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1. Introduction 

The epidermis forms the top protective covering of normal human skin and is itself 
composed of multiple layers from the stratum corneum at the top, to proliferating cells in 
the deep/basal layer (Liu & Fisher, 2010). 
The epidermal cell population is mainly constituted of two cell types: keratinocytes and 
melanocytes. Keratinocytes constitute the majority of the epidermis; they have a “supporting” 
and regulatory role for the melanocytes. Keratinocytes are linked through tight desmosomal 
intercellular junctions and also anchored into the basal membrane through hemidesmosomes, 
but melanocytes remain as singly scattered, unattached cells.  
Each single, well-differentiated, melanocyte interacts with 36 viable keratinocytes at various 
stages of progression to the upper cornified layer of the epidermis (Fitzpatrick & Breathnach, 
1963) to form epidermal units. These structural and functional cellular units exhibit complex, 
life-long, cellular interactions originally laid down during embryonic life.  
There are considerable interindividual and intraindividual variations in melanocyte 
population densities, with more than twice as many melanocytes located in head and forearm 
skin compared with elsewhere on the body, as well as darker skin in the folded areas of 
axillae and perineum, traits that remain remarkably consistent between races (Szabo, 1967).  
Despite significant variation in skin pigmentation, the density of melanocytes at the 
epidermal-dermal junction is very similar across different skin types (Yamaguchi & 
Hearing, 2009). Thus the main contributor to racial differences in skin pigmentation is 
cellular activity rather than absolute melanocyte numbers (Szabo, 1967).  
Melanocytes play a central role in the response of skin to sunlight exposure. They are 
directly involved in UV-induced pigmentation as a defense mechanism. People with 
different skin color possess varied sensitivity to ultraviolet (UV) exposure, with darker 
skinned individuals being less susceptible to sun-induced skin alterations, including cancer, 
than fair skinned ones (Elwood & Diffey 1993).  
Such a difference can be explained in terms of protective UV filtering by epidermal pigmen-
tation, because the skin color is also related to the type of melanin, the number, size, type, 
distribution and degradation of melanosomes, and the tyrosinase activity of melanocytes 
(Nordlund & Ortonne 1998, Yamaguchi & Hearing 2009).  
The decreased photocarcinogenesis seen in individuals with darker skin may also be 
attributed to the more efficient removal of UV-damaged cells (Yamaguchi & Hearing 2009, 
Alonso & Fuchs, 2003, Fuchs, 2008).  
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The melanocytes, when differentiated, assume the highly dendritic phenotype that 
facilitates closer contact and transfer of the melanosomes to nearby keratinocytes where they 
shield nuclei from ultraviolet (UV) irradiation.  
At least four theories have been proposed to be involved in the transfer of the melanosomes 
(Slominski et al., 2004): 1) the “cytophagic” theory, where the keratinocyte, as active partner, 
phagocytoses the tips of dendrites that contain stage IV mature melanosomes (Garcia, 1979); 
2) the “discharge” theory, where mature melanosomes are released into the intercellular 
space to be internalized by adjacent keratinocytes; 3) the “fusion” theory, where mature 
melanosomes pass from melanocyte to keratinocyte via fusion of their respective plasma 
membranes (Okazaki et al., 1976.); and 4) the “cytocrine” theory, whereby melanocytes 
would inject melanin into recipient keratinocytes (Masson, 1948).  
Epidermal melanocytes rarely collect mature melanosomes intracytoplasmically; instead, 
they translocate them to keratinocytes. This is in contrast to bulbar follicular melanocytes, 
which are commonly heavily laden with fully mature stage IV melanosomes. When 
melanocytes were cocultured with keratinocytes, a highly dendritic phenotype was induced 
through filopodia, many of which contained melanosomes (Scott et al., 2002).  
Keratinocytes in coculture with melanocytes can also suppress melanogenic proteins such as 
the TRP1 (Phillips et al., 2001). Besides this, melanocyte growth, dendricity, spreading, cell-
cell contacts, and melanization can all be regulated by keratinocyte-secreted factors 
(Tenchini et al., 1995). Interestingly, the regulatory role exercised by keratinocytes is 
restored in melanoma cells if expression of E-cadherin is induced, permitting their adhesion 
to keratinocytes (Hsu et al., 2000). 
An increase in melanogenically active melanocytes is seen following UV irradiation 
(Rosdahl et al., 1978), but it is not clear if these additional cells are truly derived from 
division of already functioning melanocytes.  
In contrast, melanocytes in the hair follicle divide during the hair cycle. Melanocyte loss 
(mostly probably via apoptosis) occurs in both sun-exposed and covered skin with an 10% 
reduction per decade after 30 years of age until 80 years, followed by more dramatic cell loss 
thereafter (Nordlund, 1989).  
Melanocyte alteration can lead to melanoma, a tumor that has become one of the most 
rapidly increasing malignancies in the Caucasian population with 2.5-3% more cases each 
year in the US. It shows a relatively high incidence among young people compared to most 
other cancer types. (Wang et al., 2001).  

2. Melanin and melanogenesis 

Cutaneous melanin pigment plays a critical role in camouflage, mimicry, social 
communication, and protection against harmful effects of solar radiation. In the epidermis, 
melanin is synthesized by melanocytes. Besides skin, melanin can also be found in hair, 
retinal pigment epithelium, iris, and certain parts of the central nervous system.  
The primary function of skin melanin has not yet been established. A number of roles have 
been proposed that include photoprotection, thermoregulation, antibiotic, cation chelator, 
free radical sink, and by-product of the scavenging of the superoxide radical in the skin by 
tyrosinase (Giacomoni, 1995; Hill & Hill, 2000; Morisson, 1985).  
Melanins are synthesized, matured, and stored within melanosomes. Melanogenesis 
includes: melanosome biogenesis, melanin synthesis and transfer of the melanosomes to the 
surrounding keratinocytes (Chen et al., 2009).  
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Melanosome biogenesis can be classified into four distinct stages of maturation (I, II, III, IV) 
based on melanosomal morphologies (Hearing, 2005; Raposo et al., 2002). Stage I and II 
melanosomes are termed premelanosomes, as melanin synthesis has not yet begun. Stage I 
melanosomes are closely related to lysosomes because they share a lysosomal lineage 
(Hearing, 2005; Orlow, 1995; Raposo et al., 2001, 2002; Valencia et al., 2006). Typical stage II 
melanosomes are ovoid in shape, containing elongated and highly organized fibrillar - 
matrics. Active melanin synthesis occurs in stage III melanosomes and results in the 
deposition of black electron-dense pigment on the fibrillar matrix. When the internal matrix 
of a melanosome is completely filled with melanin, it no longer has discernable internal 
filaments at the electron microscope level, and the melanosome reaches a mature stage (i.e., 
stage IV). More detailed staging of melanosomes can be obtained from electron microscope 
images when melanosomes undergo inter-stage transitions from stage I to IV. These 
additional stages are I-II, II-III, and III-IV (Chen et al., 2006, 2009a, 2009b).  
Late-stage melanosomes (III and IV) are transferred to keratinocytes in normal skin. 
However, that process may be impaired in melanoma cells. Stage IV melanosomes 
frequently have damaged membranes and leak melanin into the cytoplasm, a morphological 
indicator of endogenous melanogenic cytotoxicity (Chen et al., 2006, 2009 a, 2009b).  
There are two categories of melanin: black-brown eumelanin and yellow-reddish 
pheomelanin.  
The availability of L-tyrosine for enzymatic oxidation is a central component for the 
initiation of melanogenesis. In the melanosomes L-tyrosine comes either from the 
hydroxylation of L-phenylalanine to L-tyrosine by phenylalanine hydroxylase (PAH) or is 
actively transported inside the organnells from cytoplasm (Schallreuter et al., 2008).  
Tyrosine uptake is largely through system L -transport, which supplies the tyrosine for both 
protein synthesis and melanogenesis, as shown in a melanoma cell line (SK-mel 23) (Jara et 
al., 1991). Tyrosine uptake by cells was inhibited by the analog substrate 4-S-cysteinylphenol 
and by tryptophan as well as the specific system L -inhibitor 2-amino-bicyclo-2,2,1-heptane-
2-carboxylic acid. (Pankovich & Jimbow 1991) Although this mechanism is responsible for 
the cellular uptake of tyrosine, there may be separate permeases to regulate the access of 
tyrosine to the melanosome because the process is analogous to amino acid export (Land et 
al., 2006).  
L-tyrosine is then hydroxylated to L-dihydroxyphenylalanine (L-DOPA), a reaction 
catalyzed by either the tyrosine hydroxylase activity of tyrosinase (TYR) or tyrosine 
hydroxylase (THI) (Simon et al., 2009). Thus, the three enzymes, i.e. phenylalanine 
hydroxilase, tyrosine hydrolase and tyrosinase are crucial for the initiation of 
melanogenesis, supporting the concept of a “three enzyme theory” (Schallreuter et al., 2008). 
The next step, oxidation of L-DOPA to dopaquinone (DQ) is common to both eu and 
pheomelanin synthesis. Orthoquinines such as dopaquinone (DQ), are extremely reactive 
molecules (Ito & Wakamatsu, 2008) and can be formed directly during the initial stage of 
melanogenesis (Cooksey et al., 1997).  
The first step in eumelanogenesis is a relatively slow process involving the intramolecular 
addition of the amino group to produce cyclodopa (Land & Riley, 2000; Land et al., 2003). 
However, as cyclodopa is formed, it is rapidly oxidized to dopachrome through a redox 
exchange (Land et al., 2003).  
Production of dopachrome, an orange red pigment is faster than the production of 
cyclodopa, when the cyclodopa concentration is above 0.7µM, leading to dopachrome 
accumulation during the early phase of eumelanogenesis. Dopachrome spontaneously 
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decomposes by decarboxylation at neutral pH to give di-hydro indol (DHI) and di-hydro 
indol carboxylic acid (DHICA) in a 70: 1 ratio (Palumbo et al., 1987). However, in the 
presence of dopachrome tautomerase (DCT), also termed tyrosinase-related protein-2 
(TYRP2), dopachrome undergoes tautomerization to preferentially produce DHICA 
(Palumbo et al., 1991). The ratio of DHICA to DHI in natural eumelanins is thus determined 
by the activity of DCT (Tsukamoto et al., 1992). DHICA synthesis seems to protect 
melanocytes against cytotoxic effects of melanogenesis, thus DCT was reported to be 
essential for melanocyte survival (Hearing, 2000).  
Metal cations, especially Cu2+ also accelerate the dopachrome rearrangement and affect the 
DHICA/DHI ratio, but DCT seems to be more effective in catalyzing the tautomerization 
(Palumbo et al., 1987, 1991). During eumelanogenesis, DHI oxidation takes place by redox 
exchange with DQ (Edge et al., 2006), although such a reaction is likely to be less efficient for 
DHICA. Thus, DHICA may require its oxidation to the quinone form by a direct action of 
tyrosinase in humans (Olivares et al., 2001) or by TYRP1 in mice (Jimenez-Cervantes et al., 
1994; Kobayashi et al., 1994). Human TYRP1 is unable to catalyze the DHICA oxidation 
(Boissy et al., 1998).  
The initial step of pheomelanogenesis is the conjugation of dopaquinone to cysteine or 
glutathione to yield cysteinyldopa (CD) and glutathionyldopa (Simon, 2009). The reaction of 
DQ and cysteine produces the 5-5 and 2-5-CD isomers in a ratio of 5.3:1 (Ito and Prota, 1977). 
Cysteinyldopas are further transformed into dihydrobenzothiazine-3-carboxylic acid 
(DHBTCA). (Greco et al., 2009). In the later stages of pheomelanogenesis, benzothiazine 
groups are slowly converted to the benzothiazole (BZ) and thus the polymeric structure of 
the pheomelanin pigment contains both benzothiazine and benzothiazole units (Wakamatsu 
et al., 2009).  
Trichochromes are dimeric and trimeric intermediates that have a bi (l,4) benzothiazine 
chromophore. The close similarity in structural features of trichochromes and pheomelanin 
and their coexistence in pigmented tissues suggest that they are formed oxidatively from the 
same monomer units and differ only in their mode of polymerization (Simon, 2009).  
In vivo melanogenesis produces mixtures of eumelanin and pheomelanin. The total amount 
of melanin produced is proportional to DQ production, which is in turn proportional to 
tyrosinase activity. 
A mixed melanogenesis three-step pathway has been proposed (Ito & Wakamatsu, 2008; 
Simon et al., 2009). The initial stage is the production of CD isomers, which continues as 
long as the cysteine concentration is above 0.13 µM. The second stage is the oxidation of CDs 
to produce pheomelanin as long as CDs concentrations are above 9 µM. The last stage is the 
production of eumelanin, which begins only after most CDs and cysteine are depleted. 
Therefore, the ratio of eumelanin to pheomelanin is determined by tyrosinase activity and 
the availability of tyrosine and cysteine in melanosomes (Land et al., 2003).  
Human epidermal and uveal melanocytes in culture produce pheomelanin at rather 
constant levels regardless of the degree of pigmentation while they produce eumelanin at 
levels proportional to pigmentation (Ito & Wakamatsu, 2008; Wakamatsu et al., 2006, 2008).  
The most important enzyme which regulates the velocity and specificity of the melanogenesis 
is tyrosinase (Slominski et al., 2004). Tyrosinase catalyzes three distinct reactions in the 
melanogenic pathway: hydroxylation of monophenol (L-tyrosine), dehydrogenation of L-
DOPA, and dehydrogenation of DHI; L-DOPA serves as cofactor in the first and third 
reactions (Hearing & Tsukamoto, 1991; Korner & Pawelek, 1982; Pawelek & Korner, 1982; 
Wood & Schallreuter, 1991; Ros et al., 1993). L-DOPA is the most efficient electron donor 
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necessary to start tyrosine hydroxylation, although ascorbic acid, dopamine, and superoxide 
anion radicals can potentially activate the enzyme (Wood & Schallreuter, 1991).  
 

 

Fig. 1. Biochemical reactions of melanin synthesis; Abbreviations: DHI- di hydro indol, 
DHICA- di hydro carboxylic acid, DOPA -dihydroxyphenylalanine, PAH- phenylalanine 
hydroxilase, THI- tyrosine hydroxilase, TRP- tyrosinase related proteins. The initial step in 
the melanin biosynthesis is the hydroxylation of tyrosine to DOPA, which is then converted 
to DOPAquinone. Pheomelanogenesis takes place in the presence of cysteine and leads to the 
red-orange pigments, pheomelanins and trichochromes, while eumelanogenesis pathway 
needs the participation of tyrosinase and related proteins to produce either brown DHICA 
melanin of black DHI melanin 

The effect of ascorbic acid on the monophenolase activity of tyrosinase has been explained 
by its reducing action on enzymatically generated quinines, thus inducing accumulation of 
L-DOPA, the main electron donor to the Cu2+ enzyme active site (Ros et al., 1993). 
Tyrosine related protein TRP1/TYRP1 share structural similarities with tyrosinase and 
originated by the duplication of the ancestral tyrosinase gene (Olivares et al., 2001, 2009). 
The activities of these tyrosinase-related proteins, TYRP1 and TYRP2, greatly affect the 
quantity and quality, the ratio of DHI to DHICA and the degree of polymerization of 
eumelanins produced (Lamoreux et al., 2001; Ozeki et al., 1995, 1997a, 1997b).  
Both of them are important for the eumelanogenic pathway; they also act as stabilizers and 
regulators of the tyrosinase activity. Tyrp1 appears to control the molecular size of 
eumelanin produced in mice. Brown mice that lack Tyrp1 activity produce eumelanin with 
lower molecular weights than wild type, black mice (Ozeki et al., 1997a, 1997b). In humans, 
TYRP1 has tyrosine hydroxylase activity (Jackson et al., 1991; Jimenez-Cervantes et al., 1994; 
Kobayashi et al., 1994) and TYRP2 acts as dopachrome tautomerase (Jackson et al, 1992; 
Tsukamoto et al., 1992; Yokoyama et al., 1994). An additional function of TYRP1 may be the 
securing of appropriate processing of tyrosinase and stabilization of its enzymatic activity 
and, possibly, maintenance of melanosomal structure integrity (Hearing, 2000; Le Poole et 
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al., 2000; Sarangarajan & Boissy, 2001; Sarangarajan et al., 2000). TYRP2 is important for 
melanocyte survival by implication in endogenous melanogenesis cytotoxicity homeostasis 
(Hearing, 2000). 

3. Regulation of melanogenesis – internal factors 

Cutaneous pigmentation plays a crucial role in defending the body against harmful UV rays 

and other environmental challenges (Costin & Hearing, 2007). This process is under a 

complex genetic control: in mammals, over 350 loci associated with pigmentation have been 

cloned or mapped (Olivares & Solano, 2009; Hearing, 2000; Montoliu et al., 2009).  

Protein products of these loci acting as enzymes, structural proteins, transcriptional 

regulators, transporters, receptors and growth factors have a wide array of functions and 

cellular targets (Hearing, 1999; Nordlund et al., 2006). Among them are the important 

enzymatic melanosomal proteins coded by the albino(c)/TYR (Kwon et al., 1991, 1993), 

brown (b)/TYRP1 (Jackson et al., 1991) and slaty(slt)/TYRP2/DCT (Jackson et al., 1992) 

silver (slt)/SILV (Kwon et al., 1991, 1993), pink-eyed dilute (p)/P/OCA2 (Box et al., 1998; 

Oetting & King, 1999; Silvers, 1979; Simoncini et al., 2000), underwhite (uw)/LOC51151, 

MART1 (Carlson et al., 2003; Slominski, 2002; Slominski et al., 2001; Wankowicz-Kalinska et 

al., 2003) and OA1 (Orlow & Brilliant, 1999) loci. 

The behavior of the melanocytes in vitro is different than in vivo, as a part of the epidermal 

melanin unit. The pheomelanin / eumelanin ratio is regulated by keratinocytes (Duval et al., 

2002). Key elements in the regulation of melanogenesis are represented by tyrosinase and 

TYRPs. Their activities are also involved in the type of melanin pigment produced in 

melanosomes and also in controlling the endogenous citotoxicity of the melanogenesis 

process to the melanocytes. 

The most important positive regulator of melanogenesis is the melanocortin (MC1) receptor 

with its ligands, melanocortins, other proopiomelanocortin (POMC) products, 

adrenocorticotropic hormone (ACTH) (Eberle et al., 1988; Lerner, 1993; Pawelek, 1976, 1985; 

Pawelek et al., 1988, 1992), whereas among the negative regulators, agouti protein stands 

out, determining the intensity of melanogenesis and the type of melanin synthesized.  

α-MSH, which binds the MC1 receptor is an important regulator of skin pigmentation and 

the UV response of melanocytes and stimulates eumelanin synthesis (Abdel-Malek et al., 

2009).  

In vivo α-MSH injected to pubertal viable yellow mice producing a mixed-type melanin 

increased tyrosinase activity twofold with a concomitant increase in total melanin and more 

eumelanic hair was produced (Burchill et al., 1986).  

Decreased α-MSH secretion following bromocriptine led to reduced tyrosinase activity and 

pheomelanic hair production along with a total melanin decrease. In vitro treatment of 

human melanocytes with the synthetic α-MSH resulted in an increase of eumelanin content 

in all the seven cell lines of different ethnic origins examined (Hunt et al., 1995).  

Treatment with phenylthiourea (a tyrosinase inhibitor) resulted in a reduction of eumelanin 

content to a half with a concomitant twofold increase of pheomelanin content in 

melanocytes (Le Pape et al., 2008).  

The main antagonist for the MC1R is the agouti signaling protein (ASP) (Lu et al., 1994). 

ASP acts within the microenvironment of the hair follicle during hair growth, switching 

eumelanin synthesis into pheomelanin synthesis.  
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The human agouti gene is expressed in adipose tissue, testis, ovary, and heart and at lower 
levels in liver, kidney, and foreskin (Wilson et al., 1995). Expression in transgenic mice of the 
human agouti protein produced a yellow coat (Wilson et al., 1995), although human hair 
does not show the agouti pattern.  
When treated with agouti protein combined with phenylthiourea and extra cysteine to 
induce tyrosinase inhibition, non agouti melan-a (ala) mouse melanocytes (mainly 
eumelanic) produced over 200-fold increases in the pheomelanin to eumelanin ratio (Hida et 

al., 2009). Expression of ASP in cell culture blocks the α-MSH-stimulated accumulation of 
cAMP in mouse melanoma cells (Wilson et al., 1995).  
In lower vertebrates, melanin concentrating hormone (MCH) induces melanosome 
aggregation within melanophores (whitening of the color). In mammals, MCH expression 
was detected in cultured human endothelial cells but not in human keratinocytes, 
melanocytes, and fibroblasts (Hoogduijn et al., 2002). 
MCHR1, but not MCHR2, expression was detected in human melanocytes and melanoma 
cells (Hoogduijn et al. 2001, 2002; Saito et al., 2001). Stimulation of cultured human 

melanocytes with MCH reduced the α-MSH-induced increase in cAMP production 

(Hoogduijn et al., 2002). Furthermore, the melanogenic actions of α-MSH were inhibited by 
MCH. MCHR1 has also been identified as a novel autoantigen in patients affected with 
vitiligo (Kemp et al., 2002).  
MC1 and MC2 receptors are coupled to pathways that have the cAMP as a second 

messenger (Coneet al., 1996; Nordlund et al., 1998). Their main ligand, α-MSH stimulates 
the processing of tyrosinase and tyrosinase-related proteins and the formation of 
melanosomes (Hearing, 1999, 2000; Nordlund et al., 1998).  

Regulation by α-MSH of transcription and translation of tyrosinase and melanin related 
proteins (MRPs) could be mediated indirectly through microphthalmia-associated 
transcription factor (MITF) or directly through activation of PKA-or PKC-dependent 
pathways. Nevertheless, there is a consensus that MSH stimulates production and activity 
of MRPs at the transcriptional, translational, and posttranslational levels. Furthermore, MSH 
stimulates delivery of tyrosine to melanosomes (Potterf & Hearing, 1998).  
Besides circulating MSH and other POMC products, the final POMC peptides can 
potentially be produced in all cutaneous compartments (epidermis, dermis, and adnexa) by 
epithelial and melanocytic cells and cells of mesenchymal origin such as immune cells, 
fibroblasts, and endothelial cells and also by release from sensory nerve endings (Slominski 
et al., 2000). Local POMC gene expression and production of POMC peptides can be 
modulated with UVR, cytokines, growth factors and cAMP and varies according to phase of 
the hair cycle (Slominski et al., 2000). Thus locally produced melanocortins and 
adrenocorticotropin could regulate melanogenesis though para-, auto-, or intracrine 
mechanisms (Slominski et al., 2000). Melanocytes produce, process POMC and express 
intracellular MSH receptors (Slominski et al., 2000), and a POMC processing system has 
been identified in human melanosomes (Peters et al., 2000). Cultured normal epidermal 
melanocytes treated with ┚-endorphin show increased melanogenesis, dendricity and 
proliferation and ┚-endorphin and µ-opiate antigens have been colocalized in melanosomes 
(Kauser et al., 2003).  
Factors known to raise intracellular cAMP levels such as MSH itself, ACTH, dibutyryl 
cAMP, cholera toxin, forskolin (Simon et al., 2009) and phosphodiesterase inhibitors also 
stimulate MC receptors expression and activity (Slominski et al., 2004), leading to an 
activation of melanogenesis. 
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Topical application of forskolin to K14-stem cell factor transgenic mice with Mclre/e 
background (producing mostly pheomelanin) resulted in a dramatic shift to eumelanogenesis 
(Spry et al., 2009). 

 In normal and malignant melanocytes, interleukin (IL-1α, IL-1┚, endothelin-1, adult T-cell 

leukemia-derived factor/thioredoxin (ADF/TRX), interferons (IFN-α, IFN-┚, IFN-┛), 

dibutyryl cAMP, and the hormones MSH and ACTH can stimulate expression of the MC-1 

gene and of functional cell surface MSH receptors (Slominski et al., 2004).  

Endothelin (ET) is secreted by keratinocytes and stimulated by UVB radiation (Imokawa et 

al., 1992; Yada et al., 1991); it is a potent stimulator of proliferation and differentiation of 

human melanocytes (Yada et al., 1991), it increases tyrosinase activity and TYRP1 mRNA 

expression (Imokawa et al., 1995), also it increases melanocyte dendricity (Hara et al., 

1995).  

IL-1 can also stimulate MC-1 receptor expression in normal and malignant human 

keratinocytes (Birchall et al., 1991). A similar effect was described for thymidine dimers and 

small single-stranded DNA fragments (ssDNA) that are produced intracellulary after UV-

induced damage (Eller & Gilchrest 2002; Gilchrest & Eller, 1999).  

Tumor necrosis factor (TNF-α) inhibits MC1 expression in melanocytes (Funasaka et al., 

1998). 
The c-kit/SCF interaction is critical for melanocyte survival (Steel et al., 1992) as shown by 
the induction of apoptosis in murine melanocytes after injection of a c-kit-blocking antibody 
(ACK2) (Ito et al., 1999). C-kit is also required for melanocyte activation during the murine 
hair cycle (Botchkareva et al., 2001; Peters et al., 2002). Epithelial-derived SCF may be the 
physiological regulator in the c-kit-expressing melanoblasts and melanocyte of mammalian 
skin by modulating migration and melanocyte cytoskeleton (Botchkareva et al., 2001), 
differentiation (Lahav et al., 1994; Luo et al., 1995), melanogenesis (Costa et al., 1996; Luo et 
al., 1995), and cell survival/apoptosis (Ito et al., 1999). 
Studies performed on cultured melanoma cells have shown that epinephrine or 
norepinephrine as well as other adrenergic agonists can stimulate moderately tyrosinase 
activity and melanin production (Slominski et al., 2004).  
Other positive intrinsic regulators of skin pigmentation are endocrine factors (estrogens, 
androgens), vitamin D, growth factors (fibroblast growth factor - ┚-FGF), inflammation 
related factors (eicosanoids, histamine), bone morphogenic proteins; while amongst 
negative regulators are endocrine factors (glucocorticoids, melatonin), melanocortin 

antagonists, neural factors (acetylcholine, serotonin, dopamine), cytokines (IL-1, IL-6, IFN-α, 

IFN-┛, TNF-α, TNF-┚), growth factors (TGF-┚1), retinoids (Slominski et al., 2004).  
Many of the factors described previously that increase melanogenesis are upregulated upon 
UV irradiation (Yamaguchi & Hearing, 2009). 
The aminoacids L-tyrosine and L-DOPA increase melanogenesis through increasing MC1R 
expression and activity, besides being the substrate for tyrosinase activity (Slominski et al., 
2004). L-Tyrosine and L-DOPA act through related but distinct mechanisms (Slominski et 
al., 2004), with L-tyrosine inducing both melanosomes synthesis and tyrosinase 
translocation to melanosomes, while L-DOPA primarily increased tyrosinase. Their effects 
on tyrosinase gene transcription differ, e.g., L-tyrosine has no effect on tyrosinase mRNA, 
while L-DOPA produces an initial increase in tyrosinase mRNA followed by a decrease 
below control levels (Slominski & Costantino, 1991). The latter effect could be due to 
tyrosinase mediated oxidation of L-DOPA generating toxic intermediates of melanogenesis, 
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which would in turn shut-off tyrosinase gene expression as protective mechanism against 
self-destruction (Slominski & Costantino, 1991). 
 The ratio of tyrosine to cysteine have also been involved in controlling melanogenesis. By 
decreasing the extracellular concentration of cystine in cultures of human melanoma cells, a 
shift to more eumelanic cells was obtained (del Marmol et al., 1996). When cells were 
cultured at a higher concentration of tyrosine it was found a twofold increase in melanin 
production in human melanocytes with a decreased ratio of pheomelanin to total melanin 
(Smit et al. 1997).  

High levels of tyrosine are known to reduce the proliferative effect of α-MSH and forskolin 
(Schwan, 2001) and also alter melanocytes morphology (Schwan, 2001); tyrosine also 
stimulates the activity of tyrosinase and melanogenesis. (Baldea et al., 2009; Smit et al., 1997, 
1998, 2008; Wenczl et al., 1998)  
The concentration of cysteine in melanosomes is genetically regulated. The subtle gray (sut) 
pigment mutation in mice arose due to a mutation in the Slc7a 11 gene that encodes the 
plasma membrane cystine/glutamate exchanger xCT. The resulting low rate of extracellular 
cystine transport into sut melanocytes reduced pheomelanin production with minimal or no 
effect on eumelanin production (Chintala et al., 2005).  
Melanosomal pH in melanosomes is involved in switching between eu and 
pheomelanogenesis (Simon et al., 2009). Melanosomes in melanocytes from white/fair skin 
are acidic while those from black/dark skin are near neutral (Smith et al., 2004). 
Furthermore, the great diversity in normal human skin pigmentation appears to stem from 
mutations in only several genes, including P, MATP and SLC24A5 (Lamason et al., 2005; 
Norton et al., 2007).  
Mutations in those genes may result in changing the melanosomes ph (Ancans et al. 2001). 
The effects of more acidic ph on mixed melanogenesis are twofold: a lower activity of 
tyrosinase and a slower rate of dopaquinone cyclization (the first step in eumelanogenesis) 
while the CD-quinone cyclization (yielding the first bicyclic intermediate in 
pheomelanogenesis) proceeds faster (Thompson et al., 1985). Thus, pheomelanogenesis is 
kinetically favored under more acidic environment in melanosomes. 
Effects of metal ions on mixed melanogenesis might have a role in regulating melanogenesis 
because some metal ions are present at certain levels in melanosomes (Liu et al., 2005).  
In eumelanogenesis, DCT plays an important role in promoting the production of DHICA in 
tautomerization of dopachrome, a reaction also catalyzed by Cu2+.  
Pheomelanosomes isolated from red human hair contain Fe3+, Zn2+, and Cu2+ at 98, 25, and 
20 µmol/g melanin, respectively, in addition to 141 µmol/g of Mg2+ (Liu et al., 2005). In 
pheomelanogenesis, these metal ions have been shown to modify the course of melanogenesis 
at the monomer level. During oxidation of 5SCD by a chemical oxidant, the presence of Zn2+ 
protects the carboxyl group of QI through chelate formation to preferentially form BTCA in 
place of BT (Di Donato et al., 2002; Napolitano et al., 2001). Under the same conditions, Fe3+ 
ions appear to form chelates with intermediates to accelerate the ring contraction leading to 
BZ (Di Donato et al., 2002). Cu2+ ions are also involved in modification of the reaction 
pathway, with a greater yield of the 3-oxo-derivative ODHBT.  
At the intracellular level, the major regulatory pathway is cyclic adenosine monophosphate 
(cAMP) through the activation of protein kinase A (PKA) (reviewed in Slominski et al., 2004) 
and involves phosphorylation of cAMP responsive element binding protein (CREB) and 
CREB binding protein (CBP). At the intracellular level, the major regulatory pathway is 
cyclic adenosine monophosphate (cAMP) through the activation of protein kinase A (PKA) 
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and involves phosphorylation of cAMP responsive element binding protein (CREB) and 
CREB binding protein (CBP). Phosphorylated CREB interacts with CBP to activate the 
expression of MITF throughout the CRE in the promoter region of the gene. MITF in turn 
regulates transcription of genes coding MRPs. Because CRE is absent from the promoter of 
tyrosinase and TYRP1 genes, the transcriptional control of melanogenesis by cAMP is 
coordinated predominantly by MITF. However, transcription of TYRP2 can potentially be 
activated through direct activation of CRE by CREB (reviewed in Slominski et al., 2004).  
MITF is one of the most critical factors for the regulation of melanocyte function. In addition 
to serving as an essential regulator for expression of enzymes and structural proteins 
involved in melanin production (such as tyrosinase, TYRP2/DCT), MITF is also an essential 
regulator of genes involved in melanocyte development, proliferation, replenishment 
during feather and hair cycles, survival (such as BCL2, p21, p16, CDK2, TBX2) and 
malignant transformation. (Arnheiter, 2010; Liu & Fisher, 2010) 
In addition, PH and TH hydroxylation phenylalanine to tyrosine and tyrosine to DOPA, 
respectively, are controlled by the PKA-dependent phosphorylation of regulatory serine 
residues (Stryer, 1988). 
cAMP also modifies other pathways controlling melanocyte differentiation and 
proliferation, for example, the phosphatidylinositol (PI) 3-kinase pathway with its 
downstream regulatory element p70S6 kinase (Busca & Ballotti, 2000; Haddad et al., 1999). 
Inhibition of this pathway stimulates melanogenesis, and the pathway can be partially 
inhibited by cAMP (Busca & Ballotti, 2000).  
cAMP may also regulate dendritogenesis and possibly melanogenesis through activation of 
the Rho family of small GTP-binding proteins (Busca & Ballotti, 2000).  
cAMP can also inhibit melanogenesis through PKA-independent p21Ras activation (Busca & 
Ballotti, 2000). Ras would activate Braf kinase and consequently mitogen-activated protein 
(MAP) kinases ERK1 and ERK2. MAP kinases phosphorylate MITF leading to its 
ubiquitination and degradation, thus removing a major transcriptional regulator of MRP 
genes expression (Busca & Ballotti, 2000; Englaro et al., 1998; Jordan & Jackson, 2000). In 
addition, activation of ras oncogene inhibits melanogenesis in normal and malignant 
melanocytes (Englaro et al., 1998).  
Another signal transduction pathway important in the regulation of melanogenesis is 
represented by protein kinase C (PKC). Thus diacylglycerol (endogenous activator of PKC) 
can stimulate melanin synthesis both in cell culture and in vivo, while melanogenesis is 
blocked by PKC inhibitors or cellular depletion of PKC (Slominski et al., 2004).  
Additional pathways that have been involved in the positive regulation of melanogenesis 
include those activated by nitric oxide (NO) and cGMP (Romero-Graillet et al., 1996) as well 
as thymidine dimers (Romero-Graillet et al., 1996; Eller et al., 2002) and small single-
stranded DNA fragments (ssDNA) (Eller et al., 2002).  
These pigmentary effects of small oligonucleotides could follow a pathway functionally 
similar to the SOS response system of bacteria (Eller et al., 2002). 

4. Biologic roles of ultraviolet light in melanocytes 

The detrimental effects of solar UVR (295-400nm) on the skin are well established and are 
usually categorized as: acute or chronic. Acute effects include DNA and oxidative damage, 
mutation, immunosuppression, erythema (sunburn) and tanning. The chronic effects 
include skin cancers, which are thought to be a consequence of mutation, 
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immunosuppression and photoaging, which is thought to be a consequence of the induction 
of matrix metalloproteinases (MMPs) (Young, 2006).  
The emission spectrum of the sun is rich in UVA radiation with UVB radiation accounting 
for less than 5% of total UVR content. However, because most skin chromophores are 
primarily UVB absorbers, it is that part of the solar spectrum that causes most of the 
biological effects. 
UV radiation from sunlight increases the risk of developing three types of skin cancer: basal 
cell carcinoma (BCC), squamous cell carcinoma (SCC), and malignant melanoma, in order of 
frequency (Liu & Fisher, 2010). While melanoma arises from the pigment-producing 
melanocytes in skin, BCC and SCC arise from keratinocytes.  
UV is a powerful extrinsic regulator of skin pigmentation. As a first line of defense, melanin 

produced by melanocytes within the epidermis filters UV light, preventing UV-induced 

DNA damage upon sun exposure. Hence, individuals with fairer/lighter skin suffer more 

frequently from skin cancers, as darker skin prevents photocarcinogenesis more efficiently 

(Miyamura et al., 2007; Yamaguchi, 2006). 

Although direct evidence is lacking, it is assumed that solar ultraviolet A (UVA) radiation 

(320–400 nm) may play a significant role relative to ultraviolet B (UVB) radiation (290–320 

nm) in melanoma etiology (Wang et al., 2001). When UV radiation damages a cell, it mutates 

the cellular DNA with distinctive mutational patterns.  

The major UVB lesions produced are cyclobutane-type pyrimidine dimers (CPDs) due to 

direct absorption of UVB radiation in DNA. CPDs are quite mutagenic, especially in 

mammalian cells, initiating primary base substitutions in DNA. UVB induces cytosine to 

thymine transitions at the dipyrimidine sites, creating a UV-specific mutation signature that 

is ubiquitously observed in multiple organisms (Liu & Fisher, 2010).  

In contrast, UVA radiation is very weakly absorbed by DNA. Most of the studied biologic 

effects of UVA radiation, like lipid peroxidation and membrane damage are mediated by 

reactive oxygen species (ROS) and they are probably the major contributors to UVA-

induced cell death (Tyrell, 1994; Girotti et al., 2001; Schmitz et al., 1995). Failure to eliminate 

UV-damaged cells through control led apoptosis may result in disease states such as skin 

cancer or lead to faster aging of the skin (Brash et al., 1991). 

Repair of DNA photolesions requires cell cycle arest prior to replication and mitosis 

(Murray, 1992). It has been hypothesized that the DNA photodamage to the telomere 3' 

overhang (TTAGGG) may be a specific trigger for the cellular defense responses to UVR 

(Eller et al., 2003) and that this is the reason why oligonucleotides with homology (i.e. TT) to 

this sequence are able to induce such responses as p53 activation.  

Skin darkening in response to solar UVR occurs via two distinct mechanisms: immediate 

pigment darkening (IPD) and delayed tanning (DT). Both processes are influenced by 

genetic factors and are more pronounced with darker constitutive pigmentation. They are 

mechanistically different processes, and their exact biological role remains to be discovered. 

IPD starts during UV irradiation as a grayish coloration that gradually fades to a brown 

color over a period of minutes to days depending on UVR dose and individual complexion. 

These changes are due to oxidation of pre-existing melanin and redistribution of 

melanosomes from a perinuclear to a peripheral dendritic location (Routaboul et al., 1999). 

The color change may be so subtle as to be almost undetectable in fair-skinned individuals 

but is easily observed in skin types IV (or darker). IPD was not showed so far to have a 

photoprotective effect; hence, its biological function remains unknown.  
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Fig. 2. Mechanisms of ultraviolet radiation - induced pigmentation in the skin cells; 

Abbreviations: AC- adenilate cyclase, αMSH- α melanocyte stimulating hormone, cAMP-
cyclic adenosine monophosphate, ┚FGF-┚fibroblast growth factor, DAG- diacilglycerol, ET-

1- endothelin-1, GROα- growth related oncogene α, GM-CSF- granulocyte-macrophage 
colony-stimulating factor, HGF- hepatocyte growth factor, IL-1- interleukin -1, IP3- inositol-
tri-phosphate, MAPkinase- mitogen activated phosphokinase, MC1R- melanocortin receptor 
1, mSCF- membrane bound stem cell factor, PIP2-phospho inositol di-phosphate, PKA, 
PKC- protein kinase A & C, PLC- phospholipase C, POMC- proopiomelanocortin, SCF -m 
stem cell factor, transcription factors (STAT, MITF, CREB, NF-k┚), UVR- ultraviolet 
radiation. The keratinocytes and fibroblasts stimulate the melanocyte melanogenesis 
through paracrine secretion of the above factors and activation of their subsequent 
receptors. The most important mechanisms rely on PLC-DAG-PKC, respective AC-cAMP-
PKA activation of the transcription factors. Also Ca2+increase in cytoplasm through the 
PIP2-IP3 pathway, stimulates the synthesis of the enzymes involved in melanogenesis (e.g. 
tyrosinase and related proteins) 

DT, which results from melanogenesis, is associated with increased melanocyte activity and 
proliferation. It is evident 3-4 days after UVR exposure and is maximal from 10 days to 3-4 
weeks depending on complexion and UVR dose. It may take several weeks for the skin to 
return to its base constitutive color. UVA-induced DT is two or three orders of magnitude 
less efficient per unit than the UVB induced, has an earlier onset and is oxygen dependent 
(Eller & Gilchrest; 2000).  
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Fig. 3. Biological effects of solar irradiation on the skin (source WHO, 2006) 

In response to UV induced DNA damage, the p53 expression in keratinocytes is activated, 
initiating the pigment synthesis in melanocytes via the p53-dependent cAMP- MITF tanning 
pathway (Cui et al., 2007), although this protection is probably not as effective as constitutive 
epidermal pigmentation. P53 binds directly to the POMC promoter, initiating POMC 

transcription and α-MSH production; α-MSH binds with its receptor MC1 R, activating the 
cAMP pathway in melanocytes. MITF activation leads to activation of melanogenesis through 
enhanced transcription of the pigment enzyme genes TYR, TYRP1, and DCT/TYRP2. Besides 
melanin synthesis, the expression of the genes necessary for melanosome biogenesis, 
melanosome transport and dendritogenesis is control led coordinately by MITF (Cheii et al., 
2010).  
UVR modulates the process of melanosome transfer from the melanocytes to the 
keratinocytes through upregulated expression of PAR-2 and lectin-binding receptors and 
increase phagocytic activity of cultured keratinocytes (Boissy, 2003). UVR also decreases the 
cytoplasmic dynein levels resulting in augmented melanosomal anterograde transport 
(Randolph et al., 2000). The melanosomes are redistributed to supranuclear areas, thus 
shielding the nuclei of skin cells and eventually transported to the superficial epidermis 
during epidermal keratinocyte maturation.  
UV radiation has also been implicated in modulating the proliferation and differentiation 
state of melanocytes (Kawaguchi et al., 2001). Normal epidermis contains TYRP1-positive 
mature melanocytes, KIT-positive precursors, and few MITF-positive cells. In addition, UV 
appears to contribute to melanocyte maturation and development through a MITF-
activation-dependent pathway (Kawaguchi et al., 2001). Upon UV irradiation, SCF has been 
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observed to be released by keratinocytes and activates KIT on melanocytes (or their 
precursors), which first differentiate into MITF-positive and TYRP2 (DCT)-positive 
melanoblasts, and then mature into TYRP1-positive melanocytes. Pre-existing TYRP1-
positive mature melanocytes may be incapable of proliferating and differentiating further 
and thus may enter alternative pathways upon UV irradiation (Kawaguchi et al., 2001).  
Another biologic role for UV in skin is stimulating the production of vitamin D from 
cholesterol-derived precursors, but it destroys folate through photolysis. Maximum 
production of vitamin D can be achieved after exposure to suberythemal doses of UVB.  

Many factors that increase melanogenesis (POMC, α-MSH, ┚-FGF, endothelins, and 
inflammation mediators) are upregulated upon UV irradiation (Yamaguchi & Hearing, 

2009). α-MSH is an important regulator of the response of melanocytes to UV and stimulates 
eumelanin synthesis (Abdel-Malek et al., 2009).  
UVR also upregulates the expression of MSH receptors, amplifying the melanogenic effect 
of exogenous MSH in a dose-dependent manner in vivo and in cell culture systems 
(Slominski et al., 2004). In murine melanoma, UVR action appeared to involve arrest of the 
cell cycle at the G2 phase, when cultured melanocytes express maximal MSH receptor 
activity and responsiveness to MSH (Pawelek et al., 1992). The G2 phase coupling of 
increased MSH receptor expression was associated with increased cellular responsiveness to 
the ligand (Pawelek et al., 1992). Nevertheless, G2 restricted expression and activity of MSH 
receptors appears to be specific for rodent melanocytes, since it has not been observed in a 
human model. 
UV also activates DNA damage response pathways within minutes of a single exposure, 
regulating damaged cells via UV-induced apoptosis, cell cycle arrest, DNA repair, or 
pathways linked to oxidative stress (Liu & Fisher, 2010).  
There is considerable variation between the ability of human populations to efficiently tan. 
This variation has been clinically classified by Fitzpatrick in six skin phototypes (Fitzpatrick, 
1988).  
Phototype I has pale, white skin, blue eyes, blond/red hair, it never tans, phototype II has 
fair skin, light colored eyes, it tans poorly, both of them have a high risk of sunburn; 
phototype III has darker white skin, it has a good ability to tan and a moderate risk of 
sunburn; phototype IV has olive skin, it tans easily and has a low risk of sunburn; phototype 
V has brown skin, and phototype VI has dark brown or black skin, they both have an 
excellent ability to tan and a very low risk of sunburn (Fitzpatrick, 1988). The variations in 
human skin inducible pigmentation by UVR are partially due to the existence of the 
redhead/MC1 R allele (Liu & Fisher, 2010). Epidemiological studies found a strong 
association between MC1R loss-of-function allele and the risk for malignant transformation 
of epidermal melanocytes (Abdel-Malek et al., 2009), thus implying that MC1R functions as 
a melanoma susceptibility gene (Cui et al., 2007). 
Exposure of cultured melanocytes to T-oligonucleotides, which activated the DNA damage 
response, resulted in increased melanogenesis via increasing MClR expression. Moreover, 

forskolin activation of the cAMP pathway, had the same effects as α-MSH on the UV 
response of human melanocytes, and reduced the extent of DNA photoproducts in UV-
irradiated mouse skin as well as human skin substitutes (D'Orazio et al., 2006; Passeron et 

al., 2009). Besides increasing pigmentation, α-MSH reduces UV-induced oxidative DNA 
damage by inhibiting the generation of hydrogen peroxide and enhances the repair of DNA 
photoproducts (Bohm et al., 2005; Kadekaro et al., 2005). Activation of MC1R upregulates 
the expression of DNA repair genes (Smith et al., 2008).  
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Skin 
phototype 

Constitutive 
skin color 

Ability to tan 
(facultative skin color) 

Susceptibility 
to sunburn 

Susceptibility 
to skin cancer 

I White Very poor/none High High 

II White Poor High High 

III White Moderate/Good Moderate Moderate 

IV Olive Very good Low Low 

V Brown Very good Very low Very low 

VI Black Very good Very low Very low 

Table 1. Classification of human skin types with respect to their ability to tan and UV-
induced carcinogenesis (adapted after Fitzpatrick, 1988) 

5. Cytotoxicity of melanins and their precursors 

The transformation process whereby UV damage may result in melanoma initiation is 
poorly understood, especially in terms of UV-induced genotoxicity in pigmented cells, 
where melanin can act either as a sunscreen or as a photosensitizer (Picardo et al., 1999). 
Patients with OCA1, (who do not present tyrosinase activity) develop nonmelanoma skin 
cancers but not melanoma (Streutker et al., 2000).  
It seems that melanogenesis, especially pheomelanogenesis, is more potent in inducing 
oxidative damage in the melanocytes and surrounding cells than melanin itself. Also, the 
synthesis of pheomelanin, consumes cysteine and this may further limit the capacity of the 
cellular antioxidative defense (Smith et al., 2008). In fact, in cultured normal melanocytes, 
stimulation of melanogenesis leads to the suppression of proliferation, cell senescence and 
eventually to cell death (Hirobe et al., 2003). Melanogenesis process generates highly toxic 
melanin intermediates and byproducts. Those intermediates are usually small molecules, 
such as 5,6-dihydroxyindole, 5,6-dihydroxyindole-2-carboxylic acid, quinones, indole-
quinones, 5-S-cysteinyldopa and hydrogen peroxide (Hearing, 2005). Amongst them, some 
are the result of tyrosinase activity: ortho-quinones including dopaquinone, dopachrome, 
DHI-quinone, and DHICA-quinone (Hearing, 2005). Orthoquinines can also be formed 
directly during the initial stage of melanogenesis (Cooksey et al., 1997).  
Ectopic expression of tyrosinase in the absence of TYRP1 or DCT may cause severe 
cytotoxicity to nonmelanocytic cells in which no melanosomal compartmentalization is 
present (Singh & Jimbow, 1998). The mechanism of cytotoxicity of DHI and DHICA, and 
also of 5-S-cysteinyldopa, involves the production of reactive oxygen species, but their 
toxicity seems to be less important in melanocytes due to melanosomal containment (Singh 
& Jimbow, 1998).  
The escape of those toxic substances from melanosomes into the cytoplasm, nucleus, and 
mitochondria induces cytotoxic effects that are deleterious to melanocytes and melanoma 
cells (Chen et al., 2009a, 2009b). One of the roles of melanosomes in normal melanocytes is to 
provide an environment where these chemical reactions can occur and to permit the forma-
tion of melanin biopolymers, which in turn inactivate the process and keep the cytotoxic 
effects under control (Chen et al., 2009a). 
Dopachrome, although less reactive, is able to inactivate important sulfhydryl enzymes, 
eventually leading to cell death. Thus, TYRP2/DCT who catalysis the transformation of 
dopachrome to DHICA is considered to be a "rescue" enzyme, essential for melanocyte 
survival (Hearing, 2005). DHICA sensitizes DNA SSB with 313 nm exposure, especially in 
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the presence of oxygen (Routaboul et al., 1995). Mutations in DCT that decrease catalytic 
function affect DHICA production and are generally quite cytotoxic to melanocytes. 
Melanocytes typically express DCT before any of the other melanogenic enzymes, 
presumably to minimize such toxicity (Steel et al., 1992).  
Melanin precursors may have protective roles in melanocytes. DHI and to a less extent, 
DHICA can contribute significantly to the skin protection from damaging UV radiation by 
quenching oxygen species and providing an additional amount of photoprotective pigment. 
Upon photoexcitation, DHI can react with oxygen and related species, giving rise to 
hydroxylated oligomer species that can polymerize to eumelanic pigments (Ito & 
Wakamatsu, 2008).  
Hence, detoxification of endogenous melanogenic cytotoxicity appears to be a double edged 
sword. In the case of melanomas, the detoxifying functions of melanosomes might render 
cells resistant to anticancer drugs. It has been shown that the melanogenic system is 
involved in the regulation of drug sensitivity. Melanosomes are involved in drug trapping 
and export (Chen et al., 2006) and in the regulation of drug sensitivity through the 
melanosome biogenesis pathway (Chen et al., 2009a, 2009b).  
The cytotoxicity of ortho-quinones could potentially lead to chemotherapeutic approaches 
to treat melanoma; 4-S-cysteaminylphenol and its derivatives appear to be the most 
promising antimelanoma agents (Ito & Wakamatsu, 2008).  
The end product of eumelanogenesis, eumelanin acts as a redox pigment with both reducing 
and oxidizing capabilities towards oxygen radicals and other chemical redox systems, it 
mainly functions like a pseudosuperoxidedismutase. Also, the pigment has free radical 
scavenger activity since it binds redox active metals and initiates photon/phonon conversion 
(Ito & Wakamatsu, 2008). 
In contrast to eumelanin, pheomelanin is hypothesized to play a role in melanomas. Some 
hypothesize that there is a link between the increased cancer risk in pacients with lower 
phototype and the increased phototoxicity of pheomelanin (Simon, 2009). The pheomelanin 
pigment is synthesized starting from a combination of 5-5 and 2-5-CD isomers in different 
ratio. The pigment derived from 5-5-CD is more photoreactive than that derived from 2-5-
CD, the later being resistant to photochemical damage by natural sunlight (Greco, 2009).  
Studies of UVB-induced cyclobutane dimerization and apoptosis of keratinocytes in 
congenic black, yellow and albino mice showed that pheomelanin sensitizes apoptosis (via 
caspase-3 activation) (Brash et al., 1991; Takeuchi et al., 2004).  
There remains the need to understand the molecular composition of pheomelanins to 
determine what chromophores activate oxygen (Simon, 2009).  
In vitro studies showed that 5-SCD photobinds to native DNA after exposure to UVB 
radiation and also induced single-strand breaks (SSB) in DNA (Chedekel and Zeize, 1988). 5-
SCD is photochemically unstable in the presence of UVA radiation and oxygen (Costantini 
et al., 1994), leading to superoxide anion production (Chedekel and Zeize, 1988). UV 
irradiation of pheomelanin can also lead to the formation of hydroxyl radicals, and 
hydrogen peroxide capable of affecting important biological targets such as DNA (Chedekel 
and Zeize, 1988) or membrane lipids (Schmitz et al., 1995), acting as UVB and UVA 
photosensitizer in mammalian skin in vivo (Takeuchi et al. 2004). 
Melanogenesis, but not melanin itself, was associated with oxidative based damage in 
human melanoma cells (Kvam & Tyrrell 1999, Kvam & Dahle, 2003). Melanocyte 
“autodestruction” by intermediates of melanin metabolism has been implicated in the 
etiology of vitiligo (Le Poole et al., 1994). 
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Tyrosine-induced melanogenesis in melanocytes was accompanied by increased production 
of ROS (Baldea et al., 2009) and decreased concentration of intracellular glutathione (Smit et 
al., 2008); it also increased early induction of Heme Oxygenase 1 gene, a typical response to 
oxidative stress, after UVA irradiation (Marrot et al., 2005). The ratio of pheomelanin to total 
melanin in melanocyte cultures from skin type 1 and skin type IV, after tyrosine stimulation 
remained the same in skin type IV, but relatively more pheomelanin was induced in skin 
type 1. This was associated with an increase in UVA-induced SSB in DNA (Wenczl et al., 1998).  
The hypothesis of melanocyte carcinogenesis states that an essential part of melanocytes' 
malignant transformation is a change in the redox state of melanin from a mostly 
antioxidant state to a prooxidant state (Meyskens et al., 2001). This is supported by data that 
show that melanoma cells have a remarkably abnormal content of antioxidants, including 
vitamin E, polyunsaturated fatty acids, and catalase (Picardo et al, 1996; Briganti & Picardo, 
2003; Kwan & Dahle, 2003). Also, clinical displastic nevi, recognized precursors of 
melanoma, suffer from chronic oxidative stress, even without the influence of UV radiation, 
due to increased pheomelanin synthesis. (Smit et al., 2008)  
Melanin precursors have genotoxic and mutagenic effects, which may be amplified by the 
free radicals and reactive oxygen species generated during melanogenesis. This mutagenic 
environment in melanoma cells may lead to genetic instability and appearance of new, more 
aggressive cell populations resistant to therapy (Slominski et al., 1998).  
Diffusion of potentially cytotoxic products of melanogenesis from melanosomes is thought 
to be minimal in normal melanocytes. There are several cytosolic processes that are invoked 
as cytoprotective mechanisms (Smith et al., 2008). The intermediates that may reach the 
cytosol consist essentially of quinones liberated directly or generated by oxidation from 
hydroquinones that leak through the melanosomal membrane. Quinone detoxification can 
be done by quenching by glutathione with the formation of S-glutathionyl adducts, by 
quinone reductases (DT-diaphorase), inactivation of dihydroxyindoles by O-methylation 
catalyzed by the enzyme catechol-O-methyl transferase (Axelrod & Lerner, 1963), 
glucuronidation and sulfonation mainly due to hepatic metabolism of the methylated 
derivatives formed in mellanogenic cells (Pavel et al., 1986). 

6. Oxidative stress defence in melanocytes 

Melanogenesis and stratum corneum thickening occur concurrently during the normal 
tanning response. Although photoprotection may be considered to be a passive physical 
process, e.g. the attenuation of UVR by melanin and/or stratum corneum thickening, it may 
also be considered as an active enzymatic process, e.g. as a means by which DNA repair is 
enhanced or ROS are inactivated. Chimeric epidermal reconstructs with melanocytes from 
one skin type added to keratinocyte cultures of a different skin type suggest 
keratinocyte/melanocyte interaction with both cell types regulating antioxidant defense in a 
skin type-dependent way (Bessou-Touya et al., 1998).  
Melanocytes seem to be extremely susceptible to free radicals, either in the activation of 
their physiologic role or in deleterious effects (Shindo et al., 1993; Picardo et al., 1991; 
Romero-Graillet et al., 1996). One reason is low catalase levels in these cells (Maresca et al., 
2006). Therefore, antioxidants are considered to be among the physiologic photoprotective 
compounds of the skin (Applegate & Frenck 1995; Briganti & Picardo, 2003).  
The initial free radical scavenging machinery involves superoxide dismutase (SOD), which 
catalyzes the dismutation of two molecules of the superoxide radical anion into hydrogen 
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peroxide and diatomic oxygen. Then, hydrogen peroxide is converted by catalase (Cat) and 
peroxidases into water (Steenvoorden & van Henegouwen, 1997).  
Thioredoxin reductase together with its electron acceptor thioredoxin, thioredoxin 
peroxidases, glutathione reductase/glutathione coupled to glutathione peroxidase - present 
in small amounts in melanocytes (Yohn et al., 1991) are involved in the removal of H2O2 
deriving from enzymatic dismutation of superoxide anion (O2-) catalyzed by SOD 
(Nordberg & Arner, 2001; Schallreuter & Wood, 2001). The high SOD/Cat ratio, can lead to 
an increased intracellular production of hydrogen peroxide, thus is considered as a 
parameter of the cells susceptibility to external oxidative stress (Maresca et al., 2006).  
UVA irradiation is depleting the skin of antioxidants (Sanders et al., 2004), among which Cat 
is the most sensitive. Low levels of Cat activity were previously observed in different 
cutaneous experimental models (which contained lightly pigmented melanocytes) and they 
were always associated with a stress-prone status (Maresca et al., 2006; Bessou-Touya et al., 
1998; Gramatico et al., 1998; Picardo et al., 1999, Kadekaro et al., 2003; Kvam E & Dahle, 
2004). In melanocytes, the role of Cat is critical because it is the first enzyme devoted to the 
neutralization of H2O2 (Yohn et al., 1991) a byproduct of the melanogenic pathway (Nappi & 
Vass, 1996). Cat oxidative damage is detrimental, because when damaged it recovers slowly 
(Shindo et al., 1994; Shindo & Hashimoto, 1997). This results in accumulation of H2O2 in the 
cell and damaged several structures, including Cat (Shindo et al., 1994; Shindo & 
Hashimoto, 1997) and tyrosinase (Schallreuter et al., 2008).  
Overall, UVA was also more effective than UVB in inducing impairment in Cat activity 
(Zigman et al., 1996; Rhie et al., 2001; Hellemans et al., 2003) . 
In the melanocytes, the dominant skin pigment melanin and its precursors are complex 
redox systems, the resultant properties of which are modified by ph, temperature, 
illumination with ultraviolet and visible light. Melanins act as a filter absorbing UV photons 
as well as a quencher of free radicals generated in the skin after UV exposure.  
Eumelanin is capable of scavenging the superoxide anion and hydrogen peroxide, whereas 
pheomelanin acts as a photosensitizing agent (Prota, 1997), amplifying ROS production and 
increasing DNA damage after UVA (Menon et al., 1983; Ranadive et al., 1986; Prota, 1997; 
Kvam & Dahle, 2004).  
The overall scheme proposed for auto-oxidation of melanin consists of one electron 
reduction of molecular oxygen to superoxide anion, followed by SOD reduction of 
superoxide to H2O2, degraded by catalase and oxidation of superoxide to O2, and 
spontaneous dismutation of superoxide to equimolar H2O2 and O2. Autooxidation of 
melanin may be important, rate limiting process in coupled reactions where melanin 
functions as an electron transfer agent (Sarna & Swartz, 2006).  
Oxygen radicals, and in particular hydrogen peroxide, are considered as intracellular 
second messengers since they have major roles in cell survival and integrity (Schalreuter et 
al, 2008). Their level is increased by extracellular ligands such as cytokines (Schreck & 
Bauerle 1991), ROS act as biologic mediators of UV-induced phosphorylation of membrane 
receptors (Tyrell, 1994; Schmitz et al, 1995, Peus et al., 1999; Girotti, 2001, Kvam & Dahle, 
2003); H2O2 is a normal byproduct of the melanogenic pathway (Nappi & Vass, 1996); in 

several cellular systems, H2O2 acts as an intracellular second messenger for TNFα and TGF┚ 
(Thannickal & Fanburg, 1995; Chen et al., 1995; Lo et al., 1996); it activates growth factor 
receptors and in particular those of epidermal growth factor (EGFR) and initiates multiple 
signaling responses associated with mitogenesis and cell growth regulation (Ulrich & 
Schlessinger 1990).  
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H2O2, in micromolar concentrations can be deleterious to many proteins and peptides 
leading to deactivation / disruption of many important proteins and peptides involved in 
melanogenesis including tyrosinase (deactivation of the enzyme active site due to a 

methionine residue in position 374) (Schweikardt et al., 2007), POMC derived peptides (α-
MSH, ┚-endorphin) (Spencer et al., 2007), 6R-l-erythro 5,6,7,8-tetrahydrobiopterin (6BH4), 
acetylcholinesterase (Schallreuter, 2005), the prohormone convertases PC1, PC2, Furin, 
PACE4 and, even the antioxidant mechanism including catalase, thioredoxin reductase and 
the methionine sulfoxide reductases A&B (Schallreuter, 2005; Spencer et al., 2007; Gibbons et 
al, 2006). However, H2O2 is upregulating multiple transcription factors including p53, MITF 
and NFkB (nuclear factor kappa B), epidermal growth factor (EGFR), and the antioxidant 
enzymes catalase, thioredoxin reductase, glutathione reductase and the methionine 
sulfoxide reductases A & B (Schallreuter et al, 2001; Schallreuter, 2005; Gibbons et al, 2006). 
Enzyme activities are directly controlled by H2O2 in a concentration dependent manner. 
This is also the case for PAH, THI and tyrosinase, (Wood et al., 2004; Schallreuter et al, 2008) 
thus being involved in melanocyte mitogenesis, melanogenesis and cell growth regulation. 
Regulation and protection of tyrosinase against a ROS burst is also provided by both 
tyrosinase related proteins TYRP1 and TRP2. TYRP1 has been recognised as a peroxidase 
(Halaban et al., 1990), while TRP2 has an additional function as dopachrome tautomerase 
(Prota, 1992). In addition to TYRP1 and TRP2 the calcium binding protein calnexin is present 
in the melanosomal membrane adding another force for redox homeostasis in the 
melanosome (Jimbow et al., 2001).  

7. Melanocyte senescence – defence against carcinogenesis 

Senescence is a checkpoint response due to DNA activation by the disfunctional telomeres 
after exposure to oncogenic stress (such as UV radiation). Senescence blocks proliferation 
(and the resultant oncogenic threat), but allows the cell to live on and perform its 
physiologic function (Mooi & Peeper, 2006).  
As activation of BRAF, or NRAS, alone induces senescence in melanocytes, melanoma 
progression must be accompanied by compensating events, for example inactivation of the 
CDKN2A locus encoding p161NK4a via genetic lesions (Bennett, 2008), epigenetic silencing 
(Richards and Medrano, 2009; Rothhammer and Bosserhoff, 2007), or repression of 
p161NK4a expression through activation of Wnt/┚-catenin signalling (Delmas et al., 2007). 
Consistent with senescence representing a major barrier to melanoma initiation is the 
observation that benign nevi, as well as carrying frequent activating mutation of BRAF or 
NRAS, include a mass of senescent melanocytes (Gray-Schopfer et al., 2006; Michaloglou et 
al., 2005). If the initial senescence barrier is overcome, melanomas can progress to a radial 
growth phase. For the majority of melanomas that do not arise from a pre-existing nevus, 
senescence bypass via bi-allelic loss of p161NK4a would occur prior to activation of BRAF/ 
NRAS. By contrast, nevi may be generated by monoallelic loss of p161NK4a prior to 
BRAF/NRAS mutation, with subsequent inactivation of the second p16INK4a allele leading 
to melanoma. Thus, the order in which mutations occur will determine whether melanoma 
arises de novo or from a pre-existing nevus (Hoek & Goding, 2010).  
Normal, adult skin melanocytes are long lived cells with a very low, if any, proliferation rate 
in vivo that produce abundant levels of the antiapoptotic protein Bcl2 (McGill et al, 2002) 
and Slug (Gupta, 2005). These factors protect cells from p53-dependent apoptosis and 
promote melanocyte survival, even at the cost of entering senescence after mutagenic stimuli 
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induced damage (Hoek & Goding, 2010). It is possible that melanoma originates from 
differentiated melanocytes by a process of de-differentiation arising from “phenotype-
switching”, sustained by the observation that differentiated melanocytes can be induced to 
proliferate in culture (Hoek & Goding, 2010).  
The most important factor that regulates the choice between a proliferation-type response in 
melanocytes or a differentiation, pigment production and senescence/apoptosis response 
seems to be MITF. MITF is implicated in differentiation through the activation of 
pigmentation genes and is the key regulator of cell division, driving a differentiation-
associated cell cycle arrest via up-regulation of p16 and p21 (Goding, 2010). MITF can also 
promote cell division by suppressing p27 expression and senescence and inhibit 
proliferation via up-regulation of p21 Cipl and p 161NK4a. Thus in addition to its role in 
survival and differentiation, MITF is also charged with suppressing senescence and 
coordinating cell cycle entry and exit depending on its levels and activity (Hoek & Goding, 
2010).  
MITF was also identified as a lineage-addiction oncogene, being amplified to varying 
degrees in about one-sixth of melanomas (Garraway et al., 2005).  

8. Conclusions 

UV exposure alone or through induced melanin synthesis, generates cytotoxic compounds 
that might trigger oxidative damage of important biological targets such as DNA and 
membranes, but it also activates the defense mechanisms of the cell. However, how much 
these phototoxic and photoprotective events are functionally important in vivo requires 
further studies.  
There is an intimate relationship between pigmentation, senescence, apoptosis and cell 
division, and the key role in regulating these mechanisms is attributed to MITF. A better 
understanding of the skin responses to oncogenic threats, and especially UV radiation could 
be beneficial in improving the prevention of skin carcinogenesis and photo-aging.  
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