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1. Introduction  

Safety and energy are two key issues to affect the development of automotive industry. For 
the safety issue, the vehicle active collision avoidance system is developing gradually from a 
high-speed adaptive cruise control (ACC) to the current low-speed stop and go (SG), and 
the future research topic is the ACC system at full-speed, namely, the advanced ACC 
(AACC) system. The AACC system is an automatic driver assistance system, in which the 
driver's behavior and the complex traffic environment ranging are taken into account from 
high-speed to low-speed. By combining the function of the high-speed ACC and low-speed 
SG, the AACC system can regulate the relative distance and the relative velocity adaptively 
between two vehicles according to the driving condition and the external traffic 
environment. Therefore, not only can the driver stress and the energy consumption caused 
by the frequent manipulation and the traffic congestion both be reduced effectively at the 
urban traffic environment, but also the traffic flow and the vehicle safety will be improved 
on the highway.  
Taking the actual traffic environment into account, the velocity of vehicle changes regularly 
in a wide range and even frequently under SG conditions. It is also subject to various 
external resistances, such as the road grade, mass, as well as the corresponding impact from 
the rolling resistance. Therefore, the behaviors of some main components within the power 
transmission show strong nonlinearity, for instance, the engine operating characteristics, 
automatic transmission switching logic and the torque converter capacity factor. In addition, 
the relative distance and the relative velocity of the inter-vehicles are also interfered by the 
frequent acceleration/deceleration of the leading vehicle. As a result, the performance of the 
longitudinal vehicle full-speed cruise system (LFS) represents strong nonlinearity and 
coupling dynamics under the impact of the external disturbance and the internal 
uncertainty. For such a complex dynamic system, many effective research works have been 
presented. J. K. Hedrick et al. proposed an upper+lower layered control algorithm 
concentrating on the high-speed ACC system, which was verified through a platoon cruise 
control system composed of multiple vehicles [1-3]. K. Yi et al. applied some linear control 
methods, likes linear quadratic (LQ) and proportional–integral–derivative (PID), to design 
the upper and lower layer controllers independently for the high-speed ACC system [4]. In 
ref.[5], Omae designed the model matching control (MMC) vehicle high-speed ACC system 
based on the H-infinity (Hinf) robust control method. To achieve a tracking control between 
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the relative distance and the relative velocity of the inter-vehicles, A. Fritz proposed a 
nonlinear vehicle model for the high-speed ACC system with four state variables in refs.[6, 
7], and designed a variable structure control (VSC) algorithm based on the feedback 
linearization. In ref. [8], J.E. Naranjo used the fuzzy theory to design a coordinate control 
algorithm between the throttle actuator and the braking system. It has been verified on an 
ACC and SG cruise system. Utilizing the model predictive control (MPC) method, D. Coron 
designed an ACC control system for a SMART Car [9]. G. N. Bifulco applied the human 
artificial intelligence to study an ACC control algorithm with anthropomorphic function [10]. 
U. Ozguner investigated the impact of inter-vehicles communications on the performance of 
vehicle cruise control system [11]. J. Martinez, et al. proposed a reference model-based 
method, which has been applied to the ACC and SG system, and achieved an expected 
tracking performance at full-speed condition [12]. Utilizing the idea of hierarchical design 
method, P. Venhovens proposed a low-speed SG cruise control system, and it has been 
verified on a BMW small sedan [13]. Y. Yamamura developed an SG control method based on 
an existing framework of the ACC control system, and applied it to the SG cruise control [14]. 
Focusing on the low-speed condition of the heavy-duty vehicles, Y. Bin et al. derived a 
nonlinear model [15, 16] and applied the theory of nonlinear disturbance decoupling (NDD) 
and LQ to the low-speed SG system [17, 18].  
In the previous research works, the controlled object (i.e. the dynamics of the controlled 
vehicle) was almost simplified as a linear model without considering its own mass, gear 
position and the uncertainty from external environment (likes, the change of the road 
grade). Furthermore, the analysis of the disturbance from the leading vehicle’s acceleration/ 
deceleration was not paid enough consideration, which has become a bottleneck in limiting 
the enhancement of the control performance. To summarize, based on a detailed analysis of 
the impact from the practical high/low speed operating condition, the uncertainty of 
complex traffic environment, vehicle mass, as well as the change of gear shifting to the 
vehicle dynamic, an innovative LFS model is proposed in this study, in which the dynamics 
of the controlled vehicle and the inter-vehicles are lumped together within a more accurate 
and reasonable mathmatical description. For the uncertainty, strong nonlinearity and the 
strong coupling dynamics of the proposed model, an idea of the step-by-step transformation 
and design is adopted, and a disturbance decoupling robust control (DDRC) method is 
proposed by combining the theory of NDD and VSC. On the basis of this method, it is 
possible to weaken the matching condition effectively within the invariance of VSC, and 
decouple the system from the external disturbance completely while with a simplified 
control structure. By this way, an improved AACC system for LFS based on the DDRC 
method is designed. Finally, a simulation in view of a typical vehicle moving scenario is 
conducted, and the results demonstrate that the proposed control system not only achieves 
a global optimization by means of a simplified control structure, but also exhibits an 
expected dynamic response, high tracking accuracy and a strong robustness regarding the 
external disturbance from the leading vehicle’s frequent acceleration/deceleration and the 
internal uncertainty of the controlled vehicle. 

2. LFS model  

The LFS is composed of a leading vehicle and a controlled vehicle, and the block diagram is 
shown in Figure 1. The controlled vehicle is a heavy-duty truck, whose power transmission 
is composed of an engine, torque converter, automatic transmission and a final drive. The 
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brake system is a typical one with the assistance of the compressed air. On-board millimetric 
wave radar is used to detect the information from the inter-vehicles (i.e., the relative 
distance and the relative velocity), which is installed in the front-end frame bumper of the 
controlled vehicle.  
 

 

Fig. 1. Block diagram of LFS 

xl, xdf, vl, vdf are absolute distance (m) and velocity (m/s) between the leading vehicle and the 
controlled vehicle, respectively. dr=xl-xdf is an actual relative distance between the two 
vehicles. Desired relative distance can be expressed as dh,s=dmin+vdfth, where, dmin=5m, th=2s. 
vr=vl-vdf  is an actual relative velocity. The purpose of LFS is to achieve the tracking of the 
inter-vehicles relative distance/relative velocity along a desired value. Therefore, a 
dynamics model of LFS at low-speed condition has been derived in ref. [15], which consists 
of two parts. The first part is the longitudinal dynamics model of the controlled vehicle, in 
which the nonlinearity of some main components, such as the engine, torque converter, etc, 
is taken into account. However, this model is only available at the following strict 
assumptions: 

  the vehicle moves on a flat straight road at a low speed (<7m/s) 

  assume the mass of vehicle body is constant 

  the automatic transmission gear box is locked at the first gear position 

  neglect the slip and the elasticity of the power train 
The second part is the longitudinal dynamics model of the inter-vehicles, in which the 
disturbance from frequent accelartion/deccelartion of the leading vehicle is considered. 
In general, since the mass, road grade and the gear position of the automatic transmission 
change regularly under the practical driving cycle and the traffic environment, the 
longitudinal dynamics model of the controlled vehicle in ref. [15] can only be used in some 
way to deal with an ideal traffic environment (i.e., the low-speed urban condition). In view 
of the uncertainties above, in this section, a more accurate longitudinal dynamics model of 
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the controlled vehicle is derived for the purpose for high-speed and low-speed conditions 
(that is, the full-speed condition). After that, it will be integrated with a longitudinal 
dynamics model of the inter-vehicles, and an LFS dynamics model for practical applications 
can be obtained in consideration of the internal uncertainty and the external disturbance. It 
is a developed model with enhanced accuracy, rather than a simple extension in contrast 
with ref. [15]. 

2.1 Longitudinal dynamics model of the controlled vehicle 

Based on the vehicle multi-body dynamics theory [19], modeling principles, and the above 
assumptions, two nominal models of the longitudinal vehicle dynamics are derived firstly 
according to the driving/braking condition: 
The driving condition: 

      
 

 
 

1 1 1

2 2 2

av av
av av th th
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X X
X F X G X

X X
 (1) 

where two state variables are x1=ωt (turbine speed (r/min)) and x2=ωed (engine speed 
(r/min)); a control variable is αth (percentage of the throttle angle (%)); definitions of  
nonlinear items fav1(X), fav2(X), gav1(X) and gav2(X) are presented in Appendix (1).  
The braking condition: 
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 (2) 

where x3=ab is a braking deceleration (m/s2); ub is a control variable of the desired input 
voltage of EBS (V); definitions of nonlinear items fdv1(X)~fdv3(X) and gdv1(X)~gdv3(X) are 
presented in Appendix (2). 
As mentioned earlier, models (1) and (2) are available based upon some strict assumptions. 
In view of the actual driving condition and complex traffic environment, some uncertainties 
which this heavy-duty vehicle may possibly encounter can be presented as follows:  

1. variation of the mass kg kg10,000 25,000M    

2. variation of the road grade -3°≤φs≤3° 
3. gear position shifting of the automatic transmission ig1=3.49, ig2=1.86, ig3=1.41, ig4=1, 

ig5=0.7, ig6=0.65. 
4. mathematical modeling error from the engine, torque converter and the heat fade 

efficiency of the braking system.  
Considering the uncertainties above, two longitudinal dynamics models of the controlled 
vehicle differ from Eqs. (1) and (2) are therefore expressed as  
Driving condition:  

        av av av av th            
X F X F X G X G X  (3) 

Braking condition: 

        dv dv dv dv bu            
X F X F X G X G X  (4) 
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where        , , ,av av dv dv   F X G X F X G X are system uncertain matrixes relative to the 

nominal model. They are influenced by various factors, and are described as  

       
1 1

1 1
2 2

2 2
3 3

, , , .
dv dv

av av
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f g
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f g
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                                    

F X G X F X G X   

In terms of multiple factors of the uncertain matrixes, it is difficult to estimate the upper and 
lower boundaries of Eqs. (3) and (4) precisely by using the mathematical analytic method. 
Therefore, a simulation model of the heavy-duty vehicle is created at first by using the 

MATLAB/Simulink software, which will be used to estimate the upper and lower 
boundaries of the uncertain matrixes. To determine the upper and lower boundaries, an 
analysis on extreme driving/breaking conditions of models (3) and (4) is. 

At first, the analysis of Eq. (3) indicates that with the increase of the mass M, road grade φs 
and the gear position, the item of fav1(X) converges reversely to its minimum value relative 
to the nominal condition (at a given ωt, ωed). Similarly, the extreme operating condition for 
the maximum value of fav1(X) can be obtained. The analysis above can be applied equally to 

other items of Eq. (3), and can be summarized as the following two extreme conditions:  
(a1) If the vehicle mass is M=10,000kg, the road grade is φs=-3° and the automatic 

transmission is locked at the first gear position, then the upper boundary of Δfav1 can be 
estimated. 

(a2) If the vehicle mass is M=25,000kg, the road grade is φs=-3° and the automatic 
transmission is shifted to the third gear position (supposing that the gear position can 
not be shifted up to the sixth gear position, since it should be subject to a known gear 
shift logic under a given actual traffic condition), then the lower boundary of Δfav1 can 
be estimate.  

On the analysis of Eq. (4), two extreme conditions corresponding to the upper and lower 
boundaries can also be obtained: 
(b1) If the vehicle mass is M=10,000kg, the road grade is φs=-3°, the braking deceleration is 

ab=0m/s2 and the gear position is locked at the first gear position, then the upper 
boundary of Δfdv1 can be estimated.  

(b2) If the vehicle mass is M=25,000kg, the road grade is φs=3°, the braking deceleration is 
ab=-2m/s2 (assuming it as the maximum braking deceleration commonly used) and the 
gear position is locked at the third gear position, then the lower boundary of Δfdv1 can be 
estimated. 

By the foregoing analysis, the extreme and nominal operating conditions will be simulated 
respectively by using the simulation model of the heavy-duty vehicles. In order to activate 
entire gear positions of the automatic transmission, the vehicle is accelerated from 0m/s to 

the maximum velocity by inputting a engine throttle percentage of 100%. After that, the 
throttle angle percentage is closed to 0%, and the velocity is slowed down gradually in the 
following two patterns:  

1. according to the requirement of (b1) condition, the vehicle is slowed down until stop by 
the use of the engine invert torque and the road resistance.    

2. according to the requirement of (b2) condition, the vehicle is slowed down until stop 
through an adjoining of a deceleration ab=-2m/s2 generated by the EBS, as well as the 
sum of the engine invert torque and the road resistance.   
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According to the above extreme conditions (a1), (a2), (b1), (b2), the variation range of each 
uncertainty can be obtained by simulation, as shown in Figures 2 and 3. For removing the 
influence from the gear position, the x-coordinates in Figures 2 and 3 have been transferred 
into a universal scale of the engine speed. 
For instance (see solid line in Figure 2), during the increase of the engine speed in condition 
(a1), the upper boundary of the item Δfav1 increases gradually, while the items Δfav2, Δgav2 
change trivially. As to the increase of the engine speed in condition (a2) (see dashed line in 
Figure 2), the lower boundary of the item Δfav1 increases rapidly at the beginning, and then 
drops slowly. The minimum value appears approximately at the slowest speed of the engine 
(i.e., the idle condition). The items Δfav2, Δgav2 decrease during the engine speed increases. 
 

 

Fig. 2. Changes of uncertain items under driving condition 

 

 

Fig. 3. Changes of uncertain items under braking condition 

From the above simulation results, it is easy to calculate the upper and lower boundaries of 
the uncertain matrixes in Eqs. (3) and (4):  
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Driving condition: 

1 2 1 286 127, 2.75 15, 0, 0.0127 0.001.av av av avf f g g               

Braking condition: 

1 2 3 1 2

3

188 155, 7 8.45, 0 0.124, 0,

0.0174 0.029
dv dv dv dv dv

dv

f f f g g

g

              
   

 

where a unit of * *,a df f  is r 2/min , two units of * *,a dg g  are  r 2/ min % and  m V3/ s  , 

respectively. 
To verify the proposed models, some profiles are prepared in Figure 4 according to the 
aforementioned extreme conditions. They include the throttle angle percentage, EBS desired 

braking voltage and the road grade containing two values of 3  . Figures 5 and 6 are the  

 

 

Fig. 4. Profiles of throttle angle percentage, EBS desired braking voltage and road grade 

 

 

Fig. 5. Comparison results between control and simulation models (10,000kg) 
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Fig. 6. Comparison results between control and simulation models (25,000kg) 

comparison results corresponding to 10,000kg and 25,000kg, respectively. The dashed lines 

and the solid lines are the results of the control models (3) and (4) and the simulation 

models, respectively. It can be seen from the comparison results that the control models (3) 

and (4) are able to approximate the simulation models very closely, even in the case of a 

wide variation ranges of the velocity (0m/s~28m/s), mass (10,000kg~25,000kg) and the gear 

positions of the automatic transmission (1~6 gears). Because the models (3) and (4) only 

present the longitudinal dynamics of the controlled vehicle, the inter-vehicles dynamics has 

to be considered furthermore such that a completed dynamics model of the LFS at full-

speed can be obtained. 

2.2 Longitudinal dynamic model of the inter-vehicles 

For the purposes of vehicular ACC or SG cruise control system design, many well-known 

achievements on the operation policy for the inter-vehicles relative distance and velocity 

have been intense studied [20, 21]. Focusing on the AACC system, the operation policy for the 

inter-vehicles relative distance and relative velocity should be determined so as to    

  maintain desirable spacing between the vehicles 

  ensure string stability of the convoy 
Inspired by previous research [1], [2], [7] on the design of upper level controller, the operation 
policy of inter-vehicles relative distance and relative velocity can be defined as   

 
   

 
, mind h s r df h l df

v df h r df h l df

d d d v t x x

a t v a t v v





     

    
. (5) 

where adf is a controlled vehicle acceleration (m/s2); εd is a tracking error of the longitudinal 
relative distance (m); εv is a tracking error of the longitudinal relative velocity (m/s).  
As the illustration of the vehicle longitudinal AACC system (see Figure 1), it should be 
noted that an item adfth is introduced to define the inter-vehicles relative velocity εv so as to 
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fit the dynamical process from one stable state to another one. In contrast to Eq. (5), 
conventional operation policy of inter-vehicles relative velocity is often defined as εv=vl-vdf, 
which only focuses on the static situation of invariable velocity following. However, on 
account of the dynamic situation of acceleration/deceleration, the previously investigation 
[15, 16] has demonstrated that it is dangerous and uncomfortable for the AACC system to 
track a vehicle in front still adopted conventional operation policy. Therefore, an item of adfth 
is proposed to capture accurately the human driver’s longitudinal behavior aiming at this 
situation. Generally, Eq. (5) can be regarded as the dynamical operation policy. 
The accuracy of Eq. (5) is validated by the following experimental tests, which is carried out 
under complicated down-town traffic conditions in terms of five skillful adult drivers 
(including four males and one female). Two cases including an acceleration tracking and a 
deceleration approaching are considered. In the case of acceleration tracking, the driver is 
closing up a leading vehicle without initial error of relative distance and relative velocity. 
Then, the driver adjusts his/her velocity to the one of the vehicle in front. The headway 
distance aimed at by the driver during the tracking is essentially depending on the driver’s 
desire of safety. In the case of deceleration approaching, the driver is closing down a leading 
vehicle with constant velocity. The driver brakes to reestablish the minimal headway 
distance, and then follow the leading vehicle with the same velocity. The experimental data 
presented in Figure 7 are the mean square value of five drivers’ results. The comparison 
results confirm that Eq. (5) shows a sufficient agreement with practical driver manipulation, 
which can be adopted in the design of vehicle longitudinal AACC system.    
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Fig. 7. Comparison results between experimental data and operation policy 

By virtue of the operation policy (5), the mathematical model of inter-vehicles longitudinal 
dynamics is created 

 
 

 
d v df h l df

v df h l df

a t v v

a t v v

 



   

  



   
. (6) 

where lv  is a leading vehicle acceleration (m/s2), which is generally limited within an 

extreme acceleration/deceleration condition, i.e., m s m s2 22 / 2 /lv   .  
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Although the inter-vehicles dynamics is considered in Eq. (6), the dynamics of the controlled 

vehicle that has great impact on the performance of entire system has been ignored instead. 

Actually, two aforementioned models are interrelated and coupled mutually in the LFS. To 

overcome the disadvantages of the existing independent modeling method, a more accurate 

model will be proposed in the following to describe the dynamics of the LFS reasonably. In 

this model, the longitudinal vehicle dynamics models (3) and (4) with uncertainty and the 

longitudinal inter-vehicles dynamic model (6) are both taken into account. As a result, a 

control system can be designed on this platform, and an optimal tracking performance with 

better robustness can also be achieved.    

2.3 LFS dynamics model 

Firstly, take the time derivative of the state variable t in Eq. (3), and obtain t . After that, 

,t t   are substituted into Eq. (6) by virtue of the relationship
0

2

60
t

df n t t
g

r
a

i i


     . Finally, 

an LFS dynamics model for the driving condition is derived according to Eqs. (3) and (6). It 

is a combination of the dynamics between the controlled vehicle and the inter-vehicles, as 

well as the uncertainty from actual driving conditions. 

 

         

   

   

1

2 2 1 1 1

3 3

4 4 2 2

a a a a th a

d a

v a a a a th a l

t a a

ed a a a a th

w

f

f f g g p v

f f

f f g g




 

 

             


           
      




 



X F X F X G X G X P X

 (7) 

where  Td v t ed   X is a vector of the state variables, lw v  is a disturbance 

variable, and th is a control variable. The definition of each item in Eq. (7) can be referred to 

Appendix (2). 
Similarly, an LFS dynamics model for the braking condition is achieved: 
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 (8) 

where  Td v t ed ba   X is a vector of the state variables, bu is a control variable. 

The definition of each item in Eq. (8) can be referred to Appendix (4).  
According to the analysis of the extreme driving/braking conditions in 2.1, an approximate 

ranges of the upper and lower boundaries regarding uncertain items in Eqs. (7) and (8) can 

be calculated through simulation. 

www.intechopen.com



 
Modelling and Nonlinear Robust Control  of Longitudinal Vehicle Advanced ACC Systems 

 

123 

Driving condition:  

2 1104 203, 0.031 0.0027a af g         

Braking condition: 

2 1192 174, 0.0153 0.022d df g         

where an unit of *f is m/s2, units of 1 1,a dg g  are m/(s2·%) and m/(s2·V), respectively. 
The analysis of the dynamics models (7) and (8) indicates that the LFS is an uncertain affine 

nonlinear system, in which the strong nonlinearities and the coupling properties caused by 

the disturbance and the uncertainty are represented. These complex behaviors result in 

more difficulties while implementing the control of the LFS, since the state variables εd, εv are 

influenced significantly by the nonlinearity, uncertainty, as well as the disturbance from the 

leading vehicle’s acceleration/deceleration. However, because the longitudinal dynamics of 

the controlled vehicle and the inter-vehicles can be described and integrated into a universal 

frame of the state space equation accurately, this would be helpful for the purpose of 

achieving a global optimal and a robust control for the LFS.  

The LFS AACC system intends to implement the accurate tracking control of the inter-

vehicles relative distance/relative velocity under both high-speed and crowded traffic 

environments. Thus, the system should be provided with strong robustness in view of the 

complex external disturbance and the internal uncertainty, as well as the capability to 

eliminate the impact from the system’s strong nonlinearity at low-speed. Focusing on the 

LFS, refs. [22-27] presented an NDD method to eliminate the disturbance effectively, which 

was, however, limited to some certain affine nonlinear systems. Utilizing the invariance of 

the sliding mode in VSC, the control algorithm proposed in refs. [28, 29] can implement the 

completely decoupling of all state variables from the disturbance and the uncertainty. But, it 

is not a global decoupling algorithm, and should also be submitted to some strict matching 

conditions. Refs. [30-34] studied the input-output linearization on an uncertain affine 

nonlinear system, but did not discuss the disturbance decoupling problem. On a nonlinear 

system with perturbation, ref. [35] gave the necessary and sufficient condition for the 

completely disturbance decoupling problem, but did not present the design of the feedback 

controller. To avoid the disadvantages of those control algorithms mentioned above, a 

DDRC method combining the theory of NDD and VSC is proposed in regard to the complex 

dynamics of the LFS. 

3. DDRC method 

The basic theory of DDRC method is inspired by the idea of the step-by-step transformation 

and design. First, on account of a certain affine nonlinear system with disturbance, the NDD 

theory based on the differential geometry is used to implement the disturbance decoupling 

and the input-output linearization. Hence, a linearized subsystem with partial state 

variables is given, in which the invariance matching conditions of the sliding mode can be 

discussed easily via VSC theory, and then a VSC controller can be deduced. Finally, two 

methods will be integrated together such that a completely decoupling of the system from 

the external disturbance, and a weakened invariance matching condition with a simplified 

control system structure are obtained.  
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3.1 NDD theory on certain affine nonlinear system 

At first, consider a certain dynamics model of the LFS, where uncertain items of ΔFa(X), 

ΔGa(X), ΔFd(X) and ΔGd(X) are considered as zero. Hence, a certain affine nonlinear system 

can be simplified as 

 
     
 

u w

y h

   




X F X G X P X

X
 (9)  

where XRn and u, w, yR are system state variable, control variable, disturbance variable 

and output variable, respectively, F, G, P, h are differentiable  functions of X with 

corresponding dimensions.  

The basic theory of NDD is trying to seek a state feedback, and construct a closed-loop 

system as follows 

 
                 
 

v w v w

y h

        




 X F X G X X G X X P X F X G X P X

X
 (10) 

If there is an invariant distribution   X that exists over    F X ,G X , and satisfies 

      span    P X X  (11) 

where 

       1 Trdh dL h dL h    F FX X X X . 

Then, the output y can be decoupled from the disturbance w , and we have a r-dimension 

coordinate transformation 

         1
1 , , , ,

TT r
rz z h L h       FZ X X X  (12) 

as well as an n-r-dimension coordinate transformation  

      1 , ,
T

n r        X X X  (13) 

where μ satisfies  

     0, , 1, ,id U i n r     X G X X  (14)  

In this way, the original closed-loop system (9) can be modified as a following form over the 
new coordinate   

 1 1 1i i

r

z z i r

z v
   






 (15) 

    , , w μ Q Z μ K Z μ  (16) 
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Obviously, Eq. (15) is a linearized decoupling subsystem, while Eq. (16) is a nonlinear 

internal dynamic subsystem subject to the disturbance. The invariant distribution   X is 

defined as        ΔF, X X , L is a Lie derivative, defined as L
    

F

G
G F

X
, r is a relative 

degree, defined as  1 0rL L h G F X [36],  is an orthogonal of“  ”[37]. Eq. (10) is a necessary 

and sufficient condition of the disturbance decoupling problem, which can be expressed in 
the equivalent form 

      0X P X  (17) 

State feedback is  

      
 1

r

r

L h v
u v

L L h
  

 
   F

G F

X
X X

X
 (18) 

If the disturbance w is measurable, the following state feedback can be considered 

          
 

1

1

r r

r

L h v L L h w
u v w

L L h
  





  
    F P F

G F

X X
X X X

X
 (19) 

In this way, a weakened necessary and sufficient condition of the disturbance decoupling 
problem is achieved as   

            0X G X P X  (20) 

As a result, some existing linear control methods (likes, LQ, pole placement) can be used to 
implement the pole placement over the linearized decoupling subsystem. In the following, 
the NDD theory is used to discuss the VSC problem of the affine nonlinear systems under 
the impact of the uncertainty.  

3.2 VSC of uncertain affine nonlinear systems based on NDD 

Considering  Eqs. (7) and (8) with uncertainty, they can be simplified as a more general 
forms for the analysis, i.e., 

 
           

 
u w

y h

                     




X F X F X G X G X P X P X

X
 (21) 

where F, G, P, h indicate the certain part of the system, and they are defined as Eq. (8), ΔF, 
ΔG, ΔP indicate the uncertain part correspondingly.  
At first, take first derivative of the output variable y=h(X): 

 
               

           

1

dy
z

dt

h h
u w u w

L h L h u L h w L h L h u L h w  



 
               
            



F G P F G P

X X
F X G X P X F X G X P X

X X

X X X X X X

 (22) 
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Obviously, if  

       0L h L h L h    F G PX X X  (23) 

then according to the definition of the relative degree and Eq. (17), Eq. (22) becomes 

  1 2z L h z  F X  (24) 

Differentiate Eq. (24) again yields 

 

 

               

           2

2

dL h
z

dt

L h L h
u w u w

L h L L h u L L h w L L h L L h u L L h w  



 
               
          

 F

F F

F G F P F F F G F P F

X

X X
F X G X P X F X G X P X

X X

X X X X X X

 (25) 

which in turn deduces 

       0L L h L L h L L h    F F G F P FX X X  (26) 

By the definition of relative degree and Eq. (17), Eq. (25) becomes 

  2
2 3z L h z 

F X  (27) 

After differentiating r times, we find that 

 
         
           

1 1 1 1

1 1 1 11

r r r r r
r

r r r r

z L L h u L h L L h L h u L L h w

L L h L h L h v L L h w 

   
  

   
   

    

          

 L

L L

G F P

G F G F P

G F F F F F

F F F

X X X X X

X X X X X X
 (28) 

Based on the above proof, the disturbance decoupling problem of uncertain affine nonlinear 
systems can be solved, if there exist VSC matching conditions such that 

(c1)      0, 0, 0,i i iL L h L L h L L h    F F G F P FX X X    0, 0 2iL L h i r    P F X  

(c2)      , , ,     m m mf g pF X G X P X w w m  

where  is a norm of the vector or matrix of "�", that is  
1

1

max
n

ij ij
n n i n

j

a a
   

  ; fm, gm, pm, wm 

are perturbation boundaries of the corresponding given matrixes.   
Summing up the definition of the relative degree, matching conditions (c1) and the 
coordinate transformation Z=ψ(X), we obtain a closed-loop system over the new coordinate 
by substituting the state feedback (18) or (19) into Eq. (21), which has the form 

 
           

1

1 1 1 1

, 1 1,

1

i i

r r r r
r

z z i r

z L L h L h L h v L L h w 


   
   

   

          



 L L
G F G F PF F FX X X X X X

 (29) 

          , , , , ,v w          μ Q Z μ Q Z μ R Z μ K Z μ K Z μ  (30) 
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It can be noticed from Eq. (29) that for the state variables zi of the first r-1 dimensions, the 
linearization and the disturbance decoupling have been achieved, except for the remaining 
zr (Eq. (30)). By virtue of the invariance of the sliding mode in VSC [28], it will be used in 
consequence to eliminate the disturbance and the uncertainty on zr.  
Based on the VSC theory [28], a switching function is designed easily by taking advantage of 
the linearized decoupling subsystem (29) over the new coordination 

    1
T

rS S z z  
Z

Z C  (31)  

where C=[c1,…,cr-1,1] is a normal constant coefficient matrix to be determined. Once the 
system is controlled towards the sliding mode, it satisfies 

  1 0
T

rS z z 
Z

C  (32)  

yielding the following reduced-order equation  

 1 , 1 1i iz z i r     (33)  

Clearly, a desired dynamic performance of each state variable in Eq. (33) can be achieved by 
configuring the coefficient C. 
As the desired dynamic performance of the sliding mode has already been achieved, an 
appropriate VSC law is to be defined so as to ensure the desired sliding mode occurring 
within a finite time. It is convenient to differentiate the switching function (31), and derive 
the following equation in terms of Eq. (29)： 

  S S S S SS v w       
Z Z Z Z Z

Z
A A B B C  (34) 

where 

,
1

1

,
r

S i i S
i

c z 



         

Z Z

A A GF 1, ,S S     
Z Z

B B G  

,S   
Z

C P
 1rL h




 F X

X
. 

Considering an VSC law below 

    1 sgn 0, 0S S s s s sv a S b S a b        Z Z
Z Z

B A  (35) 

an inequality below can be derived from the matching condition (c2), Eqs. (31) and (34). 

 

    
 

 
 

   

1

2 21

2

21

2

sgn sgn

= 1 1

S S s s S S S s s

S S s s S S S s s

s

s S S s s

s s

S S S w a S b S a S b S

S S w a S b S S a S b S

S S w a S

b S S a S b S

S a S b





 

 







          

         

   

   

   

 



 



 

m m m m

m

m m

m m

f g p

g

g g

f g

Z Z Z Z Z

Z Z Z Z Z

Z Z

Z Z Z Z Z Z Z

Z Z Z Z Z Z Z

Z Z Z

Z Z Z Z

Z Z

A C B B A

A C B B A

B A

  1
S Sw     m m mp g
Z Z

B A

(36) 

www.intechopen.com



 
Challenges and Paradigms in Applied Robust Control 

 

128 

It is noticed from Eq. (36) that if the perturbation boundary mg of uncertain part G satisfies 

 
1  mg  (37) 

then defining 

 
  1

1

S S

s

w
b

 



  




 


m m m m m

m

f g p g

g

Z Z

B A

 (38) 

may lead to the following inequality:  

 0S S 
Z Z

 (39) 

Namely, the convergence condition of the sliding mode is achieved. 
From the above verification, the desired sliding mode is achievable under the VSC law (35), 

as long as the matching condition (c2) and the constraints (38) are satisfied. Since Eqs. (31) 

and (35) are the switching function and the control law over the new coordinate X, they 

should be transferred back to the original coordinate Z by adopting the inverse 

transformation Z=ψ(X). Finally, the DDRC law can be achieved by substituting the VSC law 

over the original coordinate into the disturbance decoupling state feedback control law (Eq. 

(18) or Eq. (19)). 

To summarize, for an uncertain affine nonlinear system, if the disturbance decoupling 

condition (17) or (20) and the matching conditions of (c1) and (c2) hold respectively for the 

certain part and the uncertain part, the DDRC method with the combination of NDD and 

VSC theories can be figured out as the following design procedure:   

Step 1. According to the NDD theory of affine nonlinear systems, the feedback control law 
(Eq. (18) or (19)) and the coordinate transformation (Eqs. (12) and (13)) are derived 
to transfer the original system into the linearized decoupling normal form (Eq. (15)) 
over the new coordinate. 

Step 2. Give the VSC matching conditions (c1) and (c2) for the uncertain part of the affine 
nonlinear systems. 

Step 3. Utilize the linearized decoupling normal form (Eq. (15)) over the new coordinate to 
design the switching function (Eq. (31)), and determine its coefficients accordingly. 

Step 4. Design the VSC law (Eq. (35)) based on the perturbation boundary (37) of the 
uncertainty part, and the convergence condition of the sliding mode (39). 

Step 5. Define the coordinate transformation (12) to transfer the switching function (Eq. 
(31)) and the VSC law (Eq. (35)) from the new coordinate Z back to the original 
coordinate X. 

Step 6. Substitute the VSC law (Eq. (18) or (19)) over the original coordinate into the 
feedback control law, and yield the DDRC method.  

A block diagram of the closed-loop system for the aforementioned DDRC method is shown 

in Figure 8, which includes two feedback loops. The nonlinear loop (i.e., the NDD loop) is 

used to achieve the disturbance decoupling and the partial linearization, regarding the 

system output y from the disturbance w . On the other hand, the linear loop (i.e., the VSC 

loop) is used to restrain the system’s uncertainty and regulate the closed-loop dynamic 

performance. 
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Fig. 8. Block diagram of closed-loop system for DDRC method 

4. LFS AACC system  

In this section, the proposed DDRC method will be used to design the LFS AACC system 
with respect to the driving and the braking conditions.  

4.1 LFS AACC system for driving condition 
Recall the procedure in 2.2, the disturbance decoupling problem on the LFS dynamics model 
without the impact of the uncertainty is considered (i.e., for the uncertain items of Eq. (7) let 
ΔFa(X)=0, ΔGa(X)=0). On the purpose of LFS AACC system, the following affine nonlinear 
system with the output variable is defined: 

 
     

 
a a th a

d

w

y h





   


 

X F X G X P X

X
 (40) 

By adopting the NDD theory of certain affine nonlinear system, the relative degree of 
system (40) is calculated as 

         , 1 0 0 0 0, 0 1 0 0 0.
a a a av a aL h L h L L h    F G G FX X G X G  

Obviously, the relative degree is 2r  , which results in the following matrix  

  
 
 

1 0 0 0

0 1 0 0
a

a

dh

dL h

   
     

    F

X
X

X
 (41)  

Then, it is easy to verify that 

  
1

1 0 0 0 0

0 1 0 0a a a
ap

   
      

   
0X P P  (42)  

www.intechopen.com



 
Challenges and Paradigms in Applied Robust Control 

 

130 

That is to say, the disturbance decoupling from system (40) can not be achieved by the state 
feedback (18), because the necessary and sufficient condition (17) is not satisfied. Thus, one 
can turn to the state feedback (19) with measurable disturbance. Note that if  

 1

1

a
a

a

p

g


 
  

 
 (43) 

then the necessary and sufficient condition (20) is satisfied, i.e., 

     1 0 0 0

0 1 0 0a a a a a a a 
 

     
 

0X G P G P  (44)  

By Eq. (19), the decoupling state feedback is obtained as 

        
 

2 1

1

,

,
a t ed ua a

th a a ua a
a t ed

f v p w
v w

g

 
   

 
  

   X X X  (45)  

and the corresponding coordinate transformation with r=2 dimensions is 

   
 
 

1

2 a

a d
a a

a v

hz

L hz




    
       

     


F

X
Z X

X
 (46)  

where 

     2
2 1 1, ,

a a a a aa a aL h f L L h p L L h g  F P F G FX X X . 

Additionally, in order to complete the coordinate transformation, the remaining n-r=2 
dimensional coordinates μa1, μa2 should satisfy the following condition: 

  1

2

0

0 1,2
0
aai ai ai ai ai

a
d v t ed

a

g
i

g

    
   

 
                    
 

G
X

 (47) 

The purpose is to ensure the diffeomorphism relationship of the coordinate transformation 
between the original and the new one (in other words, it is a one-to-one continuous 
coordinate transformation between the original and the new one, the same is for the inverse 
transformation). Obviously, one solution of the partial differential Eq. (47) is 

 

1

3
2

2

a t

t
a v n h t ed ed

ed

t b c d

 

     




 
      

 

 (48) 

Hence, the transformation of the remaining 2 dimensional coordinates is 

    
 

1

2

a
a a

a



 

   
 

 
X

X
X

 (49) 
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Up to now, the decoupling state feedback (Eq. (45)) and the coordinate transformation (Eqs. 
(46) and (49)) have been obtained for the certain part of the LFS dynamics model under the 
driving condition. 
Further consideration on the uncertain part of model (7) will be continued. On the basis of 
the design procedure (Step2) in 3.2, the matching conditions (c1) and (c2) have to be verified 
at first, and  

 
   
   

1 0 0 0 0

1 0 0 0 0 0

a

a

a

a

L h

L h





  

  
F

G

X F

X G
 (50)  

It should be noticed from 1.2 and 1.3 that the uncertain items ΔFa(X), ΔGa(X) and the 
disturbance w are subject to the following limited upper boundaries:  

 

 
 

= 203

0.031

2

a

a

w w

 

  

 

am

am

am

f

g

F X

G X  (51) 

By substituting the decoupling state feedback u=αth (Eq. (45)) into model (7), and making use 
of the coordinate transformations (46) and (49), a linearized subsystem below can be 
achieved, in which the certain part is completely decoupled from the disturbance.  

 

Part of uncertain and disturbance
Certain part

1 1
2 1 1

2 1 12 2
1 1 1

0 0 0
0 1 0

0 0 1
a a

ua uaa a a
a a aa a

a a a

z z
v v wf g p

f g gz z
g g g

y

     
                                                    







d










 (52) 

Besides, a nonlinear dynamic internal subsystem without separating from the disturbance 
and the uncertainty is yielded 

        , , , ,a a a a a a a a a a a a a w       μ Q Z μ Q Z μ K Z μ K Z μ  (53)  

where 

 
 

2 2 2
1

2
1 1 2 2

,
1

2

a a
a

n h

a a a

a n h a a a n h
h

z
a l

t

a t a z t l
t




    

   
    
      
   

Q Z μ ,  
1

0
,a a a

ap

 
   

K Z μ . 

Based on the analysis of the extreme operating conditions in 2.1, it can be noticed that the 
items ΔQa, ΔKa are constants with limited upper boundaries.  
For the certain part of Eq. (52), it is clear that the state variables za1, za2 have been completely 
decoupled from the disturbance w. In order to enhance the system’s robustness from the 
remaining uncertain part and the disturbance within the linearized decoupling subsystem 
(52), we may design the following switching function over the new coordinate by making 
use of Eq. (52).  
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 1

2

a
a a

a

z
S

z

 
  

 
Z

C  (54)  

where Ca=[ca1 1] is a coefficient matrix to be determined. Once the system is controlled 
towards the sliding mode, it obeys  

 1 1 2 2 1 10a a a a a a aS c z z z c z     
Z

 (55)  

and the order of Eq. (52) can be reduced to  

 1 2a az z  (56)  

Clearly, the disturbance and the uncertainty have been separated from Eq. (56). In this way, 
substituting Eq. (56) into Eq. (55) yields 

 1 1 1 0a a az c z   (57)  

By the Laplace transform, an eigenvalue equation of Eq. (57) is obtained as 

 1 0as c   (58)  

To achieve a desired dynamic performance and a stable convergence of the sliding mode, 
the coefficient ca1 can be determined by employing the pole assignment method. That is, the 
eigenvalue of Eq. (58) should be assigned strictly in the negative half plane. Without loss of 
generality, it can be chosen herein as ca1=1. 
The VSC law is designed below by the procedure (Step4) of 3.2, in order to guarantee that 
the desired sliding mode occurs within a finite time. First, a VSC law is obtained on the basis 
of Eq. (35):  

  1 sgn
a aua S S as a as av a S b S      Z Z

Z Z
B A  (59) 

where 1 1 1
a aS a a Sc z  ,
Z Z

A B . For determining the coefficients aas, bas, the perturbation 

boundary of gam should be verified such that 

 
1

a a  amg  (60) 

where φa=[0 1 0 0]. According to Eq. (45) and the analysis of 3.2, it is easy to obtain  

 
 

1

1

1

1
max 0.98

,
a a

a t edg


 


  
    
 

  (61) 

Clearly, the condition of Eq. (60) is satisfied. Then, the parameter bas will be determined by 

the inequality (38). Recalling the analysis results of 3.1, 
 
 

2

1

,
max 16.33

,
a t ed

a
a t ed

f

g

 


 
    is 

given. On this basis, it is reasonable to suppose that the absolute value of the extreme 
relative velocity tracking error is max|εv|=35m/s. It can be presented as a scenario that the 
leading vehicle moves forward with a maximum velocity 35m/s relative to the statical 

www.intechopen.com



 
Modelling and Nonlinear Robust Control  of Longitudinal Vehicle Advanced ACC Systems 

 

133 

controlled vehicle (assuming this given value is an actual maximum velocity). The values 
above will be substituted into the right hand side of the inequality (38), and we have   

 
  1

210.25
1

a aa a a a S S a

a a a

 



 




 


am am m

m

f g g

g

Z Z

B A

 (62) 

Then, the parameter bas=250 can be determined, and aas=10 is achieved separately by the 

condition of aas>0. 

By the procedure (Step5) in 3.2, the coordinate transformations Za=ψa(X) and μa=ϕa(X) will 

be used to transfer the new coordinates (Za, μa) back to the original coordinate X. In this 

way, the switching function over the original coordinate becomes 

 
 

1 1 2 1

a a

a a a a a a d vS c z z S c  


    


Z X

Z X

 (63) 

the VSC law (57) over the original coordinate has the form  

  1 sgnua a v as a as av c a S b S     X X
 (64) 

With substitutions of SaX and vua into Eq. (45), a AACC system based on the DDRC method 
is finally obtained as 

 
 
 

   
 

1 1 12

1 1

sgn +,

, ,

a v as a d v as a aa t ed
th

a t ed a t ed

c a c b S p wf

g g

   


   

       X

 (65) 

The control laws designed above only satisfy the convergence stability and the robustness of 

the linearized decoupling subsystem. In order to ensure the stability of the total system, the 

stability of the remaining nonlinear internal dynamic subsystem has to be verified, so that 

the problem of tracking control can be solved completely. Based on ref. [38], the study on 

the stability of nonlinear internal dynamic subsystem can be turned into the study on its 

zero dynamics correspondingly. Therefore, let ΔQa=ΔKa=0, i.e., ignore the tiny impact of the 

uncertain part. Then the zero dynamics of the nonlinear internal dynamic subsystem (53) 

owing to za1, za2, w=0 is obtained as follows 

 

 

2 2
1 1

2
2 1 1 2

1
2

a
a a

n h

a a n h a a n h
h

a l
t

a t a t l
t

 


     

   

          




 (66) 

To verify the asymptotic stability of Eq. (66) at the equilibrium point (za1, za2, μa1, μa2)=0, a 

candidate Lyapunov function is chosen:  

    2
1 2 1 2,a a a n a aV         (67)  

The time derivative with respect to the Lyapunov function Eq. (67) is 
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  

 

1 2 1 2

3
2 2

1 1 2

2

2

a
n a a n a a

t
a n h a a n h n t n h t ed ed

ed

dV

dt

a t a t l t b c d

     

          


   

  
            

 

 (68)  

Because , , , , , , , , 0n h t eda b c d t l    and 0t  under the driving condition of the vehicle 

acceleration, we have 

 2
1 2 1 0,n h a a n h n h a n h tt a t l t t            (if 0t  ) (69) 

In addition, it is easy to verify 

 
3

2 0t
n t n h t ed ed

ed

t b c d
     


 
     

 
    (if 0t ed   ) (70) 

Therefore, 0adV

dt
 . The following inequality is satisfied: 

 0a
a

dV
V

dt
                 (is 0t ed   and 0t  ) (71)  

The zero dynamics is asymptotically stable. 

4.2 LFS AACC system for braking condition 

The design of LFS AACC system under the braking condition is similar to under the driving 
condition. Regarding the purpose of the LFS AACC system (8), the output can be defined as 
y=h(X)=εd. Then, the relative degree is obtained as r=2, and the decoupling state feedback is 
achieved according to Eq. (19) as  

        
 

2 1

1

, ,

,
d t ed b ud d

b d d ud d
d t b

f a v p w
u v w

g a

 
  


  

   X X X  (72) 

The corresponding coordinate transformation is given as 

    
 

1

2 d

d d
d d

d v

hz

L hz




    
       

     


F

X
Z X

X
 (73) 

  
 
 
 

1

2

3

d t

d d d ed

d v n h d bt d a

 
 
  

   
        
     

 
X

X X

X

 (74) 

Taking further account of the influence from system’s uncertainty, we have 

 
   
   

1 0 0 0 0

1 0 0 0 0 0

d

d

d

d

L h

L h





  

  
F

G

X F

X G
 (75) 
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That is to say, the matching condition (c1) is satisfied with respect of uncertain items ΔFd(X), 
ΔGd(X). Besides, on the analyses of 2.2 and 2.3, the uncertain items ΔFd(X), ΔGd(X) and the 
disturbance w are subject to the following limited upper boundaries:  

 
 
 

= 192

0.029

d

d

 

  

dm

dm

f

g

F X

G X
 (76) 

By substituting the decoupling state feedback (72) into model (8), and making use of the 
coordinate transformations (73) and (74), a linearized subsystem (77) can be achieved, in 
which the certain part is completely decoupled from the disturbance. 

 

Part of uncertain and disturbance
Certain part

1 1
2 1 1

2 1 12 2
1 1 1

0 0 0
0 1 0

0 0 1
d d

ud udd d d
d d dd d

d d d

z z
v v wf g p

f g gz z
g g g

y

     
                                                    







d










 (77) 

Additionally, a nonlinear internal dynamic subsystem with the influence of the disturbance 
and uncertainty is presented 

        , , , ,d d d d d d d d d d d d d w       μ Q Z μ Q Z μ K Z μ K Z μ  (78) 

where  
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d d d d d d d d d d
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d d d d d d d d d d
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 
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   

     
          
   
 

      
 

Q Z μ

 2d di

 
 
 
 
 
 
 
 
 
 
  

 
1

0

, 0d d d

dp

 
   
  

K Z μ . 

According to the analysis of 2.1, items ΔQd, ΔKd are the constants with limited upper 
boundaries. 
Similarly, the VSC law can be designed as  

  1 sgnud S S ds dsv a S b S      d d d d
Z Z

Z Z
B A  (79) 

where the sliding mode surface is  

 1 1 2d d dS c z z dZ  (80) 
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By ignoring the tedious calculation process, the parameters are given directly as 

1 1 , 1,S d d Sc z 
d dZ Z

A B 1 1dc  , 10dsa  , 185dsb  . By transferring udv back to the original 

coordinate and substituting it into Eq. (72), the AACC law is finally obtained as 

 
 
 

   
 

1 1 12
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sgn +, ,

, ,
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d t b d t b

c a c b S p wf a
u
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 

       dX
 (81) 

where SaX= cd1εd + εv, which is a sliding mode surface over the original coordinate. 
The remaining nonlinear internal dynamic subsystem (78) should be verified as well to 
ensure the stability of the total system. At first, if zd1, zd2, w=0 and the impact of uncertain 
items ΔQd, ΔKd can be neglected, then the zero dynamics becomes  
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 (82) 

Then, a candidate Lyapunov function is chosen as  

  1 2 3 2 1 3
0

2
, ,

60
n h d t

d d d d d d d
g

t d r
V dt

i i

     
 
   
 
 

  (83) 

Since zd2=0, it is easy to obtain 

  1 2 3 2, , 0d d d d d edV                   (if 0ed  ) (84) 

The time derivative with respect to the Lyapunov function Eq. (83) is 

 2 1 3 2
0

2

60
d n h d t

d d d d ed
g

dV t d r

dt i i

    
 
     
 
 

    (85) 

For the braking condition, the engine operates under the decelerating mode, hence 

 0d
ed

dV

dt
   (if 0ed  ) (86) 

Assembling Eqs. (84) and (85), the following inequality is hold  

 0d
d

dV
V

dt
  (if 0ed  and 0ed  ) (87) 

Thus, the zero dynamics of the nonlinear internal dynamic subsystem (78) is asymptotically 
stable as long as zd1, zd2, w=0. 
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5. Simulation and analysis 

Base on above analysis of the control system under the driving/braking conditions, the LFS 
AACC system applying the DDRC method can be designed as the block diagram in Figure 
9. The system consists of three parts: the controlled object of a convoy with two vehicles, 
DDRC system, and the input/output signals.  
In order to verify the control performance of the LFS AACC system, a typical driving cycle 
of the leading vehicle’s aceeleration/deceleration, velocity, as well as the road grade are 
given in Figure 10. The road grade changes from 0o~+3o to 0o~-3o in a period of 80s~90s and 
110s~120s, respectively. Furthermore, the conditions from the high-speed to low-speed SG, 
and two cases of mass equaling 10,000kg and 25,000kg are included. The initial errors at 0s 
for the inter-vehicles relative distance and relative velocity are set to 0m and 0m/s, 
respectively. Table 1 and the solid lines in Figures 11 and 12 are the coefficients and the 
simulation results, respectively for the proposed control system. In contrast, the coefficients 
and some simulation results of an upper LQ+lower PID hierarchical control system 
proposed in ref. [1] are also presented respectively in Table 2 and by the dotted lines in 
Figures 11 and 12. The comparison results of the throttle angle, desired input voltage of EBS, 
engine speed, automatic transmission gear position, relations of relative distance/relative 
velocity tracking error verses time scale, as well as the phase chart of the relative 
distance/relative velocity tracking error are shown in Figures 11 and 12 in sequences of 
(a)~(f).  
 

Driving condition ca1=1 aas=10 bas=250 

Braking condition cd1=1 ads=10 bds=185 

Table 1. Control parameters of DDRC system 

 

Conditions 

Upper layer LQ 
parameters 

Lower layer PID 
parameters 

Q R P, I, D 

Driving 
[7 0,0 4] 10 

800, 560, 15 

Braking 350, 150, 20 

Table 2. Control parameters of hierarchical control system 

As illustrated by Figures 11 (a)~(d), for the proposed control system, the throttle angle and 
the EBS desired input voltage exhibit smooth response characteristic, rapid convergence and 
small oscillation, even at the moment of gear switching. However, for the hierarchical 
control system, it shows intense and long time oscillations especially at low-speed condition 
(shown as dashed border subfigures inside the Figures 11 (a) and (b)), which have impacts 
on the vehicle's comfortability severely.  
This is because the small parameters are adopted by the proposed control system as the 
consequence of applying DDRC method (shown as Tables 1), and thus the unmodeled high 
frequency oscillation can be effectively eliminated, in contrast with the hierarchical control 
system adopting large parameters (shown as Tables 2). Moreover, during the time period of 
0s ~ 73s and 130s ~ 200s in Figures 11(e) and 12(e), the simulation results of the proposed 
control system indicate that the errors of the relative distance and the relative velocity are 
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constrained within the range of ± 0.02m and -0.05m/s~0.02m/s, respectively. The tracking 
accuracy of the proposed control system is enhanced and almost frees from the disturbance 
of the leading vehicle’s acceleration/deceleration. However, for the hierarchical control 
system, it is affected obviously by the change of the leading vehicle’s acceleration/ 
deceleration, and touches the maximum value of ± 0.1m. Finally, the comparison between 
(e) and (f) in Figures 11 and 12 demonstrates a superior robustness for the proposed control 
system in spite of the uncertainties caused by the road grade, gear position and the vehicle 
mass. Particularly, while the road grade changes between ± 3o in the time period of 
80s~120s, the tracking error of the relative distance and the relative velocity for the 
proposed control system are less than ± 0.05m and -0.04m/s ~ 0.02m/s, in contract to larger 
than ± 0.15m and ± 0.05m/s of the hierarchical control system.   
 

 

Fig. 9. LFS ACC system using the DDRC method 

 

 

Fig. 10. Profile of leading vehicle driving cycle and road grade 
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Fig. 11. Simulation results (mass is 10,000 kg) 
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Fig. 12. Simulation results (mass is 25,000 kg) 
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From above analysis and the simulation results, it seems that the influence of nonlinearity, 

external disturbance and the variable uncertainties have been eliminated by adopting the 

proposed DDRC method for the LFS AACC system, and it results in a significant 

improvement of the tracking accuracy, robustness, as well as the response characteristics of 

the actuator system (i.e., the throttle angle and the EBS desired input voltage). In addition, 

the control structure and the parameters are simplified, and easy to determine in 

comparison with the hierarchical control algorithm. 

6. Conclusion 

In this study, an LFS nonlinear dynamics model is proposed by integrating the dynamics of 

the inter-vehicles and the controlled vehicle. Then, a DDRC method is developed, and used 

to design the LFS AACC system. Finally, the control performance is verified by the 

numerical simulation under a typical driving cycle. The simulation results confirm the 

followings:   

1. The proposed LFS model not only can describe the vehicle’s strong nonlinearity at low-

speed conditions and the uncertainty induced by the complex traffic environment and 

the road condition, but also is able to express the strong coupling characteristics due to 

frequent change of the leading vehicle’s acceleration/deceleration at high-speed 

condition. Particularly, the dynamics of the inter-vehicles and the controlled vehicle are 

lumped together within a universal state space equation.   

2. The tracking accuracies at high-speed and low-speed SG condition, as well as the 

robustness to the external disturbance and the model parameter uncertainty have been 

improved simultaneously, because the DDRC method is applied in the design of the 

LFS ACC system. 

3. The actuators’ high frequency oscillation caused by the unmodeled part has been 

restrained through using small parameters, and this leads to a control system with 

simplified structure. 

7. Appendixes  

Appendix 1.  Definition of the matrix items in Eq. (1) 

 
 

   

1 1
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2 1 2 12
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1 1 2 3
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i i i i
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  

     
 

                                    
 
 
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Appendix 2. Definition of the matrix items in Eq. (2) 

 
 

   

1 1
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2 2
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i i i i
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 
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 
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Appendix 3. Definition of the matrix items in Eq. (7) 

 1a v vf    

 

 

2 3

2 2
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, 2 3 2t t
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a t ed t t ed ed
ed

f a b c d


      


      
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1 2
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a t ed n h t ed ed
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   2a ed edg j k    
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2 1 22
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1 22
, 2 t
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3 1 4 2 2 2, ,a av a av a avf f f f g g          

where , , , , , , , , , , ,a b c d e f g h i j k  are constant coefficients, their specific values can be referred 

to ref. [16]. 
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Appendix 4.  Definition of the matrix items in Eq. (8) 

 1d v vf    

     2 , , 2 2d t ed b n h d t d ed n t n h d t d ed ed n h d d bf a t a b t b c t d j a                      

  2 2
3 , ,d t ed b d t d t ed d ed d b df a a b c d a            

  2 2
4 ,d t ed d t d t ed d ed d ed df e f g h i            

 5d b d bf a j a  

   2
1 ,d t b n h d d b t dg a t d k a l     

  2
2 ,d t b d b t dg a k a l    

1 1dp    

     2 1 2 3, 2 2d t ed n h d t d ed n dv n h d t d ed dv n h d dvf t a b f t b c f t d f                    

   2
1 3,d t b n h d d b t d dvg a t d k a l g       

3 1 4 2 5 3 2 3, , ,d dv d dv d dv d dvf f f f f f g g             

where , , , , , , , , , , , ,d d d d d d d d d d d d da b c d e f g h i j k l  are constant coefficients, their specific values 

can be referred to ref. [16]. 

Appendix 5.  The vehicle parameters are as follows:  

0 5.571i   - final reduction ratio;  

1
3.49gi  - first position gear ratio of the automatic transmission;  

0.507tr  - effective tire radius (m);  

3.189eI  - rotational inertia of the engine flywheel (kg·m2);  

0.98k  - total transmission efficiency;  

0.01r   - rolling resistance coefficient;  

10,000M  - vehicle nominal mass (kg);  

0s   - nominal road grade (°);  
3

1 2 3 45.2 10 , 0.25, 1.1, 145k k k k        - engine fitting coefficients;  
2

1 2 10.85, 1.75, 7.19 10t t        , 2 2
2 33.97 10 3.68 10       - torque converter fitting 

coefficients for the forward transmit condition;  
2 2 2

1 2 32.1 10 , 6.76 10 , 4.59 10d d d             - torque converter fitting coefficients for 

the reverse transmit condition;  
0.2rt  - time constant of the dynamic response for the braking system;  

34.3 10 , 0.29a bk k     - fitting coefficients of the heat fading efficiency model for the 

braking system;  

1 2, , C   - constant coefficients:  
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; 

m s29.8 /gg  . 
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