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1. Introduction  

Type 1 Diabetes Mellitus (T1DM) is a chronic disease characterized by the immune-mediated 

destruction of ǃ cells of pancreatic islets. Despite the increase of its incidence observed in last 

decades, it has not been fully elucidated the immunogenetic and environmental factors 

associated with the initiation and perpetuation of the pancreatic injury(1,2).  

The pathogenic process in T1DM begins with insulitis, which progresses and expands so as 

to be accompanied by cell necrosis. The rate of progression of the lesion is variable and may 

be related to age at onset of the disease, being faster in  cases diagnosed in children (3). 

When approximately 80-90% of insulin-secreting cells have been destroyed, T1DM is 

clinically overt (4).  

T1DM patients may have some residual insulin secretion at diagnosis (5-8). Several 

studies indicate that the loss of functional capacity usually occurs within three to five 

years. Most patients with long duration of disease do not present clinical evidence of 

preservation of ǃ cells (9-11). However, the conservation of some residual secretion, even 

insufficient to cure or prevent T1DM from using insulin, has been associated with a better 

prognosis regarding glycemic control, lower rates of hypoglycemia, diabetic retinopathy 

and nephropathy (12).  

One of the most frequently used method to assess ǃ cell function in patients with T1DM is 

the determination of C-peptide (CP), a molecule secreted by ǃ cells in equimolar 

concentrations with insulin and without significant liver metabolism (13-15). Taking into 

consideration the potential benefits of preserving a residual insulin secretion in patients 

with T1DM, experimental treatments have been proposed in order to maintain detectable 

levels of CP in these individuals.  

Developments in research aiming for the prevention and cure of T1DM, increased the need to 

elucidate the contributing factors for the maintenance of residual insulin secretion in patients 

affected by the disease. This is because individuals who still exhibit residual insulin secretion 

could be ideal candidates for new curative treatments. Furthermore, most studies of pancreatic 

function in T1DM have been performed in Caucasians and Asians. We do not know whether 

the results obtained so far can be extrapolated to other ethnic populations (16).  
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2. Type 1 diabetes mellitus (T1DM)  

2.1 Definition  
T1DM is a chronic disease characterized by the destruction of pancreatic ǃ cells, which leads 
to absolute deficiency in insulin production.  
There are two subgroups of T1DM: type 1A, mediated by autoimmune destruction of ǃ cells 
and type 1B, without an identifiable cause and more common among  Asian and Afro-
American people (17).  

2.2 Epidemiology  
The incidence of T1DM is rising in recent decades (18-20). This has been observed mainly in 
developed countries, mainly among children younger than four years-old (18,20-22).   It is 
estimated that 15 to 30 million people in the world population have the disease with a 
growth rate of approximately 3-5% per year (19,20,23,24).  
Epidemiological data suggest that 30 to 50% of T1DM cases may occur after the age of 20 
and 50-60% of these patients were younger than 16-18 years at diagnosis. The incidence 
declines throughout the adult life (25-28).  
The incidence among men and women is equal. However, there is a predominance of females 
in populations at low risk for T1DM, while the opposite occurs in high-risk populations (29).  
There is also variation in relation to different countries. There is a high incidence in Finland 
and Sardinia, Italy (36.5 and 36.8 individuals per 100,000, respectively) and low in Germany 
and Pakistan. In countries like Brazil and Portugal, the incidence of T1DM is intermediate, 
as shown in Table 1. In Brazil, there is about 8.0 new cases per 100,000 inhabitants (30).  
Regarding ethnicity, individuals of Caucasian origin have a higher incidence of T1DM than 
Hispanic, African, Asian or Indian descendents (31).  
 

 Incidence per 100,000 people 

Country Term Total 

Germany 1990 – 1994 1.0 

Brazil 1990 – 1992 8.0 

Canada 1990 – 1994 24.0 

Denmark 1990 – 1994 15.5 

Spain 1990 – 1994 12.5 

USA 
White 
Non-white 

1990 – 1994  
16.4 
13.3 

Finland 1987 – 1989 36.5 

Italy 
Sardinia 
Sicily 
Lombardy 

1990 – 1994  
36.8 
11.7 
7.2 

Mexico 1990 – 1993 1.5 

Norway 1990 – 1994 21.2 

Pakistan 1990 0.7 

Portugal 1990 – 1994 13.2 

Sweden 1978 – 1987 24.2 

Adapted from The WHO Diamond Project Group, 2000 (30).  

Table 1. Incidence of T1DM in population under 15 years-old, in different countries. 
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2.3 Etiopathogenesis  
In the pathogenesis of T1DM, the activation of the immune system mediated by T cells plays 
a central role. This process leads to an inflammatory reaction (insulitis) characterized by 
infiltration of pancreatic islets by mononuclear cells such as dendritic cells, macrophages, B 
lymphocytes and CD4 and CD8 (3,17,32).   With the progression of inflammatory injury, 
there is a development of cellular necrosis and cellular immunity seems to be primarily 
responsible for this process (33).  
The pathogenic process that culminates with the onset of T1DM begins with the loss of self-
tolerance of T lymphocytes. Self-tolerance is defined as the process in which T cells or 
autoreactive B are eliminated from the body. This can be divided into central and 
peripheral. The central tolerance is the deletion of autoreactive T cells in the thymus and 
requires the presence of autoantigens in thymic environment. Peripheral tolerance 
mechanisms are responsible for destroying or inhibiting the function of self-reactive cells 
that crossed the thymic deletion process, through mechanisms such as immunological 
ignorance, deletion, anergy or immune inhibition (34).  
Some of the risk genes for the development of T1DM are responsible for the concentration of 
insulin within the thymus. Thus, these genes are linked to the process of central tolerance. 
Moreover, changes in peripheral tolerance may also be related to the etiopathogenesis and 
the release of super-antigens after viral infections. Typically, the peripheral tolerance would 
be responsible for the sequestration of  these super-antigens mediated by the immune 
system, which would not lead to lymphocyte activation (34,35). Another mechanism of 
pancreatic injury is associated with infection as a possible molecular mimicry between viral 
antigens and autoantigens aggravating the process of insulitis. This molecular similarity 
could activate autoreactive T lymphocytes and direct them to attack pancreatic cells (34).  
Overt T1DM occurs when approximately 80 to 90% of the ǃ cells have been destroyed (4). 
The rate of progression to classical T1DM symptoms may be related to age of onset of 
symptoms, being faster in cases diagnosed at young age (3).  
The presence of one or more autoantibodies associated with T1DM may precede the onset of 
clinical disease by months or even years (28,36,37).  
T1DM diagnosed in childhood may have autoantibodies to the major antigens of the 
pancreatic islets detectable in the first two years of life (38). This seems to be a reflection of 
cellular injury and its cause is not specific (33). The role of B lymphocyte  cells in the 
pathogenesis of T1DM must also be emphasized. Several diseases mediated by T 
lymphocytes present B lymphocytes in the process of antigen presentation (39). A recent 
study revealed that patients with newly diagnosed T1DM treated with Rituximab 
(monoclonal anti-CD20) showed improvement in clinical and metabolic parameters after 
selective depletion of B lymphocytes. The explanation for this fact lies on the reduction of 
antigen presentation mediated by B lymphocytes, or even the reduction of cytokine 
production in pancreatic or peri-pancreatic lymph nodes. This suggests that B lymphocytes 
may have a greater role in the pathogenesis of T1DM than previously thought (40).  
Although there are many hypotheses about the onset and progression to autoimmunity of 
T1DM, the definitive mechanism is not fully understood.  

2.4 Autoantibodies  
Production of pancreatic autoantibodies does not appear to be the primary mechanism of 
destruction of pancreatic islets (41,42). The release of antigen caused by ǃ cell destruction 
leads to its detection by the immune system and immune activation, subsequently causing 
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the production of antibodies against pancreatic components. Thus, antibodies appear to be 
predominantly markers of immune activation and ǃ cell destruction, and not the cause itself 
(31,33).  
The first autoantibody isolated was the antibody against the cytoplasm of the pancreatic 
islet (islet cell cytoplasmic antibody - ICA) and three major autoantibodies contribute to their 
positivity: the antiglutamic acid decarboxylase (GADA65), antibody against tyrosine 
phosphatase (anti-IA2, also known as ICA512) and antibodies against glycolipids (43)  
The glutamic acid decarboxylase (GADA) is an enzyme involved in the synthesis of Ǆ-
amino-butiric acid (GABA) in the central nervous system (CNS) and in pancreatic islets. 
GADA is expressed in all cell types of pancreatic islets, not only in ǃ cells. Two isoforms of 
GADA (GADA64 and GADA67) synthesized in other tissues have also been identified. 
GADA, used in current assays, detects pancreatic isoform of this enzyme of 65 kd and is 
found in 70-80% of newly diagnosed Caucasian. A lower incidence is observed in children 
younger than 10 years of age (43,44).  
After GADA discovery, anti-IA-2 (40 kd) or ICA512, and anti-IA-2ǃ (37 kd), known as phorin 
(45,46), were identified. Most patients with anti-IA 2ǃ also exhibit anti-IA-2. However, about 
10% of T1DM with anti-IA-2 autoantibodies are not the type-2 anti-IA. Until now, anti-IA-2 
appears to be the most specific immunological marker of T1DM and is present in 32 to 75% 
of the new cases (47,48). Once detected, most individuals concomitantly present positive 
GADA and anti-insulin (IAA) (28). Another antibody has been identified as IAA. In children 
diagnosed under 10 years of age, sensitivity of IAA is of 50 to 60%, while in patients 
between 10 and 30 years  sensitivity is of 10% (47,48). There is cross-reactivity between 
antibodies produced against endogenous and exogenous insulin and most patients develop 
IAA after initiation of insulin therapy, even with the use of recombinant analogues. Thus, 
the measurement of this antibody in the blood is recommended only before or within 5 to 7 
days after initiation of insulin therapy (32).  
It has been recently described another auto-antigen associated with T1DM - the zinc 
transporter 8 (zinc transporter 8 - Znt8). Present in ǃ cells, the Znt8 is involved in regulating 
the insulin secretion pathway. It regulates the entry of zinc in the lumen of the granules, 
where this cation binds to hexamers of insulin. Nearly 60 to 80% of individuals with newly 
diagnosed T1DM have antibodies against this antigen (49,50).  
Most pancreatic autoantibody titers decline after the diagnosis of the disease, but GADA 
may remain positive for many years after diagnosis (51). This feature makes it ideal for 
antibody studies in patients with T1DM of long duration.  
Some patients may not have pancreatic autoantibodies detectable at diagnosis. This can be 
explained by some reasons (5):  
1. These patients may have detectable titers in the pre clinical and became negative before  

diagnosis.  
2. Tests available for determination of these autoantibodies were not sensitive enough to 

detect low titers.  
3. There may be yet unidentified antibodies in research conducted so far.  
4. This is possibly a case of idiopathic T1DM (type 1B) without autoimmune etiology.  
At diagnosis, traditionally it has been estimated that 90% of children had one or more 
pancreatic antibody positive. However, with the availability of anti-Znt8, measuring the 
combination of the four main pancreatic autoantibodies (GADA, IAA, anti-IA2 and anti-
Znt8) in patients with newly diagnosed T1DM, showed a detection rate of autoimmunity 
against ǃ cells of 98% (49,50).  
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2.5 Genetic factors associated with T1DM 
Genes from the histocompatibility system HLA (Human Leukocyte Antigen Complex), IDDM 1 

- chromosome 6q21.31, are polymorphic and have different amino acid sequences between 

individuals. They are divided into HLA class I (HLA-A, B and C) and HLA class II (DP, DQ 

and DR) and both are related to immune response (52).  

HLA class II polymorphisms are associated with an increased risk of T1DM. The main risk 

alleles are HLA DQB1 * 2002 / * 0302 and HLA DR03/04. The DQB1 * 0602 allele is 

considered protective (5).  

Other genes have been associated with the pathogenesis of T1DM, as shown in Table 2, 

among which are the insulin gene PTPN22 and CTL4 (17,27,53-55).  

 

* IDDM - insulin dependent diabetes 
mellitus 

Genetic Product 
Cromossomic 

location 

IDDM1 HLA 6p21.31 

IDDM2 Insulin 11p15.5 

IDDM3 - 15q.26 

IDDM4 - 11q13 

IDDM5 - 6q25 

IDDM6 - 18q21 

IDDM7 - 2q31-31 

IDDM8 - 6q27 

IDDM9 - 3q21 

IDDM10 - 10p11-q11 

IDDM11 - 14q4.3-14q31 

IDDM12 CTLA-4 2q33 

IDDM13 - 2q34 

IDDM14 - 6q21 

IDDM15 - 10q25.1 

IDDM17 - CR10 

PTPN22 -  

Adapted from Kelly et al. 2003 (3) and Eisenbarth, 2005 (32).  

Table 2. Genes involved in the Pathogenesis of T1DM 
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2.6 Environmental factors associated with T1DM  
Besides genetic susceptibility, exposure to environmental factors is also important for the 
development of T1DM. Studies suggest that these factors would be responsible for 
triggering the immune process that leads to ǃ cell destruction. Specific viral infectious 
diseases have been included among the causes (56,57). Some of the viruses suggested as 
associated with T1DM are Enteroviruses, Coxsackie virus, congenital Rubella. Toxins such 
as nitrosamines and protein foods such as cow's milk, cereals and gluten are also considered 
as potential immunological triggers (58-60).   Moreover, the presence of multiple infections 
in early life is associated with a reduced risk for the disease (1).  
Recently, there has been a significant increase in diagnosed cases aged younger than four 
years (61,62). This shift may be explained by increased exposure to environmental factors or 
the increased prevalence of obesity (63,64).  
One of the hypotheses to explain the development of T1DM is the controversial theory of 
acceleration suggested by Wilkin. It argues that T1DM and type 2 diabetes (T2DM) 
constitute a single disease and not two distinct comorbidities. The rate of loss of ǃ cell mass, 
associated with three main factors accelerators, would define the disease. The first factor 
would be the intrinsic potential for high speed apoptosis of ǃ cells, essential, but insufficient 
for the development of DM. The second accelerator would be insulin resistance, a result of 
obesity and physical inactivity, central link between the two entities. Insulin resistance 
overtaxes the ǃ cell mass already at risk for accelerated apoptosis, contributing to the clinical 
expression of DM. The third accelerator was present only in individuals with genetic 
susceptibility to autoimmunity. Individuals with metabolically more active ǃ cells, insulin 
resistance and genetic susceptibility would be more prone to rapid deterioration of 
functional and clinical expression of T1DM. In the absence of autoimmune accelerator, 
apoptosis rate would be slower and thus there would be progression to T2DM (65).  

3. Assessment of pancreatic β cell function  

A major limitation of studies of T1DM in humans is the inability to measure the mass of ǃ 
cells in vivo, since pancreatic biopsies are associated with high morbidity and mortality. 
Therefore, indirect methods have been developed. The assessment of pancreatic function 
was shown to have a rough correlation with the mass of ǃ cells used in islet transplantation 
in patients with DM (25).  
Methods of imaging and nuclear medicine are being studied to assist the measurement of 
the mass of pancreatic islets and its correlation with insulin production, but with conflicting 
results (66-68).  
The measurement of ǃ cell mass does not always correlate with functional capacity. In pre-
diabetes, there can be no proliferation or maintenance of cell mass (69,70). Marchetti et al 
suggested that patients with T1DM can have ǃ cell secretory dysfunction and not just cell 
destruction (71).  
In an attempt to understand the ǃ cell function in vivo, it was initially developed a 
radioimmunoassay for measurement of serum insulin. For years, this was the gold standard 
for assessing the secretory activity. However, there are several factors limiting the use of 
serum insulin for the evaluation of pancreatic ǃ cell function. The first is that 50 to 60% of 
the insulin produced by the pancreas undergoes hepatic metabolism and does not reach the 
systemic circulation. In addition, the peripheral clearance of insulin is variable and the tests 
available for their determination do not differentiate insulin, proinsulin, its intermediates 
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and the use of exogenous insulin. Another limiting factor is the presence of anti-insulin 
antibodies (IAA) to interfere in the measurement of serum insulin (12,72,73).  
Thus, other means to measure ǃ cell function have been developed, and among them the 
measurement of baseline and/or stimulated CP.  

3.1 C-peptide  
Pancreatic ǃ cells secrete, in addition to insulin, proinsulin, conversion intermediates of 
insulin (proinsulin split) and the connecting peptide (CP) (15).  
The pro-insulin is cleaved in the Golgi apparatus of islet cells. This reaction leads to the 
formation of insulin, CP and two pairs of basic amino acids. Insulin and the CP are released 
into circulation at a ratio of 1:1, as well as small amounts of proinsulin and intermediates. 
The proinsulin sum 20% of molecules with insulin-immunoreactivity simile, seems to have 
no metabolic effect, undergoes extra-hepatic metabolism and is excreted exclusively by the 
kidneys.  
The CP is a connection between the peptide chains A and B of proinsulin and facilitates the 
processing of biologically active insulin in secretory granules of pancreatic islets. After the 
cleavage of proinsulin, the intact CP is stored with insulin in these granules and is co-
secreted with insulin. For this reason, the CP can be considered an independent marker of 
insulin secretion (16). However, in some situations, such as renal failure, the serum 
concentration of CP is not proportional to the rate of insulin secretion. About 85% of CP is 
metabolized by the kidneys and the remainder excreted intact in urine. A decrease in renal 
function leads to reduced metabolism of CP and elevated serum levels (74)  
The CP plasma half-life is of thirty minutes, greater than that of insulin, which is only of 

four minutes (13-15,75). The normal value of the CP varies from 1.1 to 5.0 ng / mL.  

Under standard conditions of measurement, the CP has been widely accepted as a rough 
measure of insulin secretion, since it is secreted into the portal circulation in equimolar, 
concentrations, does not undergo hepatic metabolism, its half-life is longer (30 minutes) and 
has low cross reactivity with proinsulin and insulin antibodies (12, 76,77).  
In adverse conditions, such as hyper- or hypoglycemia, CP concentrations are not 

proportional to the rate of insulin secretion, and its clearance may vary between different 

individuals (78,79).  

Therefore, at the moment, the most appropriate, accepted and clinically validated method to 

measure the ability of ǃ cell secretion under ideal conditions is the measurement of baseline 

and/or stimulated CP (76). This stimulation can be done with glucose or insulin 

secretagogues such as glucagon, standard mixed meal or oral glucose tolerance test with 75g 

of anhydrous glucose (OGTT) (12,80-82).  

The standard mixed meal test consists of oral administration of a liquid diet (Sustacal ® / 

Boost) of approximately 500 kcal containing 50% carbohydrate, 30% fat and 20% protein. 

Blood samples for measurement of blood glucose and CP are collected in fasting and 30, 60 

and/or 90 minutes after the meal (76,80). This test shows the typical postprandial response 

of the cell ǃ and its interaction with the various hormones secreted during oral feeding. It is 

the most physiological test among the above cited (76,83).  

Oral glucose tolerance test (OGTT) is the determination of glucose, insulin and CP after 10 

hours of fasting and 30, 60, 90, 120 minutes after ingestion of 75g anhydrous glucose orally 

administered. It is used to measure glucose tolerance and the residual function of the ǃ cell 

in patients at risk, but has not yet been validated for use in T1DM patients. It is useful to 
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predict early changes in glucose metabolism in relatives of T1DM or individuals with 

positive autoantibodies (76).  

The glucagon stimulation test is done by measurement of CP at baseline, after 8 hours 

fasting, and 6 minutes after intravenous administration of 1 mg of glucagon, while its 

maximum concentration is observed (76,79). The most commonly observed side effects are 

facial flushing and nausea due to decreased gastrointestinal motility (76). The advantages of 

the glucagon test in relation to the standard meal test are:  

1. Faster action, since glucagon is a potent supra-physiological stimulus for insulin 
secretion, directly and indirectly, also influenced by hyperglycemia (76).  

2. Minor influence of glucotoxicity in patients with high glycated hemoglobin (HbA1C) 
(76,80).  

3. Simple technical achievement (76).  
4. Good reproducibility between individuals (76).  
To avoid inaccuracy in CP measurement, caution is necessary during blood collection and 

processing. As the CP is a small molecule, linear and prone to degradation by proteolytic 
enzymes blood samples should be cleared by centrifugation for a short period of time (not 

more than a few hours).  Palmer et al suggest that this is done within one month after 
collection because immunoreactivity falls with prolonged blood storage generating falsely 

lower results (84). This time, however, it is not well defined (12). Until the proper 
measurement, the serum should be stored -80 ° C.  

Changes in blood glucose are factors that acutely interfere with the measurement of serum 
CP and can underestimate the ability of secretion. The Immunology of Diabetes Society has 

established that the glucagon test must be conducted during fasting and with glucose levels 
between 70 and 200mg/dL. The optimal level of blood glucose in these patients is around 

126mg/dL. Hypoglycemia (<70 mg / dL) inhibits the insulin response while acute 
hyperglycemia (> 200mg/dL) may potentiate the secretory response or inhibit it. On the 

other hand, chronic hyperglycemia can reduce ǃ cell function due to the phenomenon of 
glucotoxicity (85-86). Moreover, high glucose concentrations have been shown to damage ǃ 

cells in vitro and in vivo, compromising insulin secretion (87).  
The characteristics of the methods used to quantitate the CP must be well defined. The 

presence of cross-reactivity with proinsulin and its intermediate results in falsely elevated 
CP concentrations. In general, it is expected that the rate of cross-reactivity of a method is 

less than 10% (12).  

3.2 Role of the pancreatic β cell in T1DM 
In T1DM, there is a progressive loss of the ability of insulin secretion. During the process of 
destruction of pancreatic ǃ cells, the first abnormality observed in the preclinical phase is the 
loss of first phase insulin secretion - FPIR, First phase insulin release (31,88). The FPIR is the 
sum of the plasma insulin at 1 and 3 minutes after the glucose load during an intravenous 
glucose tolerance test (76). Moreover, impairment in glucose tolerance test has been 
correlated with an increased risk of progressing from preclinical to clinical diabetes (4).  
One of the first authors who studied ǃ cell function in diabetic patients and healthy controls 
was OK Faber et al in 1977. He compared measurements of the CP after the standard meal 
and after glucagon (1 mg intravenous) and noticed that the CP, at baseline and after fasting 
and stimulation with glucagon, was higher in healthy controls when compared to patients 
with T1DM (79). Subsequently, it was identified that individuals with T1DM may have 
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some residual insulin secretion at diagnosis especially in cases diagnosed in adulthood (5-8, 
89).  
The loss of this residual secretion usually occurs within three to five years after the 

diagnosis (86). Patients with long duration of illness tend not to have CP secretory reserves, 

demonstrating the exhaustion of pancreatic secretion (9-11). However, Meier et al 

demonstrated the preservation of ǃ cells secreting insulin in most patients with T1DM 

evaluated in histopathological studies (90). In addition, Keenan and colleagues 

demonstrated detectable levels of CP in 18% of individuals with T1DM for over 50 years and 

absence of chronic complications of the disease (91).  

The reason why some ǃ cells are maintained for years after diagnosis of T1DM remains 

unclear. It is possible that some cells are not equally susceptible to destruction or even that 

the destructive process is attenuated over the years. Another possibility to explain this 

persistence would be a recovery in ǃ cell by replication, which seems unlikely. Another 

explanation is that some cells could be inactive and not destroyed and recover their function 

over time (92).  

3.2.1 Factors influencing the residual insulin secretion and CP  
The rate of decline of pancreatic function in T1DM is heterogeneous, ranging from 13 to 

58% in the first year after diagnosis (84). Some factors such as age at diagnosis and sex 

seem to influence this fall. Association between residual pancreatic function and female 

sex has also been found (93). Karjalainen et al reported that T1DM  that begins in 

adulthood (20 to 55.8 years old) is characterized by a longer asymptomatic period before 

diagnosis and better preservation of residual ǃ cell function than T1DM beginning in 

childhood (5,16,94).  

Some studies have shown that baseline serum CP levels in patients diagnosed in adulthood 

and post-pubertal period are higher than in those diagnosed in the pre-puberty (7,8,12). This 

fact indicates a greater destruction of ǃ cells in younger people. However, there could be a 

change in CP levels according to age. According to Palmer JP et al, the serum CP levels in 

adulthood are around 0.6 to 1.3 nmol / L during puberty between 0.3 and 0.9 nmol / L and 

in pre-pubertal <0.2 nmol / L (12).  

In the Diabetes Control and Complications Trial (DCCT), patients with short disease duration (≤ 

5 years) had a CP after the stimulus with mixed meal detectable (greater than 0.2 nmol / L) 

in 33% of those with <18 years of age and 48% in adults (10). Stimulated CP > 0.2 pmol / mL 

was found in 3% of children and 8% of adults with long duration of illness (> 5 years). Basal 

and stimulated CP were negatively correlated with disease duration (80).  

The presence of antibodies is another predictor of reduction in ǃ cell function. High levels of 

ICA were associated with a faster decrease in the secretion of CP (81). Aimed to modulate 

the immune system and prevent the destruction of ǃ cells, studies using vaccination against 

GADA showed some preservation of the CP, although it did not change the needs of insulin 

(95,96).  

There is evidence that intensive glucose control can reduce, at least temporarily, the failure 

of insulin secretion in T1DM. However, it is possible that the maintenance of some residual 

secretion facilitates the achievement of adequate metabolic control (20). The mechanisms by 

which intensive insulin prolongs the ǃ-cell function in T1DM can be due to reduced 

glucotoxicity or by direct action in the autoimmune destruction (97).  
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3.2.2 Impact of maintenance of residual insulin secretion and PC  
The persistence of detectable CP serum levels, especially in patients with long duration of 

disease, may have clinical importance. Some studies have shown that this is a prognostic 

factor for improved glycemic control, lower frequency of hypoglycemia, retinopathy and 

diabetic nephropathy (8,80,98). So far, the main information about the importance of 

preservation of some residual secretion in the development of chronic complications, 

glycemic control and incidence of hypoglycemia T1DM were obtained from the DCCT (8).  

In the DCCT, the intensive glucose control significantly reduced the loss of ǃ cell function in 

relation to conventional treatment. Furthermore, patients with CP ≥ 0.2 nmol / L in the 

intensive treatment group had lower HbA1C at baseline and through the four year follow-

up period (8).  

The presence of a residual capacity for insulin secretion has also been associated with a 

reduced risk of hypoglycemia. Data from the DCCT showed that patients with stimulated 

CP≥ 0.2 nmol / L for at least one year had the prevalence of hypoglycemia reduced in 30%. 

Among patients in intensive control group, the risk of hypoglycemia was three times lower 

in those who remained detectable CP than in others. In the conventional group, this 

difference was not observed (8).  

In relation to chronic complications, the DCCT showed that patients with T1DM and 

undetectable levels of CP (<0.04 nmol / L) had 4.6 times greater chance of progression to 

diabetic retinopathy and 4.4 times greater chance of developing microalbuminuria in 

relation to others (8).  

Some authors found no association between the frequency of chronic complications and 

residual ǃ cell function. Klein and colleagues studied the relationship between serum levels 

of CP and severity of diabetic retinopathy in different types of diabetes in the Wisconsin 

Epidemiologic Study of Diabetic Retinopathy. Young subjects with T1DM using insulin did not 

present any association between CP levels and the frequency or severity of diabetic 

retinopathy (99). Winocour et al, on the other hand, found an association between the 

presence of residual secretion of CP and reduced risk of proliferative diabetic retinopathy in 

T1DM but no correlation to peripheral neuropathy or autonomic, hypertension, 

nephropathy or coronary heart disease (100).  

Other studies also found no influence of CP stimulated with the development of 

retinopathy, neuropathy and/or microalbuminuria in T1DM. However, these studies 

included a small number of patients, with short time for monitoring and/or few chronic 

complications (100-102).  

In the pathological study of Meier et al, the number of ǃ cells found in patients with T1DM 

was not associated with the disease duration, but rather with glycemic control, being higher 

at lower blood glucose levels (90).  

Today, the role of the CP only as a marker of insulin secretion is questionable. Some 

suggests that it may also have a direct action on target organs of chronic complications of 

T1DM (84). Potential actions of the CP include: improvement in nerve conduction velocity, 

improving the sensory and autonomic nerve function, improvement in cardiac function, 

decreased microalbuminuria; stimulation of the activity of nitric oxide synthase (eNOS) 

inhibition of smooth muscle cells proliferation; and decreased signal transduction of NF-kǃ 

(nuclear factor kappa-light-chain-enhancer of activated B cells) with reduced inflammation. These 

findings have been observed in vitro and in clinical studies in animals and humans with 

T1DM (84).  
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3.2.3 Methods of preserving pancreatic function  
The need for insulin and/or progression of pancreatic ǃ cell damage can be avoided by 
preserving the ability of insulin secretion. The maintenance of some residual function, even 
if insufficient to avoid insulin therapy may have important advantages in better metabolic 
control and lower risk of chronic complications as previously described (8,84).  
The DCCT showed that intensive insulin therapy can reduce the progression of ǃ cell 
damage, with positive effects for up to 6 years after diagnosis (8). Brown et al in their study 
also confirmed this benefit (103). Intensive insulin therapy may promote survival of ǃ cells, 
reducing the metabolic demand and glucotoxicity.  
Immunosuppressive therapy, such as cyclosporine, azathioprine, prednisone, and anti-
thymocyte globulin, aiming for depletion and inactivation of ǃ cells, were used in newly 
diagnosed patients, but with limited efficacy and temporary effects due to its toxicity (104).  
Immunomodulators, such as anti-CD3 monoclonal antibodies, used in newly diagnosed 
T1DM also allowed the maintenance of the secretion of CP for one to two years with low 
toxicity, and benefits in glycemic control (105-107). After 48 months of follow up, patients 
who received the monoclonal antibodies anti-CD3 had lower daily insulin requirements, 
with improved A1C and glycemic variations smaller than the control. The best results have 
been found in individuals under the age of 27 years and with higher CP at baseline (108).  
The induction of immunological tolerance to self antigens such as GAD, insulin and oral heat 
shock protein 60 (HSP60) has been tried with controversial results in preservation of islet 
function (104,109,110).  
Another measure that has been tested for secondary prevention of T1DM is the autologous 
non-myeloablative hematopoietic stem cell transplant. Voltarelli and colleagues conducted 
this transplant in 15 newly diagnosed patients with T1DM. Five patients have remained 
insulin free for up to 21 months and seven remained for more than six months without use 
of exogenous insulin (111). Despite the low rate of complications reported, there is a 
potential risk for more serious effects related to immunosuppression. (107,110). 
Mesenchymal stem cell therapies and combination of multiple immunomodulatory drugs 
are currently under study.  
Several studies aiming at the preservation of ǃ cell mass are being conducted, with a main 
goal: search for the cure of T1DM. The attempt to preserve ǃ cell function even if insufficient 
to cure the disease, can be useful in the prevention of microvascular complications, 
improves glycemic control and reduced the frequency of hypoglycemic events (7,8,12,98).  
In summary, we tried to emphasize some aspects of the natural history of T1DM. At first, a 
large mass of beta cell function is lost between the period from the surveillance diagnosis to 
the period of overt T1DM. Then, residual beta cell function results in better glycemic control 
and less microvascular complications. The rate of progression of beta cell failure may be due 
to several factors such as underlying genetic predisposition, age of the patient and metabolic 
control. Finally, CP has its role on diagnosis reserve of beta cell mass and higher levels are 
associated to a better glycemic control and preservation of pancreatic function. Moreover, 
interventions that are being held nowadays are clinically important to quality of life, 
mortality and morbidity of patients with T1DM. 
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this disease. Understanding etiology and pathogenesis of this disease is essential. The complications

associated with T1D cover a range of clinical obstacles. A number of experts in the field have covered a range

of topics for consideration that are applicable to researcher and clinician alike. This book provides apt

descriptions of cutting edge technologies and applications in the ever going search for treatments and cure for

diabetes.
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