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1. Introduction 

Malignant melanoma, the most deadly form of skin cancer poses a substantial clinical 
burden with ~68,000 Americans diagnosed in 2010 and ~8,700 succumbing to the disease 
(American Cancer Society. 2010). Melanoma is also the fifth most common cancer in men 
and the sixth most common cancer in women (American Cancer Society. 2010). The 
incidence of melanoma has been increasing annually at an alarming rate worldwide. In the 
United States of America, the incidence of melanoma increased by 270% between 1973 and 
2002 (Ries, Wingo et al. 2000). In parallel to the increase in melanoma incidence, the 
mortality rate increased annually by 1.4% between 1970 and 1990 with a slight decrease of 
0.3% between 1990 and 2002 (Ries, Wingo et al. 2000). Despite aggressive research towards 
finding treatments, the prognosis for patients with late stage melanoma remains poor with 
median survival rates of 9 months with less than 5% probability of surviving 5 years after a 
diagnosis with disseminated melanoma (Balch, Sober et al. 2003; Balch, Soong et al. 2004). 
Treatment of the disease is still mainly defined by primary surgical intervention in patients 
with localized disease or early regional spread (Markovic, Erickson et al. 2007). Surgical 
resection is only partially effective in extending disease free survival in patients with 
regional metastases and therefore adjuvant therapies have been used in an attempt to 
improve patient outcomes. However, only high-dose therapy is applied either by radio-

therapy (Geara and Ang 1996; Ballo, Strom et al. 2002) or with interferon α-2b, a FDA 
approved regiment, has been shown to increase disease free progression and only by 8 
months (Kirkwood, Ibrahim et al. 2001). Adjuvant radio-therapy has been shown to control 
local disease in selected patients but has not had a significant impact on survival in patient 
with locally or regionally advanced melanoma (Geara and Ang 1996; Ballo, Strom et al. 
2002). In patients who develop distant metastatic disease, systemic therapy with 
dacarbazine provides a modest 22% response rate but no meaningful increase in overall 
survival (Bellett, Mastrangelo et al. 1976) while immunotherapy with interleukin 2 (IL-2) has 
proven toxic and only offers a modest survival advantage (White, Schwartzentruber et al. 
1994). The, prompting the need for compounds with greater anti-melanoma activity is 
obvious and has spurred new research into the genetics and pathogenesis of this disease. 
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The emergence of targeted molecular therapies has changed our view of melanoma as a 
homogeneous disease to a heterogeneous one where the genetic and epi-genetic makeup of 
the tumor(s) dictates the type of therapy to be used. Vemurafenib (PLX4032/RG7204) a 
small tyrosine kinase inhibitor with a higher affinity for mutant BRAFV600E, which is found 
in over 60% of melanomas (Davies, Bignell et al. 2002), has been shown to promote complete 
or partial tumor regression with a median progression free survival of 7 months, 
outstanding results that are but which is marred by high rates of recurrence in responding 
patients (Bollag, Hirth et al.; Flaherty, Puzanov et al.). Ipilimumab, a monoclonal antibody 
directed against the cytotoxic T-lymphocyte antigen-4 (CTLA-4) expressed by T regulatory 
cells (Tregs), key negative regulators of T-cell activation (Korman, Peggs et al. 2006; Peggs, 
Quezada et al. 2006; O'Day, Hamid et al. 2007 ), has been demonstrated to increase overall 
survival in patients with advanced melanoma by 2 years (Weber, Thompson et al. 2009). 
Because constitutively high levels of activated ERK seen in melanomas harboring the 
BRAFV600E mutation appear to suppress immune responses (Sumimoto, Imabayashi et al. 
2006). Future trials are expected to combine Vemurafenib and Ipilimumab to investigate 
whether increased clinical efficacy can be achieved. 
Understanding how normal cells develop into malignant cells by overriding essential 
mechanisms that control cell proliferation is one of the keys to developing effective 
therapies. Melanoma occurs as a result of neoplastic transformation of melanocytes and can 
affect any melanocyte containing tissue including the skin, oral mucosa, nasopharynx, uveal 
tissues, and the urinary tract (Chang, Karnell et al. 1998). The skin, the site affected by 
cutaneous melanoma, is the largest organ in the body and serves a protective role from 
constant exposure to toxins in the environment and through the production of melanin, 
adds a layer of protection from ultraviolet (UV) rays that can result in DNA damage 
(Chedekel and Zeise 1988). Early studies in the transformation of cells from a normal state to 
a transformed state evolved from observations of spontaneous neoplastic transformation in-
vitro in fibroblasts cultured from normal tissue in rats (Gey 1941) or those treated with 
carcinogens (Earle 1943). This was followed by observations that infection with the 
polyomavirus could lead to induction of a variety of tumor types in mice (Stewart, Eddy et 
al. 1957), hamsters (Eddy, Stewart et al. 1958), rats (Eddy, Stewart et al. 1959) and ferrets 
(Harris, Chesterman et al. 1961). These animal experiments led to epidemiological and 
genetic studies in humans that also showed a link between herpes virus type-2 infection and 
development of uterine and cervical carcinomas (Naib, Nahmias et al. 1969; Rawls, 
Tompkins et al. 1969). Since these discoveries, many laboratories have developed models of 
cancer through the manipulation of cells in culture or through genetic manipulation of 
whole organisms. These models have been extremely useful in deriving information about 
the interaction between genetics and the environment and their roles in the initiation, 
progression, and maintenance of transformed states validated by tumorigenic phenotypes. 

2. Immortalization and transformation 

Rodent and human cells have been vital in the study of neoplastic transformation in-vitro. 
However, these cells have diferent growth properties with most rodent cells having the 
ability to immortalize spontaneously and human cells lacking the ability to grow 
indefinitely under culture conditions. Furthermore, rodent and human cells have differing 
transformative abilities with human cells being more resistant to transformation. Rodent 
cells have been shown to be rendered tumorigenic by the expression of two cooperating 
oncogenes (Land, Parada et al. 1983; Ruley 1983). This process of oncogene assisted  
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transformation however fails to transform normal human cells (Stevenson and Volsky 1986) 
due to the activation of replicative senescence, a tumor suppressive mechanism (Hayflick 
1961; O'Brien, Stenman et al. 1986). Nevertheless, success in deriving human tumor cells in 
the laboratory was accomplished with the use of chemicals or physical mutagens to select 
for rare spontaneously immortalized cells (Kang, Sun et al. 1998), or by the use of an entire 
viral genome (Flore, Rafii et al. 1998). Further studies have shown that alterations in various 
signaling pathways are required to convert normal cells to neoplastic transformed cells 
(Hahn, Counter et al. 1999; Elenbaas, Spirio et al. 2001). Ectopic expression of the telomerase 
catalytic subunit (hTERT), co-expressed with the oncogenic simian virus 40 (SV40) large-T 
oncoprotein and an oncogenic allele of H-Ras resulted in the derivation of tumorigenic cells 
from normal human epithelial and fibroblast cells (Hahn, Counter et al. 1999). The ectopic 
expression of hTERT was necessary to allow these cells to proliferate indefinitely in culture 
as loss of telomerase activity occurs with continuous passage and has been shown to limit 
proliferation of human cancer cells (Hahn, Stewart et al. 1999). Immortalization has since 
been identified as a necessary step in achieving malignant transformation with oncogenes 
(Lundberg, Randell et al. 2002). Also necessary is the disruption of the p53 and Rb tumor 
suppressor pathways which have also been shown to be necessary for uncontrolled 
proliferation in-vitro and in a variety of human cancers (Hanahan 2000; Sherr and DePinho 
2000; Hahn and Weinberg 2002; Hanahan and Weinberg 2011). Following these steps to 
achieve cell immortalization, the subsequent expression of an oncoprotein has been found to 
be sufficient to transform cells, rendering them tumorigenic in-vivo (Hahn, Counter et al. 
1999). 

2.1 Melanocyte transformation 

Attempts had been made to develop animal models of melanoma that recapitulate the 
human disease to facilitate in delineating molecular mechanisms that result in malignancy. 
Commonly, the carcinogen, 7,12-dimethylbenz(a)anthracene (DMBA) was applied to induce 
melanoma initiation followed by application of TPA (Phorbol myristate acetate), to promote 
tumor growth in mice (Goerttler and Loehrke 1976), hamsters (Goerttler, Loehrke et al. 1980) 
and guinea pigs (Pawlowski, Haberman et al. 1980). These tumors were sometimes 
transplanted to normal hosts during which they developed to malignant melanomas that 
also metastasized to several organs (Goerttler, Loehrke et al. 1980). These models though 
successful in generating malignant tumors did not mimic the human disease. The culturing 
of melanocytes in-vitro to facilitate pigmentation studies as well as understanding of 
melanoma development was hampered by the contamination of the cultures with 
keratinocytes and fibroblasts and by the lack of knowledge on how to sustain long term 
melanocyte growth in culture. Eisinger et al. (Eisinger, Flores et al. 1982) described the initial 
culture conditions required to facilitate the maintenance of normal human melanocytes in-
vitro. They described the requirement for fetal calf serum, TPA - a phorbol ester that up-
regulates protein kinase C, and cholera toxin to prevent the growth of keratinocytes and 
stimulate the proliferation of pure melanocytes in-vitro. Modifications to these original 
culture conditions and the identification of other mitogens have been invaluable in 
generating various melanocytic lines. Towards the study of malignant transformation of 
normal melanocytes, Sato et al generated the first immortalized melanoma cells line, TM10, 
from C57BL/6J mice in the presence of TPA and cholera toxin. These cells were found to 
have chromosomal aneuploidy but were nevertheless not tumorigenic (Sato, Ito et al. 1985). 
Shortly after, Bennett et al (Bennett, Cooper et al. 1987) described the generation of a second 

www.intechopen.com



 
Breakthroughs in Melanoma Research 

 

360 

spontaneously immortalized mouse cell line, Melan-a. These cells which were generated 
with TPA but without cholera toxin retained a diploid chromosome number but lacked 
tumorigenicity in both nude and syngenic mice. These immortal cell lines have nevertheless 
proven to be acquiescent to transformation with exogenous genes and have been used in the 
construction of numerous transformed lines. 
Spontaneous immortalization of human melanocytes has not been described but 
immortalized lines have been generated with viral oncogenes such as H-Ras, K-Ras (Albino, 
Houghton et al. 1986), and SV40 large T antigen (Jambrosic, Mancianti et al. 1989; Melber, 
Zhu et al. 1989; Zepter, Haffner et al. 1995). Ras immortalized melanocytes exhibited 
characteristics of transformed cells such as the expression of class II histo-compatibility 
antigens not expressed by normal melanocytes, ability to grow in soft agar and increased 
expression of the cell surface ganglioside, GD3, but lacked growth factor independence 
exhibited by melanoma cells (Albino, Houghton et al. 1986). These Ras immortalized cells 
senesced but eventually, some of them were able to escape and became more transformed 
by acquiring melanoma specific markers and becoming tumorigenic in-vivo (Albino 1992). 
The SV40 immortalized melanocytes also exhibited markers of transformation such as loss 
of TPA requirement and expression of melanocytic markers but were otherwise non-
tumorigenic (Jambrosic, Mancianti et al. 1989; Melber, Zhu et al. 1989). Generation of 
tumorigenic mouse lines was also achieved with oncogene assisted immortalization and 
transformation. Several transgenic mouse lines were generated using a tyrosinase promoter-
regulated SV40 large T-viral oncogene with the mice developing ocular and cutaneous 
melanomas (Bradl, Klein-Szanto et al. 1991; Klein-Szanto, Bradl et al. 1991). These 
melanomas which were histopathologically similar to human melanomas provided an 
opportunity to study the etiology and progression of melanoma. These transgenic mouse 
lines were also invaluable to studies examining the role of epigenetic factors such as UV 
rays on melanoma formation (Larue, Dougherty et al. 1993). Transgenic cells generated from 
these mice were exposed to levels of UVB determined to be harmless to normal cells, 
however, these cells became tumorigenic after exposure to low UVB levels and illustrated 
the multi-step process involved in malignant transformation. The success of these initial 
models and the discovery that genetic factors are indispensable in melanoma initiation, 
progression and metastasis has led to the development of numerous malignant melanoma 
models. In this review, we will address a subset of melanoma models derived from defects 
in tumor suppressors, aberrant activation of receptor tyrosine kinases, mitogen activated 
protein kinases as well as variations and mis-expression of G-protein coupled receptors. 

3. Tumor suppressors 

3.1 CDKN2A/p16
INK4A

/ARF 

Approximately 8-12% of melanomas are thought to be as a result of familial pre-disposition 
(Greene 1979; Fountain, Karayiorgou et al. 1992). Deletions and rearrangements in the p16 
gene which is located on human chromosome 9p21 have been identified in dysplastic nevi 
and in patients with sporadic cutaneous melanoma (Cannon-Albright, Goldgar et al. 1992; 
Goldstein, Dracopoli et al. 1994). In addition, ~75% of human melanoma cell lines analyzed 
showed homozygous deletions and mutations in p16 suggesting that this region likely 
harbored a melanoma tumor suppressor (Fountain, Karayiorgou et al. 1992). Genetic studies 
in large melanoma-prone families further demonstrated that loss of heterozygosity or 
mutations at this locus co-segregated with melanoma susceptibility in familial melanoma 
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kindred (Hussussian, Struewing et al. 1994; Kamb, Shattuck-Eidens et al. 1994). The 9p21 
locus is complex in that it encodes two distinct proteins; p16INK4A and p19ARF (Kamb, 
Shattuck-Eidens et al. 1994; Quelle, Zindy et al. 1995). Exon 1┙ and 1┚ of the CDKN2A gene 
are driven by two different promoters which results in two alternate transcripts that share 
exon 2 and 3. The 1┙ transcript encodes the p16INK4A protein while the 1┚ transcript 
encodes the p19ARF protein (Serrano, Hannon et al. 1993; Quelle, Zindy et al. 1995). 
P16INK4A controls the RB-regulated G1–S transition by inhibiting CDK4/6–cyclin-D-
mediated hyper-phosphorylation of RB. P16INK4A maintains the complex of RB with the 
E2F transcription factor which results in the recruitment of histone deacetylases that 
promote and repress genes which regulate G1 arrest (DePinho 1998; Sherr and Roberts 
1999). The absence of p16INK4A abolishes the RB-E2F complex formation through the 
phosphorylation of RB by the cyclin dependent kinases CDK4 and CDK6, which leads to the 
release of the E2F transcription factor and activation of genes that allow S phase progression 
(Sherr and Roberts 1999). On the other hand, p19ARF blocks oncogenic transformation and 
acts as a tumor suppressor by stabilizing and enhancing p53 levels through the blockade of 
MDM2-mediated p53 ubiquitylation and degradation (Chen, Agrawal et al. 1998; Kamijo, 
Weber et al. 1998; Pomerantz, Schreiber-Agus et al. 1998; Zhang, Xiong et al. 1998). 
In addition to the germline mutations reported in INK4, (Hussussian, Struewing et al. 1994; 
Kamb, Shattuck-Eidens et al. 1994), polymorphisms in the 5’ and 3’ untranslated regions 
(UTRs) which alter translation or regulate messenger RNA stability of p16INK4A and 
promoter mutations of p16INK4A have also been identified in association with 9p21-linked 
familial melanoma (Liu, Dilworth et al. 1999; Kumar, Smeds et al. 2001). This was 
recapitulated in mouse studies where the inactivation of p16Ink4a showed increased 
susceptibility to both spontaneous melanoma and carcinogen induced melanoma 
(Krimpenfort, Quon et al. 2001; Sharpless, Bardeesy et al. 2001). Further, rare mutations in 
the CDK4 gene whose activity is controlled by p16INK4A have also been identified in 
melanoma families (Wolfel, Hauer et al. 1995; Soufir, Avril et al. 1998; Molven, Grimstvedt 
et al. 2005). In this case, the protein becomes insensitive to p16INK4A inhibition even 
though these patients have been found to have normal p16INK4A suggesting that these two 
mutations are mutually exclusive. A knock-in mouse model created with this CDK4 mutant, 
Cdk4 Arg24Cys (R24C), and lacking somatic inactivation of p16Inka or p19Arf showed 
increased melanoma susceptibility after carcinogen exposure (Sotillo, Garcia et al. 2001). 
Cooperation of p16INK4A with other oncogenes has also been reported. The combination of 
p16INK4a deficiency with activated H-Ras (Serrano, Hannon et al. 1993; Chin, Pomerantz et 
al. 1997), N-Ras (Ackermann, Frutschi et al. 2005) and K-Ras (Monahan, Rozenberg et al. 
2010) in mouse models have been shown to promote highly penetrant melanomas with 
short latency. 
Inactivation of the tumor suppressor p53 whose stability is controlled by ARF is common in 
many tumors (Greenblatt, Bennett et al. 1994). In melanoma, the pathological role of p53 is 
highly controversial as primary and metastatic melanoma have been found to have low 
incidences of p53 point mutations or allelic loss of p53 (Yang, Merlino et al. 2001). This is in 
contrast to the role of p53 inactivation in melanoma development illustrated by Mintz et al., 
where expression of the SV40 large T antigen inactivates both the RB and p53 pathways 
leading to highly penetrant and aggressive melanomas (Bradl, Klein-Szanto et al. 1991). The 
importance of p53 is also supported by a transgenic mouse model, Tyr-RAS/Trp53+/-, 
characterized by the loss of a p53 allele but with retention of p19Arf that also develops 
melanoma (Bardeesy, Bastian et al. 2001). p19Arf deficiency has also been shown to result in 
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melanoma development in a mouse model with Tyr-RAS+; Ink4a/Arf−/− and functional p53 
(Chin, Pomerantz et al. 1997). This illustrate a reciprocal role of p53 inactivation and loss of 
Arf suggesting that they have related functions which have been confirmed with the studies 
showing that Arf does indeed serve as a regulator of p53 (Sharpless and Chin 2003).  

3.2 PTEN 

The tumor suppressor on chromosome 10, PTEN (phosphatase with tensin homology) acts 
as a negative regulator of the phosphatidylinositol 3-kinase (PI3K) signalling pathway and 
has been implicated in a multitude of cancers. Deletion, mutation or inactivation of PTEN 
results in aberrant activation of the PI3K pathway effectors such as Protein Kinase B/AKT 
which drives cell proliferation and cell survival (Stambolic, Suzuki et al. 1998; Suzuki, de la 
Pompa et al. 1998). Allelic loss of PTEN has been identified in 20% of melanomas while 
altered expression has been detected in 40% of melanoma tumors while hemizygous 
deletions and inactivation of PTEN by homozygous deletions or mutations have been noted 
in 57% - 60% of melanoma cell lines (Pollock, Walker et al. 2002; Goel, Lazar et al. 2006; Li 
and Ross 2007; Yin and Shen 2008). The relevance of PTEN in melanoma has been 
demonstrated with ectopic expression of PTEN in melanoma cells lacking functional PTEN 
protein resulting in inhibition of Akt phosphorylation, increased apoptosis and decreased 
cell proliferation (Stewart, Mhashilkar et al. 2002). In addition, siRNA-mediated inhibition in 
a cell line harboring wild-type PTEN led to increased phosphorylation of Akt3 and radial 
growth reinforcing its involvement in melanoma development and its preferential 
regulation of Akt3 (Stahl, Sharma et al. 2004). Cells lacking functional PTEN also appear to 
have an added advantage in sustaining their survival by exhibiting increased Bcl2 
expression, resistance to growth factors, altered cell cycle progression, impaired migration 
and insensitivity to chemotherapeutic agents compared to cells with functional PTEN (Wu, 
Goel et al. 2003; Stahl, Sharma et al. 2004; Madhunapantula, Sharma et al. 2007). PTEN is 
thought to be lost early in melanoma development as shown by early melanocytic lesions 
harboring loss of one allele of PTEN, or PTEN haplo-insufficiency due to the loss of the 
entire chromosome 10 resulting in increased AKT phosphorylation (Parmiter and Nowell 
1988; Bastian, LeBoit et al. 1998; Wu, Goel et al. 2003). In addition, loss of PTEN has recently 
been shown to cooperate with BRAFV600E, a commonly mutated genetic component of the 
MAPK pathway found in nevi and in melanoma, in promoting melanoma development 
(Tsao, Zhang et al. 2000; Dankort, Curley et al. 2009). Here, the phosphorylation of Akt3 was 
shown to promote a transformed phenotype and anchorage independent growth. It was also 
postulated that since nevi that contain BRAFV600E rarely developed into melanoma, further 
oncogenic events are necessary for them to become melanoma. It thus appears that aberrant 
Akt3 phosphorylation reduces the levels and activities of BRAFV600E which in this case 
appears to promote rather than inhibit melanomagenesis (Cheung, Sharma et al. 2008). 
Further interaction of the PI3K pathway and MAPK pathway is also demonstrated by the 
activation of the p110 catalytic subunit of PI3K through interaction with Ras (Kodaki, 
Woscholski et al. 1994; Rodriguez-Viciana, Warne et al. 1994). It has been reported that in 
melanoma and endometrial cancer derived cell lines, RAS and PI3K are mutually exclusive 
due to functional and genetic redundancy given that the PTEN inactivation and RAS 
activating mutations can drive constitutive AKT activation (Ikeda, Yoshinaga et al. 2000; 
Tsao, Zhang et al. 2000). This was supported by mouse models of DMBA induced 
tumorigenesis where Ras mutations arose in Pten+/+ mice while Pten+/– mice showed a 
decreased incidence of Ras mutations (Mao, To et al. 2004). Furthermore, tumors that lacked 
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Ras mutations also had complete loss of Pten as a result of deletion of the wild-type allele. 
However, this has recently been contradicted by a study that found that ~14% of human 
melanomas that had an N-RAS mutation also harbored PTEN loss (Nogueira, Kim et al. 
2010). A subsequent mouse model of Tyr-HRASV21Gink4a/Arf-/- in a Pten+/+ or Pten+/- 
background showed that inactivation of one copy of Pten led to earlier onset of melanoma 
whereas mice lacking expression of activated Ras in the Pten+/-Ink4aArf-/- did not develop 
melanoma establishing that activation of Ras and loss of Pten cooperates in a subset of 
melanomas (Nogueira, Kim et al. 2010). 
In agreement with the notion that the lack of PTEN leads to aberrant activation of AKT, 
constitutive expression of AKT has been implicated in melanocyte transformation and poor 
prognosis in a variety of human cancers (Dai, Martinka et al. 2005). Amplification of AKT1 
and AKT2 have been reported in stomach, breast, pancreatic and ovarian adeno-carcinoma 
(Staal 1987; Cheng, Godwin et al. 1992; Bellacosa, de Feo et al. 1995; Cheng, Ruggeri et al. 
1996). In melanoma, AKT3 has been found to be activated in 43-60% of sporadic metastatic 
melanoma cases which has been attributed to increased copy number of the AKT3 gene as 
well as loss of PTEN (Stahl, Sharma et al. 2004). Additionally, AKT3 has been shown to 
cooperate with BRAFV600E in promoting a transformed phenotype in melanocytes (Cheung, 
Sharma et al. 2008; Tran, Gowda et al. 2008). In validating AKT3 as a potential therapeutic 
target, siRNA mediated down-regulation results in reduced cell survival and inhibition of 
tumor growth (Stahl, Sharma et al. 2004; Tran, Gowda et al. 2008). AKT2 over-activation has 
also been identified in melanoma and ovarian cancer (Yuan, Feldman et al. 2003; Nogueira, 
Kim et al. 2010; Shin, Wall et al. 2010). Examination of primary melanomas, nodal and in-
transit metastasis found to express GRM1, a metabotropic glutamate receptor implicated in 
melanoma development, (Pollock, Cohen-Solal et al. 2003) indicated predominant 
expression of the AKT2 isoform but not AKT3. Furthermore, in an animal model of Grm1 
expression in melanoma, Akt2 but not Akt3 was the isoform of Akt found to be highly 
activated. In this model, siRNA against Akt2 lead to growth suppression in-vitro and in-vivo 
(Shin, Wall et al. 2010). This has been recapitulated with dominant negative inhibition of 
AKT2 expression in the invasive melanoma cell line, CN44, where invasion was inhibited 
indicating a pro-invasive role of AKT2 in melanoma (Nogueira, Kim et al. 2010). Regardless 
of the discrepancies in the activation of various AKT isoforms, one or more isoforms of AKT 
remain excellent therapeutic targets due to their involvement in mediating melanoma 
invasion and chemoresistance.  

4. Receptor tyrosine kinases 

Receptor tyrosine kinases (RTKs) are integral components in signal transduction where they 
mediate normal cell growth, survival, differentiation and oncogenesis among other 
processes (Barnhill, Xiao et al. 1996; Hanahan and Weinberg 2000; Eckstein, Servan et al. 
2008; Hunter 2009). RTKs are transmembrane proteins with conserved intracellular catalytic 
domains and extracellular ligand-binding domains. Following binding of a ligand such as a 
growth factor or cytokines, the receptor forms dimers or oligomers allowing auto-
phosphorylation and substrate phosphorylation on tyrosine residues (Ullrich and Schlessinger 
1990; Lemmon and Schlessinger 2010). Signalling cascades requires the recruitment of 
adaptor proteins and intracellular kinases, which physically bind tyrosine phosphates on the 
activated RTK via either SRC (sarcoma) homology domains or phosphotyrosine binding 
(PTB) domains (Ullrich and Schlessinger 1990; Cadena and Gill 1992; Seger, Rodeck et al.  
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2008). Activation of the RTKs leads to activation of cell specific signaling cascades such as 
the RAS/RAF/MEK/ERK pathway or the PI3K pathway which are essential in mediating 
growth, survival and differentiation signals (Hunter 2009). In melanoma, aberrant RTK 
signaling has been implicated in development and progression due to mutations and 
overexpression of these receptors. 

4.1 Epidermal growth factor receptor (EGFR/ ErbB1/HER1) 

The epidermal growth factor receptor belongs to the ErbB family of RTKs activated by the 
EGF family of growth factors. EGFR and EGF-like peptides are often over-expressed in 
human carcinomas and have been shown to induce cell transformation in-vivo and in-vitro 
(Normanno, Kim et al. 1995; Salomon, Brandt et al. 1995; Yarden 2001; Normanno, Bianco et 
al. 2003). Gene amplification of EGFR has been described in different tumor types and is 
usually associated with overexpression of EGFR even though overexpression without gene 
amplification has also been reported (Salomon, Brandt et al. 1995; Normanno, Bianco et al. 
2003; Bhargava, Gerald et al. 2005; Suzuki, Dobashi et al. 2005). Expression of EGFR in 
melanoma cells has been shown to be as a result of increased copies of chromosome 7 and is 
associated with late stage melanoma (Koprowski, Herlyn et al. 1985; Bastian, LeBoit et al. 
1998). In metastatic melanoma, the incidence of the overexpression of EGFR or its ligand, 
EGF has been reported in about 90% of melanoma cases making it a likely therapeutic target 
(de Wit, Moretti et al. 1992; Mattei, Colombo et al. 1994; Salomon, Brandt et al. 1995). 
Gefitinib and Erlotinib are two orally available specific small molecule inhibitors of the 
EGFR kinase approved for the treatment of non-small-cell-lung carcinoma that compete 
with ATP for binding to the intracellular catalytic domain of the receptor kinase, thereby 
inhibiting autophosphorylation of the receptor which is critical for binding to downstream 
signaling proteins (Moyer, Barbacci et al. 1997; Arora and Scholar 2005; Hirsch and Bunn 
2005). The efficacies of these inhibitors seem to be dependent on increased EGFR copy 
number and/or increased EGFR mRNA expression levels (Cappuzzo, Varella-Garcia et al. 
2005). Patients with an amplified EGFR gene and/or elevated EGFR mRNA expression have 
higher response rates and improved survival than those with low EGFR copy number 
and/or mRNA expression level upon treatment with the Gefitinib (Hirsch, Varella-Garcia et 
al. 2005; Dziadziuszko, Witta et al. 2006). In-vivo, melanoma cells treated with Erlotinib 
exhibited decreased invasiveness, increased apoptosis and a decrease in phosphorylated 
ERK and AKT (Schicher, Paulitschke et al. 2009). Clinical results of Erlotinib in melanoma 
patients have been disappointing with minimal objective responses obtained (Wyman 2006). 
Combination of Erlotibin with Bevacizumab, an inhibitor of VEGF (vascular endothelial 
growth factor), a potent contributor to angiogenesis, tumor proliferation, and 
lymphangiogenesis in malignant melanoma has shown synergistic efficacy in-vivo (Schicher, 
Paulitschke et al. 2009) and is currently being tested clinically. In addition, the combination 
of Erlotinib with the cytokine interleukin-24 (IL-24) has shown that IL-24 sensitizes 
melanoma cells to the EGFR inhibitor through modulation of Akt and induction of Apaf-1 
dependent apoptosis (Deng, Kwon et al. 2010). 

4.2 c-MET (Hepatocyte growth factor/ scatter factor receptor) 

c-MET is a RTK normally expressed on the surface of melanocytes and epithelial cells and is 
activated by the cytokine hepatocyte growth factor/scatter factor (HGF-SF) (Bottaro, Rubin 
et al. 1991). It has been identified as a part of the oncogenic fusion protein TRP-MET with 
mutations identified in multiple tumor types including renal papillary carcinoma, lung 
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cancer, thyroid cancer, lymphoma and melanoma (Dean, Park et al. 1987; Park, Dean et al. 
1987; Natali, Nicotra et al. 1993; Schmidt, Junker et al. 1998; Ma, Jagadeeswaran et al. 2005; 
Wasenius, Hemmer et al. 2005; Tjin, Groen et al. 2006). In melanoma, c-Met expression was 
undetectable in benign nevi, detectable in a small fraction of primary melanomas and 
significantly expressed in metastatic melanoma lesions (Natali, Nicotra et al. 1993). In 
normal melanocytes, HGF-SF is a potent mitogen and promotes motility and expression of 
high levels of tyrosinase activity and melanin content (Halaban, Rubin et al. 1993). 
Stimulation of c-MET in normal melanocytes is via a paracrine loop which is subverted by 
autocrine signaling in melanoma where it is associated with metastatic progression (Otsuka, 
Takayama et al. 1998). c-MET expression in metastatic melanoma is associated with gains in 
copy number of the c-MET locus at 7q33 and not due to focal MET amplifications or 
activating MET point mutations which have been observed in other cancers but not in 
melanoma (Wiltshire, Duray et al. 1995; Bastian, LeBoit et al. 1998; Schmidt, Junker et al. 
1998; Smolen, Muir et al. 2006). Additionally, c-Met activation and HGF autocrine signaling 
have been shown to cooperate with other factors such as UVB exposure (Noonan, Dudek et 
al. 2003) and Ink4a/Arf deficiency (Recio, Noonan et al. 2002) in promoting melanoma 
progression. Given the role of c-MET in melanoma, inhibitors of this RTK might play a role 
in suppressing metastasis. Several inhibitors of c-MET, PHA-665752 (Christensen, Schreck et 
al. 2003) and SU11274 (Sattler, Pride et al. 2003) have been shown to have inhibitory activity 
in in-vitro and in-vivo assays but lack clinical viability due to poor pharmaceutical properties 
and oral bioavailability. Nevertheless, further studies on inhibitors of c-Met have recently 
identified another small molecule inhibitor that is orally bio-available, with which a dose-
dependent suppression of c-Met, induction of apoptosis and inhibition of angiogenesis has 
been reported (Zou, Li et al. 2007) 

4.3 c-KIT (CD117/K14/stem cell factor receptor) 

The c-Kit gene encodes a RTK that serves as the receptor for stem cell factor (SCF) ligand 
and has been identified as a growth factor involved in melanocyte migration and 
proliferation (Luo, Gao et al. 2003; Wehrle-Haller 2003). Oncogenic mutations and increases 
in copy number in c-KIT have been identified in melanomas, particularly in mucosal and 
acral melanomas than in cutaneous melanomas (Curtin, Busam et al. 2006; Antonescu, 
Busam et al. 2007). Contrary to this, other reports have indicated that progressive loss of c-
KIT protein expression is associated with progression from benign nevi to primary and 
metastatic melanoma (Montone, van Belle et al. 1997; Isabel Zhu and Fitzpatrick 2006). 
Despite these inconsistencies, c-KIT remains of interest given the identification of a recurrent 
mutation in melanoma (Willmore-Payne, Holden et al. 2005). The L576P mutation has been 
identified in metastatic melanomas with increased c-KIT expression (Antonescu, Busam et 
al. 2007). This mutation is also common in gastro-intestinal stromal tumors where it acts as a 
marker for neoplastic growth (Willmore-Payne, Holden et al. 2005; Willmore-Payne, 
Layfield et al. 2005). Success in the inhibition of c-KIT activating mutations in gastro-
intestinal stromal tumors with imatinib (Gleevec) lead to speculation that this might be a 
successful approach in melanoma (Hodi, Friedlander et al. 2008). Unfortunately, clinical 
testing has been largely unsuccessful in melanoma patients with imatinib (Alexis, Martinez 
et al. 2005; Ugurel, Hildenbrand et al. 2005; Wyman, Atkins et al. 2006) or with another c-
KIT inhibitor, PKC412 (Millward, House et al. 2006). To enhance response to these 
inhibitors, effective screening might be necessary given that only a subset of melanoma 
show c-KIT expression. In examining melanoma samples with increased c-KIT expression, it 
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was also noted that mutations in KIT, BRAF and N-RAS tend to be mutually exclusive 
(Cohen, Rosenbaum et al. 2004; Curtin, Busam et al. 2006; Beadling, Jacobson-Dunlop et al. 
2008). This might have an implication in response to therapy as each genotype may 
represent a distinct melanoma sub-population. 

5. Mitogen activated protein kinase (MAPK) pathway 

The MAPK pathway is a highly conserved phosphorylation signaling cascade that is 
involved in various cellular functions, including cell proliferation, differentiation and 
migration. The kinase activated pathway consists of ubiquitous proline-directed, protein 
kinases which phosphorylate hydroxyl side chains of serine/threonine and tyrosine residues 
in their MAP kinase substrates. Mammals have conserved MAPK pathways that are 
mediated through phosphorylation of the kinases ERK1/2 (Boulton, Nye et al. 1991; Cobb, 
Robbins et al. 1991), JNK/SAPK (Hibi, Lin et al. 1993) and p38 (Rouse, Cohen et al. 1994). 
The activation module consists of a receptor that acts in response to stimuli and leads to the 
activation of three kinases: a MAPK kinase kinase (MAPKKK) that phosphorylates and 
activates a MAPK kinase (MAPKK), which in turn activates MAPK (Pearson, Robinson et al. 
2001). The activation of the classical MAPK pathway with ERK as the terminal kinase is a 
frequent event in human cancer and is often the result of activating mutations in the 
oncogenes BRAF (7%) (Davies, Bignell et al. 2002) and RAS (15-30%) (Bos 1989) in overall 
cancer cases. 

5.1 Ras oncogenes  

Ras proteins are usually associated with the cell membrane and require stimuli to convert to 
an active conformation by inducing the exchange of GDP with GTP which is facilitated by 
the recruitment of GDP-GTP exchange factors such as SOS to the cell membrane (Boguski 
and McCormick 1993; McCormick 1993). The active GTP-bound form of Ras is then un-
constrained and can interact with diverse effectors including Raf, phosphatidylinositol 3-
kinase (PI3K), Ral-GDS, and other molecules to transmit downstream signals (Boguski and 
McCormick 1993; McCormick 1993). N-RAS is the most common of the RAS isoforms found 
mutated and activated in human melanoma and in melanocytic nevi. Mutational analysis 
have shown that ~56% of congenital nevi exhibit RAS mutations in comparison to 33% of 
primary and 26% of metastatic melanoma implying that this activation might be a risk factor 
in melanoma formation even though they are rare in dysplastic nevi (Albino, Nanus et al. 
1989; Jafari, Papp et al. 1995; Demunter, Ahmadian et al. 2001). In line with this, activating 
RAS mutations are associated with sun and UV exposure (van 't Veer, Burgering et al. 1989; 
Jafari, Papp et al. 1995; van Elsas, Zerp et al. 1996; Papp, Pemsel et al. 1999). Codons 12, 13 
and 61 have been identified as the most mutated hot spots in RAS mutations (Der, Finkel et 
al. 1986; Trahey and McCormick 1987; Trahey, Milley et al. 1987). An alteration in these 
codons reduces intrinsic GTPase activity of the Ras proteins and makes them insensitive to 
GTPase-activating proteins. N-RAS codon 61 mutations are the most common RAS 
alterations in malignant melanoma and appear to be preserved throughout melanoma 
progression. Interestingly, the presence of an N-Ras mutation in patients was found to have 
no effect on metastasis as primary tumors that were wild-type for N-RAS codon 61 were 
found to lack the mutation in their metastatic tumors (Albino, Nanus et al. 1989; Omholt, 
Karsberg et al. 2002). This lack of activity in enhancing metastasis should however not be 
ignored as Ras has been shown to cross talk with the PI3K/Akt which promotes cell 
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survival and suppresses apoptotic responses (Kodaki, Woscholski et al. 1994; Rodriguez-
Viciana, Warne et al. 1994).  
The activation of K-RAS in melanoma appears to be an extremely rare event described in a 
singular study (Shukla, Hughes et al. 1989). H-Ras activation has been reported in a rare 
population of sporadic melanomas and in Spitz nevi based on amplification of its genomic 
locus on 11p and oncogenic point mutations (Bastian, LeBoit et al. 2000). Animal models that 
utilize activated H-Ras in Ink4a, Arf and p53 null backgrounds support the notion of H-Ras 
being a weak oncogene in human melanomas as these mice develop non-metastatic 
melanomas (Chin, Pomerantz et al. 1997; Bardeesy, Bastian et al. 2001; Sharpless, Kannan et 
al. 2003). 

5.2 BRAF 

BRAF is a serine/threonine kinase that is activated by RAS and triggers its down-stream 
substrate MEK in the MAPK signaling pathway. BRAF mutations are prevalent in 7% of 
human cancers. The highest incidence of BRAF mutations is in malignant melanoma (27%–
70%), papillary thyroid cancer (36%–53%), colorectal cancer (5%–22%) and serous ovarian 
cancer (30%) (Davies, Bignell et al. 2002; Kumar, Angelini et al. 2003; Pollock, Harper et al. 
2003b; Young, Barker et al. 2005). Over 40 BRAF activating mutations have been identified 
with the BRAFV600E being the most common and accounting for 92% of BRAF mutations in 
melanoma (Davies, Bignell et al. 2002; Kumar, Angelini et al. 2003). This mutation is not 
found in familial melanomas and occurs as a result of a single-base mis-sense substitution (T 
to A at nucleotide 1,799) that changes the valine to glutamic acid at codon 600 (V600E) in 
exon 15 (Davies, Bignell et al. 2002). The insertion of the glutamic acid between Thr 598 and 
Ser 601 mimics the phosphorylation in the BRAF activation sequence and alters the protein 
structure to a constitutively activated conformation (Davies, Bignell et al. 2002; Garnett and 
Marais 2004; Wan, Garnett et al. 2004). This constitutive activation of BRAF has been shown 
to not only have 500-fold greater basal activity than wild-type BRAF but is also capable of 
inducing focus formation in NIH3T3 cells and mouse melanocytes, stimulate ERK 
phosphorylation and promote proliferation and transformation in-vivo (Houben, Becker et al. 
2004; Ikenoue, Hikiba et al. 2004; Wan, Garnett et al. 2004; Wellbrock, Karasarides et al. 
2004). This BRAFV600E mutation has been identified in pre-malignant colon polyps, early 
stage colorectal cancer (Rajagopalan, Bardelli et al. 2002; Yuen, Davies et al. 2002) and in 
~82% of benign nevi implying that it might be involved in the progression from a benign to 
a cancerous state (Yazdi, Palmedo et al. 2003; Pollock, Harper et al. 2003b). This suggests 
that BRAF mutations might occur early on in cancer initiation but other mutations are 
required to further drive tumor development. Benign melanocytic nevi with BRAF 
mutations exhibit growth arrest characteristics including the expression of the senescence 
marker, ┚-galactosidase, which may support this theory (Michaloglou, Vredeveld et al. 2005). 
Additionally, normal murine and human melanocytes with enforced expression of 
BRAFV600E exhibit oncogene induced senescence in the absence of additional cancer driving 
mechanisms such as loss of Ink4a (Gray-Schopfer, Cheong et al. 2006; Dhomen, Reis-Filho et 
al. 2009). Furthermore, the generation of nevi in normal mouse and human melanocytes is in 
contrast to observations in immortalized melanocytes transformed with activating 
mutations in NRAS or PI3K which were found to result in the development of invasive 
melanomas (Chudnovsky, Adams et al. 2005). This was also recapitulated in a zebra fish 
model of melanoma development where BRAF activation was shown to result in the 
development of benign nevi, with melanoma progression requiring additional loss of p53  

www.intechopen.com



 
Breakthroughs in Melanoma Research 

 

368 

(Patton, Widlund et al. 2005). Some BRAFV600E cells are however able to escape senescence 
and develop into melanoma (Dhomen, Reis-Filho et al. 2009) which might explain the high 
percentage of this mutation in sporadic melanoma. Even though a lot of studies show that 
BRAFV600E results in senescence and the formation of benign nevi, others have successfully 
shown that it can serve as an oncogene in transforming immortalized melanocytes 
(Wellbrock, Ogilvie et al. 2004; Dhomen, Reis-Filho et al. 2009). Importantly, they showed 
that low levels of BRAFV600E were sufficient to drive transformation and result in melanomas 
while high levels of BRAFV600E resulted in higher levels of ERK that were intolerable to the 
cells (Dhomen, Reis-Filho et al. 2009).  
Therapeutically, small kinase inhibitors have been developed to target BRAFV600E activation. 
A multi-kinase inhibitor, Sorafenib (Nexavar, Bay 43-9006) was produced as a specific 
inhibitor of CRAF but was found to have inhibitory activity towards BRAF (Lyons, Wilhelm 
et al. 2001; Wilhelm, Carter et al. 2004). Sorafenib was shown to potently inhibit not only the 
wild type and oncogenic BRAF signaling through the MAPK pathway, but also other 
kinases including the pro-angiogenic vascular endothelial growth factor receptors (VEGFRs) 
1/2/3, platelet derived growth factor receptors ┚ (PDGFR-┚), fibroblast growth factor 
receptor 1 (FGFR-1) and other tumorigenic RTKs including c-kit, Flt-3 and RET (Wilhelm, 
Carter et al. 2004; Carlomagno, Anaganti et al. 2006; Chang, Adnane et al. 2007). These pro-
angiogenic and tumorigenic RTKs can mediate signaling through RAF/MEK/ERK to 
induce proliferation and prolong the survival of vascular endothelial cells. Previous reports 
by others have indicated that Sorafenib induces apoptosis in-vitro in human leukemia, 
hepatocellular carcinoma, melanoma, esophageal carcinoma and a variety of other human 
tumors and is successfully utilized in the treatment of renal cell carcinoma (Carlomagno, 
Anaganti et al. 2006; Kane, Farrell et al. 2006; Chang, Adnane et al. 2007). In melanoma, 
single agent Sorafenib trials have had disappointing clinical outcomes and it is thus 
recommended in combination with other chemotherapeutic regiments that include 
carboplatin, paclitaxel and temozolomide (Eisen, Ahmad et al. 2006; McDermott, Sosman et 
al. 2008; Amaravadi, Schuchter et al. 2009; Augustine, Toshimitsu et al. ; Ott, Hamilton et al. 
2010). Recently, PLX4720/PLX4032/RG7204 has been described as a specific inhibitor of 
BRAFV600E with low affinity for other kinases and potent cytotoxicity in-vitro and in-vivo 
against melanoma cells bearing this particular mutation (Tsai, Lee et al. 2008; Yang, Higgins 
et al. 2010). A phase I clinical trial reported a response rate of 81% among patients with the 
BRAFV600E mutation with significant shrinkage of liver, bowel and bone metastasis marked 
by a median progression free-survival of 7 months (Flaherty, Puzanov et al. 2010). One of 
the more serious side effects was the development of squamous-cell carcinoma in 32% of 
these patients warranting careful dermatological monitoring of patients during PLX4032 
treatment (Bollag, Hirth et al. 2010; Flaherty, Puzanov et al. 2010). A phase II clinical trial 
showed a response rate of 52% with patients developing resistance to the drug after 2-19 
months of treatment (Bollag, Hirth et al. 2010). Different paths to resistance after PLX4032 
treatment has been attributed to acquisition of N-RAS mutations or up-regulation of PDGF-
┚ (Nazarian, Shi et al. 2010), COT/MAP3K8 (Mitogen-activated protein kinase kinase kinase 
8) expression which reactivates the MAPK pathway, (Johannessen, Boehm et al. 2010) 
enhanced IGF-1R (insulin like growth factor 1 receptor) signaling (Villanueva, Vultur et al. 
2010) and activation of AKT (Shao and Aplin 2010). In addition to the ongoing studies with 
PLX4032, other BRAF inhibitors such as GDC0879 (Hoeflich, Herter et al. 2009; Wong, 
Belvin et al. 2009) and GSK’436 (King, Patrick et al. 2006) are currently being tested to 
determine their efficacy in melanoma treatment. 
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6. G-protein-coupled receptors (GPCRs) 
 

G-protein coupled receptors (GPCRs) feature seven transmembrane spanning domains and 
are responsive to numerous stimuli such as odors, amino acids, peptides or large 
glycoproteins (Pin, Kniazeff et al. 2004). GPCRs transduce extracellular signals and mediate 
intracellular responses that govern cell proliferation, differentiation and apoptosis via 
activation of heterotrimeric G-proteins (Gutkind 1998; Rozengurt 1998; Marinissen and 
Gutkind 2001). Ligand binding on the receptor induces a conformation change from an 
inactive to an active state leading to G-protein activation (Marinissen and Gutkind 2001; Pin, 
Kniazeff et al. 2004). Active GPCRs stimulate GDP-GTP exchange on G-proteins inducing 
the dissociation of the ┙-GTP and ┚┛ subunits, which regulate the activity of various effector 
proteins such as adenylyl cyclase, phospholipase C, ion channels, and voltage-gated calcium 
channels (Marinissen and Gutkind 2001; Goudet, Magnaghi et al. 2009). GPCRs have been 
known to have oncogenic properties since Young et al., cloned and sequenced a potential 
oncogene, Mas, harboring seven hydrophobic transmembrane domains and hydrophilic 
amino and carboxy terminus (Young, Waitches et al. 1986). Mas, was found capable of 
transforming murine NIH 3T3 fibroblasts with weak foci forming ability in-vitro and 
tumorigenicity in nude mice. The lack of mutations in this oncogene was the first instance 
documented of a normal GPCR being tumorigenic as a result of its ectopic expression. Other 
oncogenic GPCRs have since been recognized in gliomas, gastric carcinoma, melanoma and 
other human cancers (Cuttitta, Carney et al. 1985; Julius, Livelli et al. 1989; Pollock, Cohen-
Solal et al. 2003; Mazzuco, Chabre et al. 2006). Melanocortin-1 receptor and metabotropic 
glutamate receptor 1 are some of the GPCRs implicated in melanoma development (Healy, 
Jordan et al. 2001; Pollock, Cohen-Solal et al. 2003). 
 

6.1 Melanocortin-1 receptor (MC1R) 

The melanocortin-1 receptor (MC1R) is expressed on epidermal melanocytes and is the 

receptor for ┙-melanocyte stimulating hormone (α-MSH). MC1R contributes to 
pigmentation by regulating the relative concentrations of eumelanin (brown/black pigment) 
and pheomelanin (red/yellow pigment) (Valverde, Healy et al. 1995; Barsh 1996). The 
binding of the ligand to the receptor stimulates cAMP production which stimulates the 
production of eumelanin. MC1R is highly polymorphic in human populations and its allelic 
variations are the principle determinant of pigment phenotypes and skin phototypes in 
humans (Valverde, Healy et al. 1995; Schioth, Phillips et al. 1999; Sturm, Duffy et al. 2003). 
Variants of MC1R have been identified in patients with sporadic melanoma due to their 
association with red hair, fair skin freckles and low tanning ability (Valverde, Healy et al. 
1995; Smith, Healy et al. 1998; Raimondi, Sera et al. 2008; Williams, Olsen et al.). Three 
common variants of MC1R; R151C, R160W, and D294H contribute to the red hair phenotype 
and are highly associated with melanoma (Smith, Healy et al. 1998; Bastiaens, ter Huurne et 
al. 2001; Box, Duffy et al. 2001). The presence of these variants is thought to contribute to 
melanoma by impairing the ability of the epidermis to repair DNA damage after sun 
exposure in fair skinned and red-haired individuals (Healy, Jordan et al. 2001). This theory 
is however disputed as dark skinned individuals with MC1R variants also have an 
increased incidence of melanoma (Palmer, Duffy et al. 2000; Kennedy, ter Huurne et al. 
2001). In addition, the presence of MC1R variant is thought to double the risk for melanoma 
in melanoma prone families with CDKN2A mutations (Box, Duffy et al. 2001; Chaudru, 
Laud et al. 2005; Fargnoli, Gandini et al. 2010). Moreover, the presence of MC1R variants in 
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CDKN2A mutation carriers is also associated with the development of multiple primary 
melanomas (van der Velden, Sandkuijl et al. 2001; Goldstein, Landi et al. 2005). 
 

6.2 Metabotropic glutamate receptor 1 (GRM1/mGlu1/mGluR1) 

Excessive glutamate signaling has been shown to underlie many neurological diseases 
including epilepsy, spasticity, stroke, traumatic brain injury and Amyotrophic Lateral 
Sclerosis (ALS) (Lee, Zipfel et al. 1999; McNamara 1999). Aberrant glutamate signaling also 
plays roles in patho-physiological diseases such as chronic pain, depression and anxiety 
(Swanson, Bures et al. 2005). Recently, glutamate signaling has been shown to be involved in 
various neoplasms including gliomas, colon cancer, breast carcinomas and melanoma 
(Albasanz, Ros et al. 1997; Pollock, Cohen-Solal et al. 2003; Chang, Yoo et al. 2005). 
Metabotropic glutamate receptors transduce glutamate induced signaling through the 
activation of heterotrimeric G-proteins. These receptors are primarily localized in the central 
nervous system where they are involved in synaptic transmission and less prominently in 
somatic tissues where they regulate proliferation, migration and differentiation (Skerry and 
Genever 2001; Hinoi, Takarada et al. 2004; Hinoi, Takarada et al. 2004; Shin, Martino et al. 
2008b). Of the 8 metabotropic glutamate receptors identified (Houamed, Kuijper et al. 1991; 
Masu, Tanabe et al. 1991; Conn and Pin 1997; Goudet, Magnaghi et al. 2009), metabotropic 
glutamate receptor 1 is the only one involved in melanoma development (Pollock, Cohen-
Solal et al. 2003; Marin, Namkoong et al. 2005; Marin, Namkoong et al. 2006). This discovery 
was prompted by results of a transgenic mouse study utilizing a 2 KB fragment of genomic 
DNA (Clone B) (Chen, Tiecher et al. 1989; Colon-Teicher, Wise et al. 1993), that had been 
shown to commit fibroblasts to undergo adipocyte differentiation upon introduction. Of the 
5 transgenic founders with the Clone B transgene and in which an expected obese 
phenotype was never observed, one of the founder mice (TG3) developed raised lesions on 
the eyes, snout, tail and peri-anal region at 8 months (Zhu, Reuhl et al. 1998). Subsequent 
progeny of TG3 developed similar lesions with 100% penetrance. These melanocytic lesions 
increased in size and number and were also invasive as illustrated by their detection in the 
lymph nodes, brain, muscles, lungs, choroid plexus and inner ears. These lesions were 
verified conclusively by histopathology as melanoma with a high degree of similarity to 
human melanoma. The transgene was found to be localized on a region of mouse 
chromosome 10 orthologous to human chromosomal band 6q23-24 (Pollock, Cohen-Solal et 
al. 2003). Seven to eight transgene insertions were integrated in intron 3 of the gene that 
encodes metabotropic glutamate receptor 1, Grm1, with concomitant deletion of 70 Kb of 
host intronic sequences. The expression of Grm1 was confirmed in the tumors derived from 
the raised melanocytic lesions in the pinnae, tails and skin of TG3 mice relative to normal 
controls. This ectopic expression of Grm1 in melanocytes was theorized to be the cause of 
the observed phenotype. Elucidation of the etiological role of aberrant Grm1 expression in 
melanocytes was deduced from the targeted expression of Grm1 in melanocytes under the 
regulation of melanocyte specific promoter dopachrome tautomerase (Dct) (Pollock, Cohen-
Solal et al. 2003). Transgenic mice generated with the Dct-Grm1 transgene, TG (Grm1) EPv, 
developed pigmented lesions on the pinnae and tail at 5-7 months which were histologically 
similar to those from TG3 mice and were transmitted with 100% penetrance to their 
offspring. This was conclusive evidence that the ectopic expression of Grm1 in mouse 
melanocytes was sufficient to induce spontaneous melanoma in-vivo. Recently, another 
group generated a Grm1 inducible model of melanoma that exhibits a similar phenotype 
upon expression of Grm1 in adult mice (Ohtani, Harada et al. 2008). They showed in their 
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model that mice with persistent Grm1 expression in melanocytes, harbored significant tumor 
burden compared to those with suppressed transgene expression indicating that Grm1 is not 
only necessary for the initiation of melanoma but also for their continued progression. This 
is also in agreement with results that show that Grm1 is capable of transforming 
immortalized mouse melanocytes in-vitro and forming robust tumors in-vivo (Shin, 
Namkoong et al. 2008a). Further studies provide compelling evidence that Grm1 expression 
can co-operate with other transformation mediators to support tumorigenicity. Akt2 has 
been shown to be not only a downstream target of Grm1 activation but is also involved in 
promoting the invasiveness exhibited by the Grm1 transformed mouse melanocytes (Shin, 
Wall et al. 2010). In addition, progeny from an inducible Grm1-expressing transgenic mouse 
model crossed with a stem cell factor (SCF) transgenic line exhibited increased populations 
of melanocytes in the epidermis and shorter latency in melanoma development than in the 
Grm1-only transgenic mouse model (Abdel-Daim, Funasaka et al. 2010).  
Involvement of human metabotropic glutamate receptor 1 (GRM1) in melanoma has also 
been demonstrated in melanoma biopsies and cell lines. Analyses of these samples showed 
that 80% of the cell lines and over 60% of the biopsy samples exhibited GRM1 expression at 
the level of both RNA and protein which was not detected in benign nevi (Pollock, Cohen-
Solal et al. 2003; Funusaka, Harada et al. 2006; Namkoong, Shin et al. 2007). This would 
make GRM1 a potential therapeutic target in human melanoma. Previous reports indicated 
that glutamate receptor antagonists inhibit cell proliferation (Rzeski, Turski et al. 2001; 
Stepulak, Sifringer et al. 2005). The competitive GRM1 antagonist LY367385 or the non-
competitive GRM1 antagonist Bay 36-7620 were investigated and found to suppress the 
growth of the GRM1 positive melanoma cells but not of GRM1 negative control cells 
(Namkoong, Shin et al. 2007). GRM1 expressing human melanoma cells and Grm1 
transformed mouse melanocytes were observed to release high amounts of glutamate 
extracellularly which through an autocrine loop is thought to enhance cell proliferation 
(Namkoong, Shin et al. 2007; Shin, Namkoong et al. 2008a). Riluzole, an FDA approved drug 
for the treatment of ALS is an inhibitor of glutamate release (Bensimon, Lacomblez et al. 
1994; Bryson, Fulton et al. 1996; Lacomblez, Bensimon et al. 2002). We demonstrated that 
disruption of the autocrine loop by Riluzole through the suppression of the release of 
glutamate inhibits GRM1 positive melanoma cell proliferation in-vitro, tumorigenicity in-
vivo and induces apoptosis (Namkoong, Shin et al. 2007). In addition, Riluzole was also 
shown to inhibit the migration and invasion of GRM1 positive melanoma cells (Le, Chan et 
al. 2010). A phase 0 clinical trial of Riluzole in stage III and IV patients with resectable 
melanoma showed a 34% response after only 2 weeks of treatment with significant tumor 
shrinkage in some patients accompanied by suppression of the MAPK and PI3K/AKT 
pathways (Yip, Le et al. 2009). A recently completed phase II trial showed modest anti-
tumor activity with 42% of the patients exhibiting stable disease (Mehnert, Wen et al. 2010). 
These results suggest that Riluzole might display higher efficacy in combination with other 
anti-melanoma therapies. 

7. Conclusion 

The future of melanoma treatment lies in the identification of drugable targets. Genetic 
analyses has generated copious amounts of information that illustrate the importance of 
“personalized medicine” matching each patient’s unique genetic predisposition with the 
available and developing regimens. Novel finding such as the involvement of GRM1 in 
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melanoma development might be involved in charting novel treatments for the treatment of 
metastatic melanoma. 
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