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1. Introduction 

Gangliosides, GSLs that contain sialic acid residues, are components of all animal cell 

membranes. It was first found by Klenk in 1935. He extracted something of new that was 

called substance X from the brain of a Niemann–Pick disease patient (Klenk, 1939b). In the 

following years, he understood (Klenk, 1939a) that substance X was a mixture of 

compounds and he named them “gangliosides”. Gangliosides attracted immediately the 

interest of many investigators, but in spite of this, progresses in elucidating their structures 

were slow. In 1947, the structure of sphingosine was elucidated (Carter et al., 1947) and in 

1955 that of sialic acid (Gottschalk, 1955). Finally, in 1963, the first ganglioside structure was 

described (Kuhn and Wiegandt, 1963). Following studies were extensively devoted to fully 

understand the ganglioside structural complexity, metabolism, cellular topology, biological 

functions, and pathobiological implications (Macher and Sweeley, 1978; Miller-Podraza et 

al., 1992; Sandhoff and Christomanou, 1979; Sandhoff and Conzelmann, 1984; Svennerholm 

et al., 1994). This research is still far to be considered concluded, but today there is a general 

agreement to consider gangliosides as functional molecules involved in the modulation of 

tumor metastasis and of cell signaling, cell invasive proliferation, adhesion, and motility 

(Bassi et al., 1991; Bremer et al., 1984; Caputto et al., 1977; Chan, 1988; Chan, 1989; Davis and 

Daly, 1980; Facci et al., 1984; Glebov and Nichols, 2004a; Glebov and Nichols, 2004b; 

Goldenring et al., 1985; Kim et al., 1986; Kreutter et al., 1987; Leon et al., 1981; Lin and Shaw, 

2005; Morgan and Seifert, 1979; Partington and Daly, 1979; Roisen et al., 1981; Rybak et al., 

1983; Tsuji et al., 1983; Yates et al., 1989).  

In particular, systematic analysis of ganglioside antigens in various types of cancer was 

carried out. In these studies, ganglioside changes were observed based on the comparison of 

tumor tissues with corresponding normal tissues. Dramatic changes of ganglioside 

composition and metabolism were first shown using a cultured cell population after viral 

transformation (Hakomori and Murakami, 1968; Mora et al., 1969). In Balb/c 3T3 cells 

transformed with Kirsten strain of murine sarcoma virus (the tumor is called 3T3KiMSV), 

asialo-GM2 (Gg3) is greatly accumulated, with deletion of higher gangliosides. Rabbit  
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antibodies directed to Gg3 specifically stained 3T3KiMSV tumor grown in Balb/c mice. The 
antibodies did not stain various normal tissues of Balb/c mice, except for a small population 
in spleen (Rosenfelder et al., 1977). In more critical experiments, rats and mice were 
immunized with tumors derived from genetically identical (syngeneic) animals. For 
example, mAb M2590 was established after immunization of C57/BL mice with syngeneic 
B16 melanoma cells followed by selection of hybridoma clones showing specific reactivity 
with melanoma. Thus, the mAb reacted only with melanoma cells (human and hamster as 
well as mouse) but not with normal mouse, hamster, or human tissues (Taniguchi and 
Wakabayashi, 1984). Surprisingly, the epitope structure was identified as GM3, which is 
widely distributed in normal cells and tissues (Hirabayashi et al., 1985). Further studies 
revealed that M2590 reacted only with GM3 with density above a threshold value (Nores et 
al., 1987), that is the mAb recognized not only GM3 but also density of GM3. In line with the 
above cases, metastatic and invasive abilities of mouse melanoma B16 cell variants, in the 
order BL6>F10>F1>>WA4, are closely correlated with level of GM3 surface expression 
(Otsuji et al., 1995), and also with degree of adhesion to cultured endothelial cells (ECs) 
(mouse SPE1l human umbilical vein ECs) in vitro (Kojima et al., 1992; Otsuji et al., 1995). In 
addition, GM3 as the dominant GSL in B16 cells (Vedralova et al., 1995), has also been 
implicated involving in differentiation (Nojiri et al., 1986) and growth regulation (Bremer et 
al., 1986). These results suggested that ganglioside, GM3, organized in B16 cell membrane 
differ from the same antigens present in normal cell membrane of B16 cells, involved in 
changing the nature of melanoma cells via modulating the characteristics of melanoma cells 
in growth, differentiation, adhesion, invasion and metastasis. 
Taken the advantage of recent success in the molecular cloning of glycosyltransferase genes 
responsible for the synthesis of gangliosides (Lloyd and Furukawa, 1998; Nagata et al., 1992) 
has enabled us to modify the expression profiles of gangliosides in cultured cells and 
experimental animals by manipulating the cloned genes (Furukawa et al., 2001). Although 
many studies have been performed to clarify the roles of gangliosides with various approaches 
such as usage of metabolic inhibitors, glycosidase treatment, carbohydrate probes including 
lectins and antibodies, and carbohydrate mutant cells and animals, results obtained with the 
manipulation of glycosyltransferase genes are providing us with much more exciting and 
novel information on the biological function of individual enzyme products. Although 
glycol-remodeling experiments revealed novel and unexpected functions of complex 
carbohydrates (Furukawa et al., 2001), molecular mechanisms for the roles of gangliosides 
remain to be investigated in many cases. 
This chapter reviews experimental aspects of GM3-mediated invasive growth, motility and 
adhesion, which in turn resulting in metastasis of melanoma cells. The biological functions 
of GM3 would be further focused in modulating the nature of melanoma, especially in the 
process of metastasis. Relationship between the gene manipulation to modify GM3 
expression and B16 cell function was extended to be discussed in order to understand how 
GM3 regulates molecular signals, leading to the change of melanoma B16 cell phenotype. 
We conclude by discussing the in vitro model of melanoma, B16 cells, that gangliosdes 
expression changed the nature of melanoma cells. 

2. Biological functions of gangliosides 

Gangliosides are classified as acidic glycosphingolipids containing sialic acid. Gangliosides 
occur not only as well known ganglio-series but also as globo-series or lacto-series  
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gangliosides. Each ganglioside series shows distinctive cell type or tissue type specificity, 
and they may play different functional roles in adhesion or signaling characteristics of cell 
types (Hakomori, 2003). Many subsequent extensive studies clarified functional roles of 
gangliosides as the following ways: 1) intracellular membrane trafficking, sorting, targeting 
and shedding; 2) functional receptors; 3) cell adhesion; 4) modulation of cell membranes to 
form gangliosides enriched microdomains (GSMs); 5) mediators or modulators of signal 
transduction. 
In the view of the biological functions and given the strong amphiphilic characteristics of 
gangliosides, theoretical considerations and experimental data from artificial membranes 
suggest that gangliosides can cooperate in governing the membrane domain formation, 
existence, and organization according to the gangliosides physical-chemical properties, such 
as the lipid transition temperature, the hydrogen-bond network at the lipid-water interface, 
the geometry of the hydrophilic headgroups, and the carbohydrate-water interactions. This 
kind of interaction not only includes ganglioside itself but also recruit signal tranducer 
molecues to form glycosphingolipid enriched microdomains (GEMs), through which exerts 
its biological functions. The interest for GEMs, zones of the membrane with a peculiar 
composition different from that of the majority of bilayer, became very strong in the last 15 
years. The concept of “GEMs” evolved, based on detergent-resistant properties (Brown and 
London, 1997; Okada et al., 1984) and three models of GEMs have been established after 
extensive experiments: 1) unique caveolar structures, which are also enriched in 
characteristic hydrophobic membrane protein caveolin (Anderson, 1998; Rothberg et al., 
1992) are firstly identified by transmission electron microscopy with anti-GSL antibodies 
(Rahmann et al., 1994; Sorice et al., 1997); 2) similar composition, detergent-resistantce, and 
cholesterol-dependent properties (e.g. structure and function are disrupted by cholesterol-

binding reagents β-cyclodextrin, filipin, and nystatin) were further found in not only 
caveolar but also non-caveolar region, the term “lipid raft” was proposed, representing 
“floating signaling platform” (Simons and Ikonen, 1997). 3) recently, a different 
microdomain was proposed, termed “immunological synapse” by the size, dynamic status, 
and detergent-resistance properties (Krummel and Davis, 2002) are different from the above 
two cell membrane microdomains. 
Based on the above model of GEMs, some tumor-associated gangliosides antigens have been 
recovered as detergent-insoluble, low-density membrane fractions organized closely with 
various transducer molecules such as c-Src, Ras, Rho, and focal adhesion kinase (FAK). For 
example, >90% of c-Src, >90% of Ras, ~50% of Rho, and ~25% of FAK are enriched in GM3 
microdomains of B16 cells (Iwabuchi et al., 1998). These observations indicate the possible 
presence of gangliosides enriched microdomains in cells and their involvement in signal 
transduction. 
Upon thse findings, we have tried to construct a conceptual view with a focus on how the 
mechanistic process of GM3 is converted to signaling impulses affecting cellular phenotype, 
especially in influencing melanoma B16 cell metastasis, such as adhesion, invasive 
proliferation and motility. 

3. GM3 changes the nature of melanoma B16 cells 

A significant role of GM3 in defining membrane-based cell functions is indicated by 
quantitative and qualitative changes of GM3 associated genes exression, as shown in Table 
1. Besides the “classic” function of gangliosides as antigens and toxin receptors, it is also 
 

www.intechopen.com



 
Breakthroughs in Melanoma Research 

 

80 

Regulation 
Manner by 
GM3 

Gene Name GM3(+) GM3(-) GM3(-) Biological Functions 

Positive  Caveolin-1 1.378 0.321 0.146 (1) (Felicetti et al., 2009), (4) (Felicetti et 
al., 2009), (5) (Felicetti et al., 2009) 

 Ly-GDI 2.156 0.423 0.387 (5) (Seftor et al., 2002) 

 PKN-1 1.658 0.626 0.495 (4) (Wang et al., 2006) 

 E-cadherein 1.875 0.695 0.721 (1) (Lau et al., 2011), (3) (Tang et al., 
1994), (5) (Wong and Gumbiner, 2003), 
(6) (Semb and Christofori, 1998) 

 Gelsolin 1.841 0.543 0.502 (4) (Fujita et al., 2001) 

 PTEN 2.482 0.290 0.153 (1) (Stahl et al., 2003) 

 MMP-9 1.915 0.174 0.282 (4) (Desai and Chellaiah, 2006), (5) 
(Wang et al., 2010) 

 MMP-2 1.532 0.534 0.472 (4) (Leotlela et al., 2007), (5) (Denkert et 
al., 2002) 

 Apaf1 1.350 0.608 0.509 (2) (Rockmann and Schadendorf, 2005) 

 RhoB 2.247 0.427 0.318 (5) (Jiang et al., 2004), (6) (Jiang et al., 
2004), (5) (Jiang et al., 2004) 

 Midkine 1.403 0.518 0.417 (1) (Escalante et al., 2000) 
 

 Lymphotoxin α 2.245 0.475 0.497 (6) (Dobrzanski et al., 2004) 
 

 Tnf α 2.188 0.349 0.292 (4) (Katerinaki et al., 2003), (5) 
(Katerinaki et al., 2003) 

 Plau 1.453 0.397 0.750 (5) (Lee et al., 2006), (6) (Lee et al., 2006) 

 Plaur 2.209 0.543 0.720 (2) (Besch et al., 2007) 

Negative Integrin β5 0.783 1.465 1.754 (1) (Taverna et al., 2005; Taverna et al., 
2004),(2) (Cardo-Vila et al., 2003), (3) 
(Niu et al., 2007), (4) (Zhang et al., 2002) 

 Vimentin 0.111 1.984 2.089 (5) (Leader et al., 1987) 
 

 TGF β1 0.571 2.124 3.309 (1) (Paterson et al., 2002), (4) (Xu et al., 
2003), (5) (Xu et al., 2003) 

 TGFBR 2 0.716 1.453 1.903 (1) (Li et al., 2008) 
 

 N-Cam 0.282 2.901 2.223 (3) (Anastassiou et al., 2000) 

 Src 0.639 1.347 1.925 (1) (Frame, 2002), (3) (Frame, 2002), (4) 
(Bourguignon et al., 2001), (5) (Frame, 
2002) 

Table 1. GM3 regulated tumor related genes expression in melanoma B16 cells. The numbers 
represent the fold changes of the corresponding genes in GM3 modulating cells compared 
with that of control cells. The biological functions of the genes in the process of metastasis 
are shown as (1) Invasive Proliferation; (2) Apoptosis; (3)Adhesion; (4) Motility; (5) Invasion; 
(6) Metastasis 
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responsible for the processes of tumor cell phenotype including invasive proliferation, 
apoptosis, adhesion, motility, invasion and metastasis coupled with signal transduction. To 
keep the discussion focused, we would respectively elucidate the mechanisms of GM3 
regulating melanoma B16 cells adhesion, invasive proliferation and motility, which in turn 
mediate metastasis of melanoma B16 cells. 

3.1 Adhesion 
There may be many cell adhesion/recognition systems in which GSLs play an essential role. 
However, only the initiation of B16 melanoma metastasis has been elucidated to an 
appreciable extent. Adhesion of mouse B16 melanoma cells to LacCer, Gb4 or Gg3 coated 
plates is mediated by interaction of GM3 (expressed highly on B16 melanoma cells) with the 
above GSLs (Kojima and Hakomori, 1989; Kojima and Hakomori, 1991a; Kojima and 
Hakomori, 1991b). Since GM3 dependent adhesion of B16 cells to nonactivated mouse 
endothelial cells (which express LacCer, Gb4, and Gg3) is regarded as the initial step in 
metastasis of B16 cells (Kojima et al., 1992; Otsuji et al., 1995), GM3 dependent adhesion has 
been extensively investigated. In detail, the adhesion system based on carbohydrate-
carbohydrate interaction has the following characteristics: 1) adhesion process is rapid 
(within <10 min, compared to >30 min for integrin-dependent adhesion); 2) specificity is 
high in some cases, low in others; 3) most require bivalent cation such as Ca2+., but a few do 
not; 4) synergistic with other adhesion systems, e.g., integrins; 5) negative interaction 
(repulsion) occurs between certain pairs of carbohydrates, e.g., GM3-GM3.  
In addition, our results demonstrated that GM3 is able to regulate the expression of 
adhesive genes, such as E-cadherin, N-Cam and Src, which in turn modulate the adhesion of 
melanoma B16 cells (Table 1). Although we could not provide further evidence to show that 
these signaling molecules reside in GEMs, it will be of great interest to see the results of 
further studies along this line. 

3.2 Proliferation 
Studies performed during the early 1970s suggested that GSLs may interact with 
unidentified functional membrane components, which in turn may cause changes in cellular 
proliferation. However, at that time, no realistic information on such functional components 
was available. It took almost 20 years for the development of the current concept of growth 
factor receptors with tyrosine kinases. For understanding GM3 effects on B16 cell growth in 
culture, basic knowledge on types of growth factors required for culturing specific types of 
cells was needed. 

3.2.1 Fibroblast growth factor receptor 
Thus, the first experiment was undertaken to determine the effects of GM3 on BHK cell 
growth. Given the reason that BHK cells require fibroblast growth factor (FGF) but not 
epithelial growth factor (EGF) or platelet derived growth factor (PDGF), fibroblast growth 
factor (FGF) was used to observe the inhibitory effects of GM3 on BHK cell growth. 
Curiously, GM3-enriched BHK cells became refractive to growth stimulation by FGF, and 
internalization of FGF was completed blocked (Bremer and Hakomori, 1982). It was 
assumed that high GM3 level blocked function of FGFR (Bremer and Hakomori, 1982). 
However, at that time, there was no knowledge on tyrosine kinase associated with FGFR; 
studies along this line were not performed until 20 years later (Toledo et al., 2004). 
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3.2.2 EGF receptor 
This line of studies was further extended to effects of gangliosides on EGF-dependent A431 
cell growth, and on tyrosine kinase associated with epithelial growth factor receptor (EGFR). 
GM3, but no other GSLs, strongly inhibited EGF-dependent cell growth, and EGFR tyrosine 
kinase (Bremer et al., 1986). Since EGFR is highly expressed in various epidermal cancers, 
and its tyrosine kinase activity is closely associated with cancer malignancy, a possibility 
was investigated whether any ganglioside could have better inhibitory effect than GM3 (see 
below). 
Hanai et al. (Hanai et al., 1988b) further found that lyso-GM3 showed much stronger 
inhibitory effect than GM3 on EGFR tyrosine kinase in vivo as well as in membrane extract 
in vitro. Furthermore, lyso-GM3 was detected in normal A431 cells. In contrast, exogenously 
added “de-N-acetyl-GM3” (GM3 having de-N-acetyl sialic acid) strongly promoted EGFR 
tyrosine kinase and promoted growth of A431 cells (Hanai et al., 1988a). Thus, effect of 
gangliosides on EGFR tyrosine kinase is more complicated than originally considered, i.e., 1) 
tyrosine kinase is modulated by GM3 when EGFR is activated by EGF under normal 
conditions; 2) trace quantity of lyso-GM3 present, which may result from GM3 by de-N-
acylation, strongly inhibits receptor function; 3) de-N-acetylation of GM3 in resting A431 
cells may promote cell growth, possibly through a channel different from simple activation 
of EGFR. Exogenous lyso-GM3 is highly cytotoxic, whereas lyso-GM3 dimer is not cytotoxic, 
but inhibits EGFR tyrosine kinase as strongly as lyso-GM3. Therefore, synthetic lyso-GM3 
dimer has been studied for inhibition of EGFR activity and A431 cell growth, for the 
purpose of developing pharmacologically effective inhibitors of epidermal tumor cell 
growth (Murozuka et al., 2007). 

3.2.3 GM3/Ly-GDI Arhgdib inhibits cell proliferation through modulation of 
phosphotidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin 
(mTOR)/regulatory associated protein of mTOR (Raptor) pathway under rigorous 
environment. 

3.2.3.1 GM3 suppresses B16 invasive proliferation  

Given the key role of GM3 in regulating cell growth as the above discussion, several lines of 
evidence have shown that GM3 invovled in tumor cell invasive proliferation Anchorage-
independent growth experiments were effective in vitro experiments to determine the 
characteristics of tumor cell invasive proliferation. For example, reduced expression of GM3 
and GM3 synthase as a result of v-Jun transformation resulted in enhanced ability of 
anchorage-independent growth and re-expression of GM3 by introducing GM3 gene to the 
transfectants correlated with a reduced ability of the cells to form colonies in nutrient agar 
(Miura et al., 2004). Contrary to this observation, expression of GM3 in 3LL Lewis lung 
carcinoma cells endowed cells with ability of anchorage-independent growth (Uemura et al., 
2003). Thus, the effects of GM3 expression on anchorage-independent growth are 
controversial in different cell lines and the mechanism still remained unknown.  
Our recent results demonstrated that GM3 modulates B16 invasive growth under rigorous 
environment, such as serum free or anchorage-independent growth. A close association of 
GM3 with B16 invasive proliferation was found in the following series of studies, which will 
be discussed in more detail below: 1) in melanoma B16 cells, GM3 suppression cell lines 
CAH-2 and CAH-3 showed remarkably enhancing anchorage-independent growth in soft 
agar medium. This observation demonstrates that the cells seemed easier to proliferate in 
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rigorous environment once knocking down the expression of GM3. 2) in this context, GM3 
knocking down by siRNA targeting St3gal5 resulted in highly activated cell proliferation 
under serum free and soft agar medium. These results give further support to the notion 
that GM3 reduction enhances invasive proliferating ability of B16 cells in rigorous condition. 
It is also the characteristic of tumor cells that the proliferation was deregulated and the cells 
can escape the rigorous environment (Wang et al., 2011). 

3.2.3.2 GM3 inhibits B16 invasive proliferation via PI3K/Akt/mTOR/Raptor pathway 

In many contexts, the proliferation of mammalian cells depends upon PI3K activity. The 
strongest influences are probably exerted through activation of Akt (Vivanco and Sawyers, 
2002). Although some growth factors do not directly activate PI3Ks, stimulation of Ras, an 
extremely potent mitogenic signal, leads directly to activation of phosphotidylinositol 3-
kinases (PI3Ks) (Rodriguez-Viciana et al., 2004) and, in some cases, it is clear that PI3Ks, and 
not the MEK/ERK pathway, are the most important mediators of the transforming activity 
of oncogenic Ras (Li et al., 2004). Furthermore, it is a prevalently accepted notion that PI3K 
transduces signals via mammalian target of rapamycin (mTOR)/S6K pathway which 
directly regulates the synthesis of proteins and has intrinsic relationship with translation. 
Therefore, it is no doubt that cell proliferation is regulated by PI3K. In addition, several lines 
of evidence show that GM3 signals are transferred to downstream molecules via PI3K 
pathway. In human keratinocyte-derived squamous carcinoma cell line (SCC12F2), GM3 
depletion concretely stimulates the phosphorylation of Akt at Ser473 and Thr308 sites (Sun 
et al., 2002). Treatment with GM3 antibody is able to increase phosphorylation of the Thr308 
site, but not the Ser473 (Sun et al., 2002) site, indicating that GM3 is able to module PI3K 
activity. These findings are also consistent with the known concept that GM3 is capable to 
regulate PI3K activity by inhibiting EGF receptor phosphorylation (Bremer et al., 1986). On 
the other hand, GM3 also showed ability to modulate phosphatase and tensin homolog 
(PTEN) activity, a dual-specificity phosphatase that antagonizes PI3K/Akt signaling (Choi 
et al., 2006). Thus, PI3K is an important molecule that is responsible for GM3 signal 
transduction. However, although PI3K has shown its presence in GEMs (Liu et al., 1996), it 
is yet unclarified if it is located downstream of GM3 to mediate cell proliferation, especially 
under rigorous environment. 
As a first step, we have to introduce the components of PI3K signaling pathway (Fig. 1). In 
the PI3K/Akt/mTOR pathway, Akt is flanked by two tumor suppressors: PTEN, which 
antagonizes PI3K and therefore inhibits Akt, and tuberous sclerosis complex (TSC)1/TSC2 
heterodimer, which inhibits mTOR by inhibiting the activity of Rheb. Akt activates mTOR 
via direct phosphorylation of TSC2 and by the inhibition of AMP-activated protein kinase 
(AMPK), thereby activating Rheb and mTOR-Raptor activity. Upon activation, mTOR-
Raptor (regulatory associated protein of mTOR) activates S6K and inhibits eIF4E binding 
protein (4E-BP1) to accelerate mRNA translation, and also initiates feedback inhibition of 
Akt, which is at least in part mediated by S6K. 
Next, we established a different concept to explain the involvement of PI3K pathway in 
mediating GM3 signals to abnormal melanoma proliferation under rigorous environment. 
Just as described above, PI3K/Akt, 3-phosphoinositide dependent protein kinase-1 (PDK1, 
Pdpk1), Raptor and rapamycin-insensitive companion of mTOR (Rictor) play important role 
in cell proliferation. Our data further demonstrated that they are the key molecules in 
mediating GM3 signals to the invasive proliferation of B16 cell. 1) That GM3 suppression 
specifically decreased the expression of Pdpk1 and Raptor indicated that Pdpk1 and Raptor 
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are involved in the invasive proliferating pathway of melanoma B16 cells in soft agar or 
serum-free medium. 2) Pdpk1 and Raptor siRNA silencing cells had a similar growth rate to 
B16 control or parental cells under serum-containing conditions; however, the growing rate 
of Pdpk1 and Raptor knocking down cells, but not Rictor knocking down cells, was faster 
compared with B16 control or parental cells under serum-free conditions. 3) Raptor or 
Pdpk1 knocking down cells, but not Rictor knocking down cells, resulted in the formation of 
colony in soft agar. Collectively, these results further confirmed that GM3 regulates B16 cell 
invasive proliferation via Pdpk1 and Raptor in soft agar or serum deprived medium (Wang 
et al., 2011). 
 

Nutrient   Energy                                                         Growth Factors

AMPK          TSC1/TSC2
PI3K
PIP3

PDK1           S6K         Raptor/mTOR

pT308Akt

Pdpk1

Protein synthesis                                 Proliferation       Survival  Polarity
                                                                                                              movement. etc

GSK3          FoxO

Akt                                             Rictor/mTORpT308            pS473

 

Fig. 1. PI3K signal transduction model. General concept of PI3K signaling pathway was 
summarized which involves in protein synthesis, proliferation, survival and polarity 
movement 

3.2.3.3 Ly-GDI played a key role in mediating GM3 signals to inhibit B16 cell growth 

Although it is confirmed that GM3 is capable to inhibit B16 melanoma cells proliferation via 
PI3K signaling pathway, it still seems to be conflicted with the universal accepted concept 
that PI3K is always hyper-activated in cancers, which drive the cells proliferation and avoid 
apoptosis (Luo et al., 2003). This controversy could not be resolved until we identified the 
Ly-GDI, which is located downstream of GM3 and acts as an effector of GM3 to change the 
nature of melanoma B16 cells. The proliferating characteristics would be changed once Ly-
GDI expression was altered. Thus, it is not conflicting with the previously accepted concept 
since Ly-GDI would play a key role in mediating GM3 signals to inhibit B16 cell growth.  
1. GM3 has been shown to regulate Ly-GDI expression at the transcriptional level in 

murine melanoma B16 cells. Ly-GDI expression was increased by addition of GM3 to 
the B16 transfectants and decreased after treatment with D-PDMP, an inhibitor of 
glucosyl-ceramide synthesis. These results clearly indicate that GM3 positively 
regulates Ly-GDI expression in B16 cells.  

2. Phosphoinositide 3-kinase inhibitor, LY294002, suppressed the Ly-GDI expression that 
is stimulated by GM3 in B16 cells, suggesting that the GM3 signal is located upstream of 
the PI3K-Akt pathway. GM3 was shown to increase phosphorylation of Akt. Treatment 
of B16 cells with small interfering RNA (siRNA) targeted to Akt1/2 resulted in Ly-GDI 
suppression, indicating that Akt plays an important role in regulation of Ly-GDI 
expression. Suppression of Akt1/2 rendered cells insensitive to GM3, suggesting that 
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the GM3 signal may be transduced via Akt in view of the above reason, we further 
demonstrated that GM3 is located upstream of PI3K pathway to regulate Ly-GDI, by 
incubating B16 cells with GM3 in the presence or absence of PI3K inhibitors. As a result, 
PI3K inhibitor treatment thoroughly blocked the effects of GM3 in stimulating PI3K 
pathway, leading to overexpression of Ly-GDI. These results strongly demonstrated 
that GM3 regulates Ly-GDI expression via PI3K/Akt pathway, and AktThr308 was 
identified as a key active form of Akt to mediate this process by Pdpk1 or Raptor 
knocking down. 

3. Most importantly, Ly-GDI silenced B16 cells showed markedly enhanced invasive 
proliferation in soft agar or serum-free medium. 

These results clearly revealed the important role of Ly-GDI in regulating the abnormal 
proliferation of melanoma B16 cells (Fig. 2) (Wang et al., 2011b) and provide a noteworthy 
theory to explain the effects of GM3 on melanoma invasive proliferation, though it is 
different from the previous theory that GM3 inhibits tumor cell proliferation via modulating 
different receptors. 
 

 

Fig. 2. Proposed cascade of signaling events regulating Ly-GDI expression by GM3, which in 

turn inhibits B16 cells proliferation under rigorous environment. GM3 signals are transduced 

in B16 cells through PI3K, Pdpk1, Akt, mTOR/Raptor pathway, leading to the enhanced 

expression of Ly-GDI mRNA, which in turn suppresses melanoma B16 cells proliferation 

under rigorous environment 
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3.3 Motility 
Although there are several systems of GM3 mediated tumor cell motility in which GM3 
plays an essential role, such as GSP/tetraspannin (TSP)/integrin and GM2/GM3/CD82 to 
explain the mechanism of cancer cell motility, there is no relative evidence to show the 
effects of GM3 on the motility of B16 cells. Based on the established theory, we found a new 
signal transduction pathway to mediate GM3 signals to the motility of B16 cells. 

3.3.1 GM3/TSP CD9 complex inhibits integrin-dependent cell motility 
Both gangliosides and TSP are reported to locate at GEMs in association with integrins 
(Kawakami et al., 2002; Ono et al., 2001; Ono et al., 1999). Integrins have been implicated in 
regulating cellular processes such as adhesion, mobility, signaling, for review see (Hehlgans 

et al., 2007). Integrin function, including α/β-subunit interaction, is affected by N-
glycosylation status (for review see (Gu and Taniguchi, 2004)) and by interaction with TSP 
and/or gangliosides (Hakomori and Handa, 2002; Ono et al., 2001). TSP are palmitoylated 
and N-glycosylated and associate with integrin receptors, gangliosides and signaling 
molecules forming a membrane multi molecular complex referred as tetraspanin web (Ono 
et al., 2001); for review see (Hemler, 2005). 
Since TSP CD9 inhibits cell motility and its expression is down-regulated in various human 
cancers (Cajot et al., 1997; Miyake et al., 1991), a possibility was opened that CD9 function 
was affected by glycosylation. ldlD mutant of Chinese Hamster Ovary cells, defective in 
UDPGlc: 4-epimerase, has been utilized for study of glycosylation of functional proteins 
(Kingsley et al., 1986; Krieger et al., 1989). ldlD cells with high CD9 expression were cloned 
after CD9 gene transfection. Motility of these ldlD/CD9 cells was greatly inhibited when 
cells were grown in serum-free medium (ITS: insulin/transferrin/selenium) containing 
galactose (Ono et al., 1999), allowing glycoproteins to be fully glycosylated and GM3 to be 
synthesized. A close association of GM3 with CD9 function was found in the following 
series of further studies, which will be discussed in more detail below: 

1. CD9 and integrin α3 were co-immunoprecipitated in ldlD/CD9 cells when GM3 was 
synthesized (+Gal condition), but not when GM3 synthesis did not occur (–Gal 

condition). Interaction of GM3 with CD9, and CD9 with α3, were demonstrated by 

confocal microscopy. GM3/CD9/α3 is associated in the same microdomain, which is 
resistant to 1% Brij 98 but soluble in Triton X-100 (Kawakami et al., 2002). Since CD9 is 
chloroform/methanol soluble, its complex with GM3 or other gangliosides was 
expected, similarly to proteolipid protein (Folch and Lees, 1951). 

2. Various colorectal tumor cell lines whose motility was clearly inhibited by exogenous 
GM3 addition were all characterized by high CD9 expression. Motility of a CD9-non-
expressing tumor cell line was unaffected by GM3 addition, but became inhabitable by 
GM3 when CD9 was expressed by its gene transfection (Ono et al., 2001). 

3. Addition of 3H-labeled photoactivatable GM3 having ω-phenylazido acyl group to 
HRT18 cells, followed by UV irradiation, caused specific 3H-labeling of CD9 but not 

other glycosynaptic proteins (α3, α5, or β1 integrin). However, other proteins were 
labeled by the probe (Ono et al., 2001). 

4. Down regulation of GM3 synthesis is associated with oncogenesis in v-Jun 
transformation. Transfection of GM3 synthase gene resulted in reversion of oncogenic 
to normal phenotype in v-Jun-transformed chicken and mouse fibroblasts and 

inhibition of motility and invasiveness through formation of GM3/CD9/α5β1 complex 
(Miura et al., 2004). 
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5. Human diploid embryonal lung WI38 fibroblasts are highly contact-inhibitable cells. 
They are biochemically unusual in having high level of CD9 and CD81, which are 
complexed with FGFR. GM3, the major ganglioside in these cells, interacts specifically 
with FGFR, whereas other gangliosides and glycophingolipids do not. Since FGFR is 
closely associated with c-Src and GM3, cell contact induced by interaction of GM3 with 
FGFR may inhibit tyrosine kinase associated with FGFR as well as c-Src (Toledo et al., 
2004). The exact mechanism for GM3 interaction with FGFR remains to be elucidated. 

6. In a typical case with bladder cancer cells, decrease or depletion of GM3 by D-threo-1-
phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (P4) suppresses interaction of CD9 

with integrin α3β1, leading to enhanced motility and invasiveness (Mitsuzuka et al., 
2005). Such conversion of less malignant to highly malignant cell phenotype was also 
caused by decrease of CD9 by RNAi. Besides, exogenous addition of GM3 resulted in 
inhibition of motility in YTS1 cells. These results suggest that integrin/CD9/GM3 
organized in membrane, “glycosynapse 3” (for review see (Hakomori, 2002)), may 
define tumor cell invasiveness. This is also consistent with previous observations that 
highly invasive YTS1 is reverted to less-invasive phenotype by enhanced GM3 
expression induced by brefeldin A (Satoh et al., 2001). Moreover, Mitsuzuka and 
coworkers (Mitsuzuka et al., 2005) demonstrated that GM3 levels, in bladder cancer 
cells, define glycosynapse function by controlling the interaction of CD9 with integrin 

α3; and by modulating c-Src activity. Enhanced levels of GM3 induce csk translocation 
into glycosynapse resulting in phosphorylation on Tyr 527 of c-Src with consequent 
inhibition of c-Src activity and cell motility (Regina Todeschini and Hakomori, 2008). 

3.3.2 GM2/GM3 complexed with CD82 inhibits cell motility 
TSP CD82 was originally found as product of metastasis suppressing gene KAL-1, highly 
expressed in normal epithelial cells such as prostate, bladder, or colorectal epithelia and 
downregulated or depleted in their metastatic deposits (Adachi et al., 1996; Dong et al., 
1995; Dong et al., 1996). CD82 is known to suppress cell invasiveness by inhibiting 
functional interaction of integrin with tyrosine kinase receptor for hypatocyte growth factor 
(HGF), hypatocyte growth factor receptor (Met) (Sridhar and Miranti, 2006). Met has been 
implicated in promotion of cancer cell motility and invasiveness; for review see (Birchmeier 
et al., 2003). In analogy with CD9, it is expected to observe an effect of glycosylation on 
CD82-dependent motility inhibition (Ono et al., 1999).  
1. It is initially observed that GM2, but not GM3 or Gb4, specifically interacted with CD82 

in normal bladder epithelial cell line HCV29, while GM3 showed specificity for CD9. 
2. GM2/CD82 complex physically interacted with Met inhibiting functional interaction of 

integrin α3 or β1 with Met, whereby HGF-induced Met tyrosine phosphorylation was 
strongly suppressed.  

3. Treating normal cells with P4, which depleted GM2, or abrogating CD82 expression by 
RNAi method, greatly enhanced HGF-induced Met phosphorylation and cell motility. 
In contrast, highly invasive bladder cancer cells, YTS1 (lacking CD82), were 
characterized by HGF-independent Met activation and cell motility. Met activation and 
cell motility were inhibited by co-expression and mutual interaction of GM2 with CD82, 
as observed in YTS1 cells transfected with CD82 gene; or by the exogenous addition of 
GM2 (Illmensee and Mintz, 1976). 

4. YTS-1 cells, when adhered on LN5-coated plate, showed strong activation of Met 
phosphorylation without stimulation by HGF, and this process was promoted when  
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gangliosides were depleted by P4 treatment of YTS-1 cells. These results indicated that 

highly malignant cells are characterized by enhanced cross-talk between integrin and 

Met kinase. Such cross-talk in normal cells is minimal, but was greatly enhanced when 

GM2 was depleted by P4; i.e., CD82/GM2 complex plays a major role in inhibiting not 

only HGF-induced Met kinase activity but also LN5-induced cross-talk between 

integrin and Met (Todeschini et al., 2007). 

 

 

Fig. 3. Hypothetical associations among components of glycosynapse from bladder epithelial 

cells. Bladder epithelial cells express two major receptors as follows: 1) HGF receptor Met and 

its kinase (shown at left), which is inhibited by GM2-CD82 complex; 2) integrin receptor α3β1, 

which binds to extra cellular matrix component LN5/10-11 upon cell adhesion (shown at 

right). α3β1 activation is blocked by GM3-CD9 complex in bladder epithelial cells (Mitsuzuka 

et al., 2005). The functional interaction between systems 1 and 2 is blocked by GM2-CD82 

complex. Signaling shown for both systems is arbitrary, based on a few previous reviews or 

studies by others and by our group (Birchmeier et al., 2003; Mitsuzuka et al., 2005). Grb2 and 

Gab1 are initial signaling molecules that may lead to activation of extra cellular signal-

regulated kinase/mitogen-activated protein kinase (ERK/MAPK), PI3K, or FAK (Birchmeier 

et al., 2003), controlling cell growth and motility. α3β1 may act through Src family kinases 

(which are inhibitable by Csk) (Mitsuzuka et al., 2005; Toledo et al., 2004), and lead to 

Rak/PI3K/Akt signaling (Gu and Taniguchi, 2004), controlling cell adhesion and motility. 

From Todeschini et al.(Todeschini et al., 2007) 

The molecular mechanism of GM2 inhibition of the HGF-Met signaling pathway leading  

to cell motility may be controlling the distribution of CD82 in- and outside of the 

glycosynapse; and interacting with CD82 in the glycosynapse forming the GM2/ 

CD82 complex which acts as a functional constituent of the microdomain. Fig. 3 shows a  
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hypothetical scheme for this mechanism. Besides, inhibition of GM2/CD82 complex on Met 

activation, or on α3-to-Met interaction, may involve cis-carbonhydrate-carbonhydrate 
interaction (cis-CCI) between GM2 and N-linked glycan of CD82, since partial deletion of 
three N-linked glycans (at Asn129, 157, and 198) from mutant CD82 caused remarkable 

change in interaction with α3 and α5 integrins (Todeschini et al., 2007). 
Further studies on effects of various gangliosides, and their combinations, on HCV29 cell 
motility, clearly indicate that GM2 together with GM3 (but not other gangliosides or GSLs, 
or their combinations) show stronger binding to CD82, compared to GM2 or GM3 alone, 
and based on the following observations:  
1. GM2 binding to CD82 was greatly enhanced by addition of GM3, although GM3 per se 

did not bind to CD82 (Ono et al., 2000).  
2. Cells expressing CD82, when cultured with silica nanospheres co-coated with GM2 and 

GM3, displayed much stronger inhibition of cell motility than those cultured with silica 
nanospheres coated with GM2 alone.  

3. GM2/GM3 combination in the above process strongly inhibited phosphorylation of Src 
and MAPK.  

4. ldlD mutant cells transfected with GM2 synthase gene showed greatly reduced motility 
when endogenous synthesis of both GM2 and GM3 occurred, as compared with cells 
grown under conditions in which only one of these gangliosides was synthesized.  

In addition to functional changes 1) to 4) as above, a physical and chemical basis for 
interaction of GM2 and GM3 was provided by (a) electrospray ionization mass spectrometry 
(Ono et al., 2000), and (b) in situ cross-linking of cell surface GM2 and GM3 by periodate 
oxidation followed by succinyl dihydrazide (data not shown). Taken together, these results 
suggest the existence of heterotypic cis carbohydrate-to-carbohydrate interaction of GM2 
and GM3, providing a basis for control of cell motility through inhibition of signal 
transduction (Regina Todeschini and Hakomori, 2008). 

3.3.3 GM3 promotes cell motility via inducing matrix metalloproteinase (MMP-9) 
expression in melanoma B16 cells 
As we know, the murine melanoma B16 cell line is characterized by its highly invasive and 
metastatic capacity. Growth factors, adhesion molecules, proteases, and other components 
are involved in the process of metastasis (Herlyn et al., 2002). MMP family members have 
been clearly shown to play an important role in this process (Hamilton et al., 1993; Tsuchida 
et al., 1987). Among the MMPs thus far studied, MMP-9 (gelatinase B) appears to have an 
important role in a wide array of physiological and pathophysiological processes, including 
pacental development, wound healing, angiogenesis, inflammation, tumor invasion, and 
metastasis (Van den Steen et al., 2002). Thus, studies of the mechanism(s) regulating the 
expression of MMP-9 are also important to the understanding of mechanisms underlying 
tumor metastasis. 

MMP-9 secretion can be stimulated by interleukin 1β (IL-1B) (Librach et al., 1994), tumor 

necrosis factor (TNF) α (Meisser et al., 1999), HGF (Zhou and Wong, 2006), and EGF (Qiu et 
al., 2004). MMP-9 is stimulated in several cell lines via the PI3K/Akt signaling pathway 
(Shukla et al., 2007). Hyperactivated PI3K results in the activation of several transcriptional 

factors, such as nuclear factor (NF)-κB and activator protein (AP)-1, further leading to 
promotion of MMP-9 gene expression (Bancroft et al., 2002). Restoration of phosphatase and 
tensin homolog to hyperactivated PI3K cell lines reversibly suppresses MMP-9 expression. 
S6K located downstream of PI3K is involved in the regulation of MMP-9 expression 
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following stimulation with hepatocyte growth factor (Zhou and Wong, 2006). These lines of 
evidence clearly show that PI3K signaling pathway plays an important role in MMP-9 
regulation. 
Reports from several laboratories have concluded that MMP-9 expression is modulated not 
only by cytokines but also by gangliosides (Hu et al., 2007; Moon et al., 2004; Zhang et al., 
2006). GM1, present in the glycolipid-enriched microdomain, is one of the crucial factors 
regulating cancer metastatic potential via the modulation of MMP-9 localization and 
secretion, as well as suppression of tumor invasion potential (Zhang et al., 2006). 
Overexpression of the GD3 synthase gene suppresses MMP-9 expression by inhibiting the 
combination between the MMP-9 promoter and transcription factors (NF-κB and AP-1) in 
vascular smooth muscle cells (Moon et al., 2004). In murine FBJ cells, GD1a is found to 
suppress MMP-9 expression at the transcriptional level (Hu et al., 2007). On the other hand, 
overexpression of plasma membrane-expressed sialidase Neu3 inhibits MMP-9 expression 
in vascular smooth muscle cells; implying gangliosides promote MMP-9 (Moon et al., 2007). 
Thus, there is no definite concept as to whether gangliosides positively or negatively 
regulate MMP-9 expression. 
Among tumor-associated glycolipids, ganglioside GM3 is the simplest ganglioside in 
structure that resides in the membrane of murine melanoma B16 cells (Iwabuchi et al., 1998).  

1. GM3 has been shown to regulate TNF α both at the transcriptional and translational 

levels in murine melanoma B16 cells (Wang et al., 2007b; Wang et al., 2007c). TNF α 
expression was increased by addition of GM3 to the B16 transfectants and decreased 
after treatment with D-PDMP, an inhibitor of glucosyl-ceramide synthesis. These results 

clearly indicate that GM3 positively regulates TNF α expression in B16 cells.  

2. PI3K inhibitors, wortmannin and LY294002, suppressed the TNF α expression that is 
stimulated by GM3 in B16 cells, suggesting that the GM3 signal is located upstream of 
the PI3K-Akt pathway. GM3 was shown to increase phosphorylation of Akt. Treatment 

of B16 cells with small interfering RNA (siRNA) targeted to Akt1/2 resulted in TNF α 

suppression, indicating that Akt plays an important role in regulation of TNF α 
expression. Suppression of Akt1/2 rendered cells insensitive to GM3, suggesting that 
the GM3 signal may be transduced via Akt (Wang et al., 2007a).  

3. Rapamycin suppressed TNF α expression, indicating mammalian target of rapamycin 
(mTOR) to be involved in the pathway. Either siRNA Raptor or siRNA Rictor 

suppressed TNF α expression, but the latter suppressed the effects of GM3 on TNF α 
expression and Akt phosphorylation at Ser473, indicating the GM3 signal to be 

transduced via mTOR-Rictor and Akt (Ser473), leading to TNF α stimulation. Finally, 
Ly-GDI, the tumor suppressor gene, whose expression is associated with GM3, was 

shown to be upstream of TNF α (Wang et al., 2007b). Thus, the GM3 signal is 
transduced in B16 cells through a PI3K, mTOR-Rictor, Akt, Ly-GDI pathway, leading to 

stimulated expression of TNF α. 

4. Since TNF α is known to stimulate MMP-9 synthesis, which is highly involved in tumor 
cell metastasis, we investigated the possibility that MMP-9 is regulated by GM3. In the 
present study, MMP-9, but not MMP-2, messenger RNA (mRNA) expression was found 
to be consistent with GM3 levels in every B16-derived cell variant. GM3 has been 
suggested to stimulate the PI3K/Akt signaling pathway in previous investigations 
(Bremer et al., 1986; Choi et al., 2006). GM3 signals are thus transduced via the 
PI3K/Akt pathway, leading to the regulation of MMP-9 expression. 
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5. Most importantly, cell migration tested by transwell experiments showed that the 
numbers of cells migrating were consistent with MMP-9 expression (Wu et al., 2011). 
These data strongly suggest that capacity of cell migration in B16 cells is proportional to 
MMP-9 expression, which is under the positive control of GM3 (Fig. 4). 

 

 

Fig. 4. Proposed cascade of signaling events regulating MMP-9 expression by GM3, which in 
turn promotes B16 cells motility via Ly-GDI. GM3 signals are transduced in B16 cells 
through PI3K, Pdk1, Akt, mTOR Raptor pathway, leading to the enhanced expression of  

Ly-GDI mRNA. Further data demonstrated that Ly-GDI located upstream of TNF α, which 
in turn regulate melanoma B16 cells motility via inducing MMP-9 secretion 

3.4 Metastasis 
Melanoma cells break the most basic rules of behavior by which multicellular organisms are 
built and maintained, and they exploit every kind of opportunity to do so. In studying the 
transgressions, we discover what the normal rules are and how they are enforced. Thus, in 
the context of cell biology, melanoma has a unique importance, and the emphasis given to 
melanoma research has profoundly benefited a much wider area of medical knowledge than 
that of melanoma alone. 
Melanoma cells are defined by two heritable properties: they and their progeny (Hakomori, 
1996) reproduce in defiance of the normal restraints on cell division and (Hakomori et al., 
1998) invade and colonize territories normally reserved for other cells. It is the combination 
of these actions that makes cancers peculiarly dangerous. An isolated abnormal cell that 
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does not proliferate more than its normal neighbors does not significant damage, no matter 
what other disagreeable properties it may have; but if its proliferation is out of control, it 
will give rise to a tumor, a relentlessly growing mass of abnormal cells. As long as the tumor 
cells remain clustered together in a single mass, however, the tumor is said to be benign. At 
this stage, a complete cure can usually be achieved by removing the mass surgically. A 
tumor is considered a cancer only if it is malignant, that is, only if its cells have acquired the 
ability to invade surrounding tissue. Invasiveness usually implies an ability to break loose, 
enter the bloodstream or lymphatic vessels, and form secondary tumors, called metastasis, 
at other sites in the body. The more widely a cancer spreads, the harder it becomes to 
eradicate. 
 

 

Fig. 5. Steps in the process of melanoma metastasis. This example illustrates the spread of a 
melanoma from an organ such as the lung or bladder to the skin. Tumor cells may invasively 
proliferate in the original tissue with inhibiting Ly-GDI expression. Then, tumor cells will 
enter the bloodstream directly by crossing the wall of a blood vessel, as diagrammed here, 
or, more commonly perhaps, by crossing the wall of a lymphatic vessel that ultimately 
discharges its contents (lymph) into the bloodstream. The motility of melanoma cells would 
be triggered by MMP-9 activation during this process. Finally, tumor cells that have entered 
a blood or lymphatic vessel will proliferate in a new tissue (skin) and finish the circle of 
metastasis 

As discussed in this chapter, ganglioside GM3 is involved in every aspects of melanoma 
metastasis. Ly-GDI mediated melanoma invasive proliferation under rigorous conditions, 
which in turn benign tumor would form in tissues. At this stage, GM3 would concurrently 
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modulate melanoma cell adhesion via gangliosides interaction or modulating adhesive 
genes expression, through which mediate melanoma cells getting loose from orignional tisse 
or adhere to the new locations. Once the activity of MMP-9 was stimulated by GM3 in 
melanoma cells, MMP-9 will trigger the motility of melanoma cells throughout the 
bloodstream or lymphatic vessels, and form secondary tumors (Fig. 5). That means a tumor 
is considered as a cancer with metastasis. Although these steps are not separate and are 
always combination of these actions, our in vitro experiments have partially revealed the 
metastatic mechanism of melanoma B16 cells. These results clearly indicated that GM3 
changed the nature of melanoma B16 cells. In addition, elucidation of the molecular 
mechanism of gangliosides modulating tumor phenotype will help to find new therapeutic 
targets or critical genes in cancer therapy. 

4. Conclusion 

Our results along with others’ investigations have shown that GM3 is invovled in each step 

of metastasis in melanoma B16 cells. 1) GM3 regulatea B16 cell adhesion via gangliosides 

interaction or modulating adhesive gene expression, such as E-cadherin, N-Cam and Src. 2) 

GM3 is able to inhibit B16 cells invasive proliferation under soft agar or serum deprived 

medium via stimulating Ly-GDI expression. 3) MMP-9 is identified to mediate B16 cell 

motility via Tnf α. Therefore, GM3, predominantly expressed ganglioside in B16 cells, is the 

key molecule responsible for the phenotype or nature of melanoma cells. 

5. Abbreviations 

Abbreviations Full Name 

AMPK AMP-activated protein kinase 
AP-1 activator protein-1 
CCI carbonhydrate carbonhydrate interaction 
ECs endothelial cells 
EGF epithelial growth factor 
EGFR epithelial growth factor receptor 
ERK/MAPK Extracellular signal-regulated kinase/mitogen-

activated protein kinase 
4E-BP1 eIF4E binding protein 
FAK focal adhesion kinase 
FGF fibroblast growth factor 
FGFR fibroblast growth factor receptor 
GEMs glycosphingolipids enriched microdomains 
HGF hypatocyte growth factor 
IL-1B Interleukin-1β 
MET hypatocyte growth factor receptor 
MMP-9 matrix metalloproteinase 9 
mTOR mammalian target of rapamycin 
PDGF platelet derived growth factor 
Pdk1 pyruvate dehydrogenase kinase 
PI3K phosphotidylinositol 3-kinase 

www.intechopen.com



 
Breakthroughs in Melanoma Research 

 

94 

PTEN phosphatase and tensin homolog 
P4 D-threo-1-phenyl-2-palmitoylamino-3-pyrolidino-1-

propanol 
Raptor regulatory associated protein of mTOR 
Rictor rapamycin-insensitive companion of mTOR 
SCC12F2 squamous carcinoma cell line 

TNF α Tumor necrosis factor alpha 

TSC tuberous sclerosis complex 
TSP tetraspannins 
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