q)α1,2(q))
(det(M(q)))β = (β1,1(q)β2,2(q)− β2,1(q)β1,2(q)).

Definition 11. (Elizondo, 1999) Let M(q) =
[

mi,j(q)
]

be a matrix with elements mi,j(q) ∈ ℜ with

(αi,j(q) , βi,j(q)) representation. Then the matrix Mα(q) =
[

αi,j(q)
]

will be called the alpha part of

the matrix M(q), and the determinant detα(M(q)) = |M(q)|α = |Mα(q)|α will be called the alpha
part of the determinant |M(q)| , which is similar to the usual determinant changing all the subtractions

by additions including the sign rule of Cramer. In a similar way, the matrix Mβ(q) =
[

βi,j(q)
]

will

be called the beta part of the matrix M(q), and the determinant detβ(M(q)) = |M(q)|β =
∣

∣

∣
Mβ(q)

∣

∣

∣

will be called the beta part of the determinant |M(q)| .

Most be noted that: a) βi,j(q) = mi,j(q), then, Mβ(q) = M(q) and detβ(M(q)) = det(M(q)),
b) In accordance with the above fact, for a (2 × 2) matrix, the (α, β) representation of the

determinant of the matrix M(q) is
(

detα(M(q)), detβ(M(q))
)

. In the following lemma a

generalization of the last expression for a (n × n) matrix is established.
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Lemma 12. (Elizondo, 1999) Let M(q) be a (n × n) matrix with elements mi,j(q) ∈ ℜ with
representation (αi,j(q) , βi,j(q) ). Then the (α, β) representation of the determinant of the matrix

M(q) is
(

detα(M(q)), detβ(M(q))
)

. In accordance with definition (11)

4.7.2 Linear, nonlinear and independent parts of the determinant

When the positivity of the determinant of a matrix with elements mi,j(q) is analyzed via sign
decomposition, it is normally necessary to use the box partition and polygon theorems. Then,
the independent, linear and nonlinear parts of the determinant need to be obtained. These are
obtained in the following theorem.

Theorem 13. (Elizondo, 1999) (Sign Decomposition of the Determinant Theorem) Let q ∈ Γ ⊆ Q |
q = μmin + δ be according to the proposition (7 ). Let M(q) ∈ ℜn×n be a matrix with elements mi,j(q)

with sign decomposition in Q with representation (αmin
i,j + αi,j,L(δ) + αi,j,N(δ), βmin

i,j + βi,j,L(δ) +

βi,j,N(δ)), then the (α, β) representation of the determinant of the matrix M(q) is as follows:

α(q) = αmin + αL(δ) + αN(δ),

β(q) = βmin + βL(δ) + βN(δ)

αmin = detα

([

αmin
i,j

])

, βmin = det
([

βmin
i,j

])

αL(q) =
k=n

∑
k=1

detα

(

Φ(k)
[

αmin
i,j

]

+ [I − Φ(k)]
[

αi,j,L(δ)
]

)

βL(q) =
k=n

∑
k=1

det
(

Φ(k)
[

βmin
i,j

]

+ [I − Φ(k)]
[

βi,j,L(δ)
]

)

Φ(k) =
[

ϕi,j(k)
]

|

ϕ1,1(k) = |sign(1− k)|

ϕ2,2(k) = |sign(2− k)|

..

.

ϕn,n(k) = |sign(n − k)|

ϕi,j(k) = 0 ∀i �= j

αN(δ) = α(q)− αmin − αL(δ), βN(δ) = β(q)− βmin − βL(δ)

4.7.3 Example

(Elizondo, 1999; 2001A). The Frazer and Duncan Theorem is presented in (Ackermann et al.,
1993) in the boundary crossing version as follows. Let P(s, Q) = {p(s, q) | q ∈ Q ⊂ P ⊂
ℜℓ} be a family of polynomials of invariant degree with parametric uncertainty and real
continuous coefficients, then the family P(s, Q) is robust stable if and only if: 1) a stable
polynomial p(s, q̂) ∈ P(s, Q) exists, 2) det (H(q)) �= 0 for all q ∈ Q.
(Ackermann et al., 1993) Given the family of invariant degree polynomials with parametric
uncertainty described by: p(s, q) = c0 + c1s + c2s2 + c3s3 + c4s4, with real continuous
coefficients: c0(q) = 3, c1(q) = 2, c2(q) = 0.25 + 2q1 + 2q2, c3(q) = 0.5(q1 + q2), c4(q) = q1q2,
such that qi ∈ [1, 5]. Determine the robust stability of the family by means of the Frazer
and Duncan theorem applying in graphical way the sign decomposition of the determinant
theorem (13).
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The Hurwitz matrix H(q) is obtained, it is proved that the polynomial p(s, q̂) is stable for
q̂ = [1 1]T and that the determinant of the Hurwitz matrix H(q̂) is positive. Having the first
condition of the Frazer and Duncan theorem satisfied, and proving that the determinant is
robust positive in Q, the second condition of the Frazer and Duncan theorem will be satisfied
too.

H(q) =

⎡

⎢

⎢

⎣

c3(q) c1(q) 0 0
c4(q) c2(q) c0(q) 0

0 c3(q) c1(q) 0
0 c4(q) c2(q) c0(q)

⎤

⎥

⎥



The robust positivity of the determinant problem is solved by means of: the box partition
theorem 9, the polygon theorem 8 in (α, β) representation and the sign decomposition of
the determinant theorem (13). Taking the partition in 9 equal parts in each one of the two
variables qi and applying sign decomposition in constant partition way, the function values
in minimum and maximum vertices “×” and lower bound “+” are plotted for each Γi box, as
it appears in the figure (10). All lower bound marks “+” are above the alpha axis, then all of
bounds are positive, therefore the determinant of the Hurwitz matrix H(q) is robust positive
implying that the polynomials family is robust stable.

Fig. 10. Positivity of the determinant

5. A solution for the parametric robust stability problem

5.1 Problem identification

In control area, the robust stability of LTI systems with parametric uncertainty problem has
been studied in different interesting ways. The problem can be divided in two parts. One of
them is that it is not possible to be obtained roots of a polynomial by analytical means for the
general case. The second is that we have now a family of polynomials to study instead of a
single polynomial.
Since to obtain roots of polynomials for the general case is a difficult problem. Then the
extraction of roots of polynomials went mapped firstly to a “position” of roots problem in the
complex plane, Routh never tried to extract the roots, his work begun studying the position of
the roots. This problem was subjected to a second mapping, it was transferred to mathematical
problems of smaller level for example to a positivity problem, as it is the case of: Routh,
Hurwitz, Lienard-Chipart and Elizondo-González 2001 criterions.
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The objective in this chapter is to study the stability of a family of polynomials with invariant
degree (the reader can see poles and zeros cancellation cases) and real continuous coefficients
dependent on parameters with uncertainty. The essence of the problem is that we have now
a set of roots in the the complexes plane, and for stability condition all of them must be in
the left half of the complex plane for asymptotic stability. How to obtain that the set of roots
remains in the left side of the complex plane?
A well known solution is: a) the family P(s, Q) has at least one element p(s, q∗) stable and
b) | H(q)|�= 0 ∀q ∈ Q. The explanation is because the determinant of a Hurwitz matrix is
zero when the polynomial has roots in the imaginary axis, so if there is a q∗ ∈ Q vector such
that p(s, q∗) is stable then its roots are at the left half of the complex plane. On other hand,
if a vector q slides into Q starting from q∗ implies that the coefficients ci(q) will change in
continuous way and the roots of p(s, q∗) will slides too on the complex plane. But if | H(q)|�=
0 ∀q ∈ Q, it means that does not exist a vector q for which p(s, q) has roots in the imaginary
axis, implying that the displacement of the roots never cross the imaginary axis. This solution
is very difficult to use because to test the robust positivity of a determinant in the general case
is a very difficult problem (Ackermann et al., 1993)(page 93).
Another solution was through the subsetting test, the idea worked well in convex families
as interval (Kharitonov, 1978) and affine (Bartlett et al., 1988), but it was not in nonconvex
families as multilinear and polynomic.
Then it can be concluded that the solution for robust stability of LTI systems with parametric
uncertainty problem for the general case: interval, affine, multilinear, polinomic, cannot be
sustained in convexity properties nor subsetting test.

5.2 A proposed solution

In (Elizondo, 1999) it was developed a solution for the general case of robust stability of LTI
systems with parametric uncertainty without concerning the convexity of the families, the
solution consists of two parts.
A part of the solution was the development of a stability criterion, operating with
multivariable polynomic functions in parametric uncertainty case, simpler than Hurwitz
and Lienard-Chipart criterions (Elizondo et al., 2005). The mentioned criterion is similar to
criterion (Elizondo, 2001B) but without the σ column, therefore it does not determine the
number of unstable roots, it only determines whether the polynomial is stable or not. The
amount of mathematical operations required in this criterion is equal to the one of (Elizondo,
2001B) but they are much less that the required ones in Hurwitz and Lienard-Chipart
criterions (Elizondo et al., 2005).
The other part of the solution was the development of a mathematical tool capable of solving
robust positivity problems of multivariable polynomic functions in necessary and sufficient
conditions by means of extreme point analysis.The mathematical tool developed in (Elizondo,
1999) was Sign Decomposition.
Then, the solution proposed for robust stability in LTI systems with parametric uncertainty in
the general case is supported in two results: the stability criterion for LTI systems (Elizondo,
2001B) and sign decomposition (Elizondo, 1999). Given a polynomial p(s, q) = cn(q)sn +
cn−1(q)s

n−1 + · · ·+ c0(q) with real coefficients, where q ∈ Q ⊂ P, Q = {[q1 q2 · · · qℓ ]
T |qi ∈

[0, 1] ∀i}. The procedure easier to use is by means of the partition box theorem (9) in the
modality “Constant Partition”, its application could be of the following way.
a) Take the equations of the coefficients ci(q) and decompose them into positive and negative
parts cip(q) and cin(q). In symbolic way.
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b) By means of the positive and negative parts, to obtain the components in alpha and beta
representation. αi = cip(q) + cin(q), βi = cip(q)− cin(q).
c) To make a table in accordance to the criterion (2).
d) By means of the rectangle theorem (5) or polygon theorem (8), to analyze the robust
positivity in Q of the coefficients cn(q) and cn−1(q). In case of negative bound in a coefficient,
include its graph in the following software.
e) To make a software to develop the table in accordance to the partition box theorem and to
graph the wished ei,1 element.

Remark 14. The sigma column in the criterion (2) is not necessary calculate for robust stability

5.3 Example

Given a LTI system with parametric uncertainty Q = {[q1 q2 q3]
T |qi ∈ [0, 1] ∀i}, its

characteristic polynomial of invariant degree is p(s, q) = c4(q)s
4 + c3(q)s

3 + +c2(q)s
2 +

+c1(q)s + c0(q). To analyze the robust stability of the system.
a) Positive and negative parts cpi(q) and cni(q).

c0(q) = 2 + q1q2q3
3 − q2q3

c1(q) = 5 + q1q3
2 − q2q3

c2(q) = 10 + 4q1q3 − q1q2
2 − q3

2
c3(q) = 5 + q2

2 − q1q2
2

c4(q) = 3 + q1q3
2 − q2q3

c0p(q) = 2 + q1q2q3
3

c1p(q) = 5 + q1q3
2

c2p(q) = 10 + 4q1q3

c3p(q) = 5 + q2
2

c4p(q) = 3 + q1q3
2

c0n(q) = q2q3

c1n(q) = q2q3

c2n(q) = q1q2
2 + q3

2
c3n(q) = q1q2

2
c4n(q) = q2q3

b) The alpha and beta representation of the coefficients is as follows.

αi = cpi(q) + cni(q),
α0 = cp0(q) + cn0(q)
α1 = cp1(q) + cn1(q)
α2 = cp2(q) + cn2(q)
α3 = cp3(q) + cn3(q)
α4 = cp4(q) + cn4(q)

βi = cpi(q)− cni(q)
β0 = cp0(q)− cn0(q)
β1 = cp1(q)− cn1(q)
β2 = cp2(q)− cn2(q)
β3 = cp3(q)− cn3(q)
β4 = cp4(q)− cn4(q)

c) To make a table in accordance to the criterion (2).

σ1 (α4, β4) (α2, β2) (α0, β0)
σ2 (α3, β3) (α1, β1)
σ3 α3,1 = cα3cα2 + cα4cα1, β3,1 = cβ3cβ2 − cβ4cβ1 α3,2 = cα3cα0, β3,2 = cβ3cβ0

σ4 α4,1 = α3,1cα1 + cα3α3,2, β4,1 = β3,1cβ1 − cβ3β3,2

σ5 Check robust positivity of β4,1 and β3,2

d) The lower bound of c4(q) and c3(q) are as follows.
For c4(q) is LB c4 = c4p

(

[0 0 0]T
)

− c4n

(

[1 1 1]T
)

= 3 + (0)(0)3 − (1)(1) = 2.

For c3(q) is LB c3 = c3p

(

[0 0 0]T
)

− c3n

(

[1 1 1]T
)

= 5 + (0)2 − (1)(1)2 = 4.
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Then c4(q) and c3(q) are robustly positives in Q
e) By means of software applying 8 partitions the graphs e3,1, e3,2, e4,1 were obtained as
following.

Fig. 11. Element e31 in (α, β) representation

Fig. 12. Element e32 in (α, β) representation
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Fig. 13. Element e41 in (α, β) representation

Since c4(q), c3(q), e31(q), e32(q), e41(q) are robustly positive, then the system is robustly stable.
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