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1. Introduction  

Nowadays unmanned rotorcraft are designed to operate with greater agility, rapid 
maneuvering, and are capable of work in degraded environments such as wind gusts etc. 
The control of this rotorcraft is a subject of research especially in applications such as rescue, 
surveillance, inspection, mapping etc. For these applications, the ability of the rotorcraft to 
maneuver sharply and hover precisely is important (Koo and Sastry 1998). Rotorcraft 
control as in these applications often requires holding a particular trimmed state; generally 
hover, as well as making changes of velocity and acceleration in a desired way (Gavrilets, 
Mettler, and Feron 2003). Similar to aircraft control, rotorcraft control too involves 
controlling the pitch, yaw, and roll motion. But the main difference is that, due to the unique 
body structure of rotorcraft (as well as the rotor dynamics and other rotating elements) the 
pitch, yaw and roll dynamics are strongly coupled. Therefore, it is difficult to design a 
decoupled control law of sound structure that stabilizes the faster and slower dynamics 
simultaneously. On the contrary, for a fixed wing aircraft it is relatively easy to design 
decoupled standard control laws with intuitively comprehensible structure and guaranteed 
performance (Stevens and F. L. Lewis 2003). There are many different approaches available 
for rotorcraft control such as (Altug, Ostrowski, and Mahony 2002; Bijnens et al. 2005; T. 
Madani and Benallegue 2006; Mistler, Benallegue, and M'Sirdi 2001; Mokhtari, Benallegue, 
and Orlov 2006) etc. Popular methods include input-output linearization and back-stepping.  
The 6-DOF airframe dynamics of a typical quadrotor involves the typical translational and 
rotational dynamical equations as in (Gavrilets, Mettler, and Feron 2003; Castillo, Lozano, 
and Dzul 2005; Castillo, Dzul, and Lozano 2004). The dynamics of a quadrotor is essentially 
a simplified form of helicopter dynamics that exhibits the basic problems including under-
actuation, strong coupling, multi-input/multi-output, and unknown nonlinearities. The 
quadrotor is classified as a rotorcraft where lift is derived from the four rotors. Most often 
they are classified as helicopters as its movements are characterized by the resultant force 
and moments of the four rotors. Therefore the control algorithms designed for a quadrotor 
could be applied to a helicopter with relatively straightforward modifications. Most of the 
papers (B. Bijnens et al. 2005; T. Madani and Benallegue 2006; Mokhtari, Benallegue, and 
Orlov 2006) etc. deal with either input-output linearization for decoupling pitch yaw roll or 
back-stepping to deal with the under-actuation problem. The problem of coupling in the 

www.intechopen.com



 
Challenges and Paradigms in Applied Robust Control 4 

yaw-pitch-roll of a helicopter, as well as the problem of coupled dynamics-kinematic 
underactuated system, can be solved by back-stepping (Kanellakopoulos, Kokotovic, and 
Morse 1991; Khalil 2002; Slotine and Li 1991). Dynamic inversion (Stevens and F. L. Lewis 
2003; Slotine and Li 1991; A. Das et al. 2004) is effective in the control of both linear and 
nonlinear systems and involves an inner inversion loop (similar to feedback linearization) 
which results in tracking if the residual or internal dynamics is stable. Typical usage 
requires the selection of the output control variables so that the internal dynamics is 
guaranteed to be stable. This implies that the tracking control cannot always be guaranteed 
for the original outputs of interest. 
The application of dynamic inversion on UAV’s and other flying vehicles such as missiles, 
fighter aircrafts etc. are proposed in several research works such as (Kim and Calise 1997; 
Prasad and Calise 1999; Calise et al. 1994) etc. It is also shown that the inclusion of dynamic 
neural network for estimating the dynamic inversion errors can improve the controller 
stability and tracking performance. Some other papers such as (Hovakimyan et al. 2001; 
Rysdyk and Calise 2005; Wise et al. 1999; Campos, F. L. Lewis, and Selmic 2000) etc. discuss 
the application of dynamic inversion on nonlinear systems to tackle the model and 
parametric uncertainties using neural nets. It is also shown that a reconfigurable control law 
can be designed for fighter aircrafts using neural net and dynamic inversion. Sometimes the 
inverse transformations required in dynamic inversion or feedback linearization are 
computed by neural network to reduce the inversion error by online learning. 
In this chapter we apply dynamic inversion to tackle the coupling in quadrotor dynamics 
which is in fact an underactuated system. Dynamic inversion is applied to the inner loop, 
which yields internal dynamics that are not necessarily stable. Instead of redesigning the 
output control variables to guarantee stability of the internal dynamics, we use a sliding 
mode approach to stabilize the internal dynamics. This yields a two-loop structured tracking 
controller with a dynamic inversion inner loop and an internal dynamics stabilization outer 
loop. But it is interesting to notice that unlike normal two loop structure, we designed an 
inner loop which controls and stabilizes altitude and attitude of the quadrotor and an outer 
loop which controls and stabilizes the position (x,y) of the quadrotor. This yields a new 
structure of the autopilot in contrast to the conventional loop linear or nonlinear autopilot. 
Section 2 of this chapter discusses the basic quadrotor dynamics which is used for control 
law formulation. Section 3 shows dynamic inversion of a nonlinear state-space model of a 
quadrotor. Sections 4 discuss the robust control method using sliding mode approach to 
stabilize the internal dynamics. In the final section, simulation results are shown to validate 
the control law discussed in this chapter. 

2. Quadrotor dynamics 

Fig. 1 shows a basic model of an unmanned quadrotor. The quadrotor has some basic 
advantage over the conventional helicopter. Given that the front and the rear motors rotate 
counter-clockwise while the other two rotate clockwise, gyroscopic effects and aerodynamic 
torques tend to cancel in trimmed flight. This four-rotor rotorcraft does not have a swash-
plate (P. Castillo, R. Lozano, and A. Dzul 2005). In fact it does not need any blade pitch 
control. The collective input (or throttle input) is the sum of the thrusts of each motor (see 
Fig. 1). Pitch movement is obtained by increasing (reducing) the speed of the rear motor 
while reducing (increasing) the speed of the front motor. The roll movement is obtained 
similarly using the lateral motors. The yaw movement is obtained by increasing (decreasing) 
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the speed of the front and rear motors while decreasing (increasing) the speed of the lateral 
motors (Bouabdallah, Noth, and Siegwart 2004). 
 

 
Fig. 1. A typical model of a quadrotor helicopter 

In this section we will describe the basic state-space model of the quadrotor. The dynamics 
of the four rotors are relatively much faster than the main system and thus neglected in our 
case. The generalized coordinates of the rotorcraft are    ( , , , , , )q x y z , where ( , , )x y z

represents the relative position of the center of mass of the quadrotor with respect to an 
inertial frame  , and   ( , , )  are the three Euler angles representing the orientation of the 
rotorcraft, namely yaw-pitch-roll of the vehicle.  
Let us assume that the transitional and rotational coordinates are in the form 
   3( , , )Tx y z R  and      3( , , ) R . Now the total transitional kinetic energy of the 

rotorcraft will be    
2

T
trans

m
T  where m  is the mass of the quadrotor. The rotational kinetic 

energy is described as    1
2

T
rotT J , where matrix  ( )J J  is the auxiliary matrix expressed 

in terms of the generalized coordinates  . The potential energy in the system can be 
characterized by the gravitational potential, described as U mgz . Defining the Lagrangian 

  trans rotL T T U , where    ( / 2) T
transT m  is the translational kinetic energy, 

  (1 / 2) T
rotT I  is the rotational kinetic energy with   as angular speed, U mgz  is the 

potential energy, z  is the quadrotor altitude, I  is the body inertia matrix, and g  is the 
acceleration due to gravity. 
Then the full quadrotor dynamics is obtained as a function of the external generalized forces 

  ( , )F F
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The principal control inputs are defined as follows. Define 

 
 
   
 
 

0

0RF

u

 (2) 

where u  is the main thrust and defined by  

    1 2 3 4u f f f f  (3) 

and if ’s are described as  2
i i if k , where ik  are positive constants and i  are the angular 

speed of the motor i . Then F  can be written as  

   RF RF  (4) 

where R  is the transformation matrix representing the orientation of the rotorcraft as  

 
    

           

           

 
 

   
   

c c s s s

R c s s s c s s s c c c s

c s c s s s s c c s c c

 (5) 

The generalized torque for the   variables are  

 







 



 
 

  
 
 

 (6) 

where  

  


    
4

1 2 3 4
1

( )
iM

i

c f f f f  (7) 

 
  2 4( )f f l  (8) 

 
  3 1( )f f l  (9) 

Thus the control distribution from the four actuator motors of the quadrotor is given by 

 













    
            
             

1

2

3

4

1 1 1 1

0 0

0 0

f

u f

l l f

l l f

c c c c f

C

 (10) 

where l  is the distance from the motors to the center of gravity, 
iM  is the torque produced 

by motor iM , and c is a constant known as force-to-moment scaling factor. So, if a required 
thrust and torque vector are given, one may solve for the rotor force using (10).  
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The final dynamic model of the quadrotor is described by (11)-(14), 

 
 
   
 
 


0

0 Rm F

mg

 (11) 

              



  


   1
( )

2
Td

J J J
dt

 (12) 

                 ,d
J J C

dt
 (13) 

          ,J C  (14) 

where,


 
 

 
   
 
 

sin

cos sin

cos cos
RF u , auxiliary Matrix        TJ J T IT  with 

 


  
  

 
   
  

sin 0 1

cos sin cos 0

cos cos sin 0

T . 

Now finally the dynamic model of the quadrotor in terms of position  , ,x y z and rotation 
  ( , , )  is written as, 

 


 
 

     
           
          





0 sin
1

0 cos sin

cos cos

x

y u
m

z g

 (15) 

 

       


 
    
 
 





( , , ) ( , , )f g  (16) 

where,  

 

    
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y z p

x x

pz x

y y
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I I J

I I

JI I
f

I I

I I

I

,   
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 
 
 
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 
 
 
 
 

0 0

( , , ) 0 0

0 0

x
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z

l

I

l
g

I

l

I

,  1u R and 







 



 
   
  

3R  are the 

control inputs, , ,x y zI  are body inertia, pJ  is propeller/rotor inertia and        2 4 1 3 . 

Thus, the system is the form of an under-actuated system with six outputs and four inputs. 
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Comment 2.1: In this chapter we considered a generalized state space model of  quadrotor derived 
from Lagrangian dynamics. Design autopilot with actual Lagrangian model of quadrotor is discussed 
in (Abhijit Das, Frank Lewis, and Kamesh Subbarao 2009). 

3. Partial feedback linearization for Quadrotor model 

Dynamic inversion (Stevens and F. L. Lewis 2003) is an approach where a feedback 
linearization loop is applied to the tracking outputs of interest. The residual dynamics, not 
directly controlled, is known as the internal dynamics. If the internal dynamics are stable, 
dynamic inversion is successful. Typical usage requires the selection of the output control 
variables so that the internal dynamics is guaranteed to be stable. This means that tracking 
cannot always be guaranteed for the original outputs of interest.  
In this chapter we apply dynamic inversion to the system given by (15) and (16) to achieve 
station-keeping tracking control for the position outputs ( , , , )x y z . Initially we select the 
convenient output vector    ( , , , )diy z  which makes the dynamic inverse easy to find. 
Dynamic inversion now yields effectively an inner control loop that feedback linearizes the 
system from the control      ( , , , )diu u  to the output    ( , , , )diy z . Note that the 
output contains attitude parameters as well as altitude of the quadrotor.  
Note however that diy  is not the desired system output. Moreover, dynamic inversion 
generates a specific internal dynamics, as detailed below, which may not always be stable. 
Therefore, a second outer loop is designed to generate the required values for 

   ( , , , )diy z  in terms of the values of the desired tracking output ( , , , )x y z . An overall 
Lyapunov proof guarantees stability and performance. The following background is 
required. Consider a nonlinear system of the form  

   , qq f q u  (17) 

where  m
qu R  is the control input and  nq R  is state vector. The technique of designing the 

control input u  using dynamic inversion involves two steps. First, one finds a state 
transformation  ( )z z q  and an input transformation  ( , )q qu u q v

 
so that the nonlinear 

system dynamics is transformed into an equivalent linear time invariant dynamics of the 
form  

  z az bv  (18) 

where   ,n n n ma R b R  are constant matrices with v  is known as new input to the linear 
system. Secondly one can design v  easily from the linear control theory approach such as 
pole placement etc. To get the desired linear equations (18), one has to differentiate outputs 
until input vector diu  appears. The procedure is known as dynamic inversion. 

3.1 Dynamic inversion for inner loop 

The system, (15)→(16) is an underactuated system if we consider the states   ( , , , , , )x y z  as 

outputs and        
T

diu u   as inputs. To overcome these difficulties we consider 

four outputs    ( , , , )diy z  which are used for feedback linearization. Differentiating the 
output vector twice with respect to the time we get from (15) and (16) that, 
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  
di di di diy M E u  (19) 

where, 

 

 



 
        
   
      
 

  
  
  

 

  



4

y z p

x x

pdi z x

y y

x y

z

g

I I J

I I

JM I I

I I

I I

I

,

 



 
 
 
 
   
 
 
 
 
 

4 4

(1 / )cos cos 0 0 0

0 0 0

0 0 0

0 0 0

x

di

y

z

m

l

I

lE

I

l

I

  

The number   8r  of differentiation required for an invertible diE  is known as the relative 
degree of the system and generally   12r n ; if r n  then full state feedback linearization 
is achieved if diE  is invertible. Note that for multi-input multi-output system, if number of 
outputs is not equal to the number of inputs (under-actuated system), then diE  becomes 
non-square and is difficult to obtain a feasible linearizing input diu . 
It is seen that for non-singularity of diE ,    0 , 90 . The relative degree of the system is 
calculated as 8  whereas the order of the system is 12 . So, the remaining dynamics ( 4)  
which does not come out in the process of feedback linearization is known as internal 
dynamics. To guarantee the stability of the whole system, it is mandatory to guarantee the 
stability of the internal dynamics. In the next section we will discuss how to control the 
internal dynamics using a PID with a feed-forward acceleration outer loop. Now using (19) 
we can write the desired input to the system  

    1
di di di diu E M v  (20) 

which yields  

 di diy v  (21) 

where,    
T

di zv v v v v . This system is decoupled and linear. The auxiliary input div  

is designed as described below. 

3.2 Design of linear controller 

Assuming the desired output to the system is    
T

d d d d dy z , the linear controller 

div  is designed in the following way 

  

 

 







    

    
    

     
                
  

        

  
  
  

  

1 2

1 2

1 2

1 2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

z zd d dz

d d d

di

d d d

d d d

z K z z K z zv

K Kv
v

v K K

v K K

 (22) 
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where, 
 1 2, ,....K K  etc. are positive constants so that the poles of the error dynamics arising 

from (23) and (24) are in the left half of the s plane. For hovering control, dz  and  d  are 
chosen depending upon the designer choice.  

3.3 Defining sliding variable error 

Let us define the state error           1

T

d d d de z z  
and a sliding mode error as  

   1 1 1 1r e e  (23) 

where, 1  is a diagonal positive definite design parameter matrix. Common usage is to 
select 1  diagonal with positive entries. Then, (23) is a stable system so that 1e  is bounded 
as long as the controller guarantees that the filtered error 1r  is bounded. In fact it is easy to 
show (F. Lewis, Jagannathan, and Yesildirek 1999) that one has 

 


 


1
1 1 1

min 1

,
( )

r
e e r  (24) 

Note that   1 1 1 0e e  defines a stable sliding mode surface. The function of the controller 
to be designed is to force the system onto this surface by making 1r  small. The parameter 
1  is selected for a desired sliding mode response 

  1
1 1 1( ) (0)te t e e  (25) 

We now focus on designing a controller to keep 1r  small. From (23),  

     1 1 1 1r e e  (26) 

Adding an integrator to the linear controller given in (22), and now we can rewrite (22) as 

      1 1 2 1 3 10d

t

di div y K e K e K r dt  (27) 

where,      
  , , ,

d

T

di d d d dy z  and 
  

 ( , , , ) 0
zi i i i iK diag K K K K ,  1,2,3, 4i . 

Now using equation (20) and (27) we can rewrite the equation (19) in the form of error 
dynamics as  

     1 1 1 2 1 3 1
0

0
t

e K e K e K r dt  (28) 

Thus equation (26) becomes 

        1 1 1 2 1 3 1 1 1
0

t

r K e K e K r dt e  (29) 

If we choose     1 1 2 1( ),K R K R , then equation (29) will look like 

    1 1 3 1
0

t

r Rr K r dt  (30) 
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Note that  0R  is also a diagonal matrix.  

4. Sliding mode control for internal dynamics 

The internal dynamics (Slotine and Li 1991) for the feedback linearizes system given by  

   sin
u

x
m

 (31) 

   cos sin
u

y
m

 (32) 

For the stability of the whole system as well as for the tracking purposes, ,x y  should be 
bounded and controlled in a desired way. Note that the altitude z  of the rotorcraft a any 
given time t  is controlled by (20),(22).  
To stabilize the zero dynamics, we select some desired d  and d  such that ( , )x y  is 
bounded. Then that   ,d d  can be fed into (22) as a reference. Using Taylor series 
expansion about some nominal values  

d ,  
d  and considering up to first order terms 

 

    

    

    

  

  

  

* * *

* * *

* * *

sin sin cos ( )

cos cos sin ( )

sin sin cos ( )

d d d d d

d d d d d

d d d d d

 (33) 

Using (33) on (31) we get  

         * * *sin cos ( )d d d d

u
x

m
 (34) 

               * * * * * *cos sin ( ) sin cos ( )d d d d d d d d

u
y

m
 (35) 

For hovering of a quadrotor, assuming the nominal values * 0d  , * 0d  , (31) and (32) 
becomes 

  
d

u
x

m
 (36) 

  d

u
y

m
 (37) 

Define the state error  

    2

T

d de x x y y  (38) 

and the sliding mode error for the internal dynamics as  

   2 2 2 2r e e  (39) 
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where, 
2

  is a diagonal positive definite design parameter matrix with similar characteristic 
of 1 . Also  

 


 


2
2 2 2

min 2

,
( )

r
e e r  (40) 

Therefore according to (40), designing a controller to keep 2r  small will guarantee that 

2e and 2e are small. Differentiating 2r  we get 

     2 2 2 2r e e  (41) 

Let the choice of the control law is as follows  

    
 

         
 

  11 12 13 2 2
0

( ) sgn( ) , 0
t

d d d d x x

m
x c x x c x x c r dt r

u
 (42) 

    
 

        
 

  21 22 23 2 2
0

( ) sgn( ) , 0
t

d d d d y y

m
y c y y c y y c r dt r

u
 (43) 

where, 
 

  
 

11
1

21

0
0

0

c
C

c
,
 

  
 

12
2

22

0
0

0

c
C

c
, 
 

  
 

13
3

23

0
0

0

c
C

c
 and 





 

  
 

0
0

0
x

y

. 

Combining the equations (36) to (43) 

      2 1 2 2 2 3 2 2
0

sgn( ) 0
t

e C e C e C r dt r  (44) 

Therefore 

         2 1 2 2 2 3 2 2 2 2
0

sgn( )
t

r C e C e C r dt r e  (45) 

Let 

   1 2 0C S  (46) 

  2 2 0C S  (47) 

Therefore 

              2 2 0 2 2 0 2 3 2 2 2 2
0

sgn( )
t

r S e S e C r dt r e  (48) 

    2 0 2 3 2 2
0

 sgn( )
t

r S r C r dt r  (49) 
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5. Controller structure and stability analysis 

The overall control system has two loops and is depicted in Fig. 2. The following theorem 
details the performance of the controller. 
Definition 5.1: The equilibrium point ex is said to be uniformly ultimately bounded (UUB) if there 

exist a compact set  nS R so that for all 0x S there exist a bound B and a time 0( , )T B x such that 
    0( ) ( )ex t x t B t t T . 

Theorem 5.1: Given the system as described in (15) and (16) with a control law shown in Fig. 2. and 

given by (20), (27), (42) , (43) . Then, the tracking errors 1r  and 2r and thereby 1e  and 2e  are UUB 

if (53) and (54) are satisfied and can be made arbitrarily small with a suitable choice of gain 

parameters. According to the definition given by (23) of 1r  and (39) of 2r , this guarantees that 1e  

and 2e  are UUB since 

 
   

   

 

 

  
 

  
 

1

1

2

2

1
1

min 1 min 1

2
2

min 2 min 2

0

0

r

r

r

r

br
e b

br
e b

 (50) 

where   min i  is the minimum singular value of  , 1,2i i . 

Proof: Consider the Lyapunov function 

 
       

          
       
   1 1 1 2 1 2 1 2 1 2 2 2
0 0 0 0

1 1 1 1
2 2 2 2

t t t t
T T T TL r P r r Q r r dt P r dt r dt Q r dt  (51) 

with symmetric matrices 1 2 1 2, , , 0P P Q Q  

Therefore, by differentiating L  we will get the following 

 



     

 

 

 


1 1 1 1 1 3 1 1 2 1 2 1 0 2

0 0

2 1 3 2 2 2 2 2 1 2
0 0

sgn( )

t t
T T T

t t
T T T

L r P Rr r P K r dt r P r dt r Q S r

r Q C r dt r Q r dt r Q r

 (52) 

Define, 

 2 1 3P P K  (53) 

 2 1 3Q Q C  (54) 

then integration term vanishes. 

    
1 1 1 2 1 0 2 2 1 2sgn( )T T TL r P Rr r Q S r r Q r  (55) 

The Equation (55) can be written as  

         2 2
max 1 1 max 1 0 2 max 1 2( ) ( ) ( ) 0L P R r Q S r Q r  (56) 
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where,  max( )  denotes the maximum singular value.                                    ▀ 

 

 

Fig. 2. Control configuration 

Comment 5.1: Equations (31)-(32) can also be rewritten as  

       ( )d

u u
x

m m
 (57) 

    
d

u u
y

m m
 (58) 

where     sind  and      cos sind . According to (A. Das, K. Subbarao, and F. Lewis 

2009) there exist a robustifying term rV  which would modify the div  as  

  

 

 







    

    
    

     
                
  

        

  
  
  

  

1 2

1 2

1 2

1 2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

z zd d dz

d d d

di r

d d d

d d d

z K z z K z zv

K Kv
v V

v K K

v K K

 (59) 

and thereby one can easily show that  0L  by suitbale choice of rV . For this book chapter we 

considered the Eq. (36),(37), whcih in fact a simpler version of (31),(32). But we belive, for designing 

autopilot for quadrotor, the proposed mehtod discussed in this chapter can be used without loss of any 

genreality. 

6. Simulation results 

6.1 Rotorcraft parameters 

Simulation for a typical quadrotor is performed using the following parameters (SI unit): 
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 
   
  

1

1 0 0

0 1 0

0 0 1

M ;       
 
   
  

5 0 0

0 5 0

0 0 15

J ;        9.81g . 

6.2 Reference trajectory generation 

As outlined in Refs (Hogan 1984; Flash and Hogan 1985), a reference trajectory is derived 
that minimizes the jerk (rate of change of acceleration) over the time horizon. The trajectory 
ensures that the velocities and accelerations at the end point are zero while meeting the 
position tracking objective. The following summarizes this approach: 

      2 3 4
1 2 3 4 5( ) 2 3 4 5

x x x x xdx t a a t a t a t a t  (60) 

Differentiating again, 

     2 3
2 3 4 5( ) 2 6 12 20

x x x xdx t a a t a t a t  (61) 

As we indicated before that initial and final velocities and accelerations are zero; so from 
Eqs. (60) and (61) we can conclude the following: 

 

    
          
        

2
3

2
4

2
5

1

0 3 4 5

0 6 12 20

x

x

x

x f f

f f

f f

d t t a

t t a

t t a

 (62) 

Where,   
0

3/
fx d d fd x x t . Now, solving for coefficients 

 


    
         
        

12
3

2
4

2
5

1

3 4 5 0

6 12 20 0

x

x

x

f f x

f f

f f

a t t d

a t t

a t t

 (63) 

Thus the desired trajectory for the x direction is given by  

    
0

3 4 5
3 4 5( )

x x xd dx t x a t a t a t  (64) 

Similarly, the reference trajectories for the y and z directions are gives by Eq. (65) and Eq. 
(66) respectively. 

    
0

3 4 5
3 4 5( )

y y yd dy t y a t a t a t  (65) 

    
0

3 4 5
3 4 5( )

z z zd dz t z a t a t a t  (66) 

The beauty of this method lying in the fact that more demanding changes in position can be 
accommodated by varying the final time. That is acceleration/torque ratio can be controlled 
smoothly as per requirement. For example,  
Let us assume at  0,t 

0
0dx and at  10t sec,  10

fdx . Therefore xd 0.01 and the 
trajectory is given by Eq. (67)  and shown in Fig. 3 for various desired final positions. 

   3 4 5( ) 0.1 0.015 0.0006dx t t t t  (67) 
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Fig. 3. Example trajectory simulation for different final positions 

6.3 Case 1: From initial position at  0,5,10 to final position at  20, 5,0  

Figure 4 describes the controlled motion of the quadrotor from its initial position  0,5,10  
to final position  20, 5,0  for a given time (20 seconds). The actual trajectories ( ), ( ), ( )x t y t z t  
match exactly their desired values ( ), ( ), ( )d d dx t y t z t  respectively nearly exactly. The errors 
along the three axes are also shown in the same figure. It can be seen that the tracking is 
almost perfect as well as the tracking errors are significantly small. Figure 5 describes the 
attitude of the quadrotor  ,  along with their demands  ,d d  and attitude errors in radian. 
Again the angles match their command values nearly perfectly. Figure 6 describes the 
control input requirement which is very much realizable. Note that as described before the 
control requirement for yaw angle is   0

 
and it is seen from Fig. 6.  

6.4 Case 2: From initial position at  0,5,10 to final position at  20,5,10   

Figures 7-8 illustrates the decoupling phenomenon of the control law. Fig. 7 shows that ( )x t  
follows the command ( )dx t  nearly perfectly unlike ( )y t  and ( )z t  are held their initial 
values. Fig. 8 shows that the change in x  does not make any influence on . The 
corresponding control inputs are also shown in Fig. 9 and due to the full decoupling effect it 
is seen that   

is almost zero.  
The similar type of simulations are performed for y and z directional motions separately 
and similar plots are obtained showing excellent tracking.  
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Fig. 4. Three position commands simultaneously 

 
 

 

Fig. 5. Resultant angular positions and errors 
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Fig. 6. Input commands for Case I 

 
 

 
 

Fig. 7. Plots of position and position tracking errors for � command only 

0 2 4 6 8 10 12 14 16 18 20

9.7

9.8

9.9

10

10.1

Time in Sec

C
o
n
tr

o
l 
in

p
u
t 
U

 i
n
 N

e
w

to
n

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

0.15

Time in Sec

C
o
n
tr

o
l 
T

o
rq

u
e
s
 I
n
 N

−
m

 

 

tao
phi

tao
theta

tao
si

0 5 10 15 20
0

5

10

15

20

Time in Sec

P
o

s
it
io

n
s
 i
n

 m
e

te
r

 

 

x
d

x

y
d

y

z
d

z

0 5 10 15 20
−4

−2

0

2

4
x 10

−6

Time in Sec

P
o

s
it
io

n
 e

rr
o

s
 i
n

 m
e

te
r

 

 

x
d
 − x

y
d
 − y

z
d
 − z

www.intechopen.com



�
��


�����
�������������������������
�������	
��������
�������	
��� %$�

 

Fig. 8. Angular variations due to change in �  

 
 

 

Fig. 9. Input commands for variation in � (Case II) 
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The simulation is performed to verify its robustness properties against unmodeled input 

disturbances. For this case we simulate the dynamics with high frequency disturbance 0.1*

sin(5 )� (1% of maximum magnitude of force) for force channel and 0.01sin(5 )� (~15% of 

maximum angular acceleration) for torque channel.  

'�'�����-�*�+�
����������

����
����� ( )0,5,10 �
�!�����

����
����� ( )−20, 5,0 �,����

������"�����

Fig. 10811 describes the motion of the quadrotor from its initial position ( )0,5,10  to final 

position ( )−20, 5,0  for a given time (20 seconds) with input disturbances. It can be seen 

from Fig 10 that the quadrotor can track the desired position effectively without any effect of 

high input disturbances. From Fig 10 and Fig 11, it is also seen that the position errors are 

bounded and small. Fig. 12 shows the bounded variation of control inputs in presence of 

disturbance. Similar tracking performance is obtained for other commanded motion.  
 
 
 
 
 
 
 

 
 
 

 

Fig. 10. Position tracking – Simultaneous command in ��	� and   + Input disturbances 
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Fig. 11. Angular variations, errors and velocities (with input disturbances) 

 

Fig. 12. Force and torque input variations (with input disturbances) 
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7. Conclusion 

Sliding mode approach using input-output linearization to design nonlinear controller for a 
quadrotor dynamics is discussed in this Chapter. Using this approach, an intuitively 
structured controller was derived that has an outer sliding mode control loop and an inner 
feedback linearizing control loop. The dynamics of a quadrotor are a simplified form of 
helicopter dynamics that exhibits the basic problems including under-actuation, strong 
coupling, multi-input/multi-output. The derived controller is capable of deal with such 
problems simultaneously and satisfactorily. As the quadrotor model discuss in this Chapter 
is similar to a full scale unmanned helicopter model, the same control configuration derived 
for quadrotor is also applicable for a helicopter model. The simulation results are presented 
to demonstrate the validity of the control law discussed in the Chapter. 
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