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1. Introduction 

1.1 Topographic and cellular organization of the retina 
The retina is the thin (0.2 mm) lining of the back of the eye that gathers light focused on it by 
the cornea and lens. The retina has a complex laminar organization; cells are organized into 
layers (Fig. 1). These layers are named by reference to the middle of the eyeball; the 
innermost layers are located nearest the vitreous chamber, whereas the outermost lie 
adjacent to the retinal pigment epithelium and choroid. The most important layers, 
progressing from the inner to the outer, are: (1) the inner limiting membrane (formed by 
astrocytes and the conical end-feet of Müller cells); (2) the nerve fiber layer, composed of 
the axons of ganglion cells; (3) the ganglion layer, containing the cell bodies of ganglion 
cells; (4) the inner plexiform layer, composed of synapses formed between bipolar, 
amacrine, and ganglion cells; (5) the inner nuclear layer, containing the cell bodies and 
nuclei of horizontal, bipolar, and amacrine cells; (6) the outer plexiform layer, composed of 
synapses connecting photoreceptor cells from the outer nuclear layer with bipolar and 
horizontal cells from the inner nuclear layer; (7) the outer nuclear layer, containing the 
synapses and cell bodies of two classes of photoreceptors, namely the rods and cones; (8) the 
outer limiting membrane, a junction line between photoreceptor cells and Müller cells; (9) 
the photoreceptor layer, which contains the light-sensitive outer segments of the 
photoreceptors; and (10) the retinal pigment epithelium (RPE), which is a monolayer of 
melanin-containing cells forming part of the blood/retina barrier. Although the RPE is not a 
component of the neural retina, this layer provides critical metabolic support to 
photoreceptors and the integrity thereof is fundamental in terms of proper retinal function 
[Bok, 1993; Krstić, 1997].  
Retinal tissue contains both neuronal and non-neuronal elements, which work together to 
enable vision and to maintain retinal homeostasis 
Neurons: The retina contains five types of neurons: (1) photoreceptors (cone and rod cells); 
(2) bipolar cells (of the flat, midget, and rod types); (3) horizontal cells; (4) amacrine cells; 
and, (5) ganglion cells [Krstić, 1997]. Photoreceptors are photosensitive neurons that absorb 
photons from the field of view and, using a specific complex biochemical pathway, turn this 
information into electrical signals via the process termed phototransduction [Sung & 
Chuang, 2010] to bipolar cells. Horizontal cells connect rods and cones that horizontally 
convey information within the retina. The horizontal cells receive input from one or more 
photoreceptors and transmit information to other photoreceptors and to bipolar cells [Poche 
& Reese, 2009]. Amacrine cells modulate signaling between bipolar and ganglion cells. The 
amacrine cells receive inputs from one or more bipolar cells and contact ganglion cells that 
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in turn accept inputs from other bipolar cells. As with the horizontal cells, amacrine cells 
release inhibitory neurotransmitters in a graded manner, hyperpolarizing ganglion cells 
with which they are they contact, rendering it less likely that such cells will fire action 
potentials [Forrester, 2002]. Bipolar cells transmit signals from photoreceptors or horizontal 
cells, and pass such signals on to ganglion cells either directly or indirectly (via amacrine 
cells). Ganglion cells are the only retinal cells that produce action potentials; the release of 
glutamate by (a) bipolar cell(s) in contact with such cells is sufficient to depolarize the 
ganglion cells to threshold levels. These action potentials are transmitted to the brain via the 
fibers of the optic nerve. 
 

 

Fig. 1. Several layers can be resolved and have been labeled in the optical coherence 
tomography image of a normal human retina: Retinal pigment epithelium (RPE), inner 
segment/outer segment intersection of photoreceptors (IS/OS), external limiting layer 
(ELM), outer nuclear layer (ONL), outer plexiform layer (ONL), nerve fiber layer (NFL), 
ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL) 

Some retinal cells have regulatory, nutritional, and immunomodulatory functions 

Glial cells (Müller cells and astrocytes) are non neuronal cells that serve as an interface 
between neurons and the vasculature and provide support and nutrition, maintain 
homeostasis of the retinal extracellular milleu [Bringman et al., 2006]. Müller cells form the 
majority of glial cells within the retina, and are arranged in a parallel manner. These cells 
span the entire thickness of the retina, projecting from the vitreous humor (the viscous fluid 
in the back of the eye) to the rear of the retina. These tubular cells wrap all retinal neurons 
and act as living optical fibers within the eye, funneling light to rod and cone cells [Franze et 
al., 2007]. Astrocytes are confined principally to the retinal fiber layer, wherein they wrap 
ganglion cell axons and axon bundles that ultimately form the optic nerve. Other astrocytes 
line the inner surface of the retina and surround the blood vessels. Astrocytes vary in 
morphology, depending on their precise retinal location and their interaction with 
surrounding cells [Trivino et al., 1992; Chang & Stone, 1991]. 
Retinal pigment epithelium cells (also termed melanosomes) are cuboidal cells that are 
arranged in a monolayer, and are easily recognized because they are pigmented [Bok, 1993]. 
Microglial cells are phagocytic cells within the retina that play important roles in defense 
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against invading microorganisms, in immunoregulation, and in tissue repair [Chen et al., 
2002]. Vascular endothelial cells and pericytes provide nutritional support to, and aid in 
waste product removal from, the inner retina [Hosoya & Tomi, 2005]. 

Retinal topography 

The retina may be divided into several regions that differ in structure; these regions contain 
neurons of different types. The macula lutea is in the center of the retina, and includes the 
fovea and surrounding tissue. The fovea is a small depression within the retina. In the 
fovea, the retina is thinner than elsewhere, consisting only of cones that are longer and 
thinner than the other cones of the eye. All neurons and capillaries originating elsewhere 
become compacted around the edges of the fovea. In the region surrounding the fovea, a 
gradual decrease in cone density is apparent, whereas rod density gradually rises. Finally, 
the eye contains a region in which there are no receptors, but rather an accumulation of 
ganglion cell axons, forming the optic nerve. This region, termed the optic disc, contains the 
point where the optic nerve emerges from the retina. Because no photoreceptors are present 
in this region, a break in the visual field (the so-called blind spot) may be noted. The optic 
disk is also the point of entry of the major blood vessels that supply the retina [Forrester, 
2002]. 

2. Glaucoma and retinal ganglion cell death  

Glaucoma is a neurodegenerative disease characterized by progressive, irreversible loss of 
vision [Gupta & Yücel, 2007]. Retinal ganglion cells are the only neurons affected in 
glaucoma; cells of other regions of the inner and outer retina remain unaffected, as 
confirmed by electroretinographic tests and histopathological studies [Aldebasi et al., 2004; 
Glovinsky et al., 1991; North et al., 2010; Quigley et al., 1998]. 
Retinal ganglion cells (RGCs) are the output neurons of the retina. The dendrites of these 
cells receive synapses from bipolar and amacrine cells in the inner plexiform layer. The cell 
somata reside in a narrow ganglion cell layer, and the axons of the cells travel through the 
optic nerve to retinorecipient structures in the brain, wherein the axons form glutamatergic 
synapses [Masland, 2001; Mu & Klein, 2004; Nassi & Callaway, 2009; Wassle, 2004]. 
Although RGCs share many features with other neurons, the former cell type vary 
significantly in terms of size, interconnections, and responses to visual stimulation. More 
than 12 types of ganglion cells have been distinguished in the mammalian retina studies 
[Rockhill, 2002]. It remains unclear whether some ganglion cells are more susceptible to 
apoptosis than are others, under glaucomatous conditions [Quigley, 1999]. Early studies 
indicated that large ganglion cells (magnocellular ganglion cells) and nerve fibers were 
selectively lost in experimental glaucoma models in nonhuman primates, and in human 
glaucoma patients [Quigley et al., 1988]. In support of these observations, another work 
found selective loss of anterograde axonal transport to the magnocellular layer of the dorsal 
lateral geniculate nucleus, which is the region containing the largest RGCs [Dandone et al., 
1991]. There are also observations that doesnot support the hypothesis that selective loss of 
RGC occurs in glaucoma [Morgan et al., 2000]. 
The axons of RGCs are non-myelinated from the retina to the lamina cribrosa, but become 
myelinated thereafter. In unmyelinated axons, action potentials propagate by depolarization 
along the membrane; this process consumes more energy than does the saltatory conduction 
of myelinated axons [Wang et al., 2003]. Therefore as an adaptive process to the increased 
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energy need, the axons of RGCs are characterized by many varicosities filled with 
mitochondria [Wang et al., 2003].  
RGCs have very long axons, thus increasing cell vulnerability to various disorders. Axon 
regions are likely to encounter metabolic stress such as hypoxia, and to be exposed to free 
radicals and mechanical compression (e.g., in the lamina cribrosa). These insults induce 
RGC death [Schmidt et al., 2008]. To deal with these stressors, RGCs have a high antioxidant 
capacity (attributable to endogenous antioxidant defenses including expression of all of 
catalase, superoxide dismutase, glutathione peroxidase, and peroxiredoxins) compared with 
other neurons [Fatma et al., 2008; Kortuem et al., 2000], but the cells remain more vulnerable 
to stressors than, for example, Müller or vascular cells. [Schmit et al., 2008]. 

2.1 In glaucoma, the mechanisms of cell death differ in retinal ganglion cell bodies 
and axons 
2.1.1 Cell body death 
RGC cell body death occurs via apoptosis or necrosis [Farkas & Grosskreutz, 2001; Kuehn et 
al., 2005; Tatton et al., 2001]. Apoptosis is an active genetic process whereby a cell undergoes 
an organized series of events culminating in self-destruction. All animal cells are 
programmed to self-destruct when they are not further required, or when damaged. 
Because cells play an active role in their own death, apoptosis is often termed “cell suicide”. 
Apoptosis is in play during development and neurodegeneration, facilitating cell 
destruction without affecting neighboring cells that are destined to survive. 
Whatever the initiating insult, actual cell death (the last step in apoptosis) features a final 
common pathway characterized by an orderly pattern of inter-nucleosomal DNA 
fragmentation, chromosomal clumping, cell shrinkage, and membrane blebbing. Eventually, 
the cell dies and marks itself for phagocytosis by nearby macrophages [Mace & Riedl, 2010]. 
Necrosis is another mechanism of cell body death. It is accidental in nature, and serves to 
eliminate cells that have been severely damaged. Unlike apoptosis, necrosis is a passive 
process during which the cell membrane is rapidly destroyed and toxic cellular components 
spill into the extracellular space, potentially injuring nearby cells [Dawson, 2005]. A low 
ATP concentration or impaired ATP generation predisposes cells to necrosis [Nicotera et al., 
1998]. The cell membrane becomes permeable early during this process. Organelles may 
become dilated, and ribosomes dissociate from the endoplasmic reticulum. The nucleus 
disintegrates later. Proteases play major roles in cell degradation during necrosis. As a 
consequence, cellular contents are libareted into the intracellular space and evoke an 
inflammatory response (Fig. 2). Although a growing body of evidence supports the idea that 
apoptosis serves as the primary mechanism of ganglion cell death in glaucoma patients, 
necrosis contributes to cell death in the late phase of the disease, as observed in rats 
subjected to optic nerve transection [Bien et al., 1999]. RGC necrosis also has been reported to 
occur immediately after ischemic injury induced by imposition of high-level intraocular 
pressure [Joo et al., 1998] and under intense excitotoxic conditions [Bonfocco et al., 1995]. 

2.1.2 Axon death 

Axon death occurs via either of two basic mechanisms: Wallerian degeneration and die-back 
[Borgens, 1988; Coleman & Freeman, 2010]. 
Wallerian degeneration, classically defined as degeneration of axons distal to an injury, is 
generally noted in severely damaged axons, and results in atrophy and rapid loss of 
structure throughout the entire length of the axon. At the cellular level, initial segmentation 
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of the myelin sheath is apparent, followed by swelling of the axolemma, disorganization of 
neurofilaments and microtubules, and mitochondrial swelling. The remaining axonal 
fragments then undergo phagocytosis by glial cells and macrophages. The cell body can live 
for a number of days, but ultimately undergoes apoptosis [Saxena & Caroni, 2007]. 
 

Phagocytosis of
apoptotic bodies

Apoptotic bodies

Cell shrinks, chromatin
condensation

NECROSIS

Normal Cell

APOPTOSIS

Cell swell, lytic enzymes
released

The cell membrane ruptures

Activation of the
immune system

INFLAMMATION ABSENCE OF INFLAMMATION
 

Fig. 2. Scheme representing necrosis and apoptosis 

Die-back occurs in axons that experience more moderate injury, and is characterized by 
slower retrograde degeneration with a distal-to-proximal progression (thus from the 
synapse to the soma) [Seif et al., 2007]. Milder insults may allow greater functional 
connectivity between the soma, proximal and distal axonal segments and die-back death can 
occur over several months. 

2.2 Morphological features of apoptosis and apoptotic process in RGCs 

Examination of apoptotic cells by light microscopy allows evaluation of morphological 
features including condensation of chromatin and cytoplasm, cell fragmentation, and 
apoptotic body formation [Kerr et al., 1972]. 
Electron microscopy has shown that the earliest detectable ultrastructural change of 
apoptosis is chromatin condensation, which commences peripherally along the nuclear 
membrane and leads to the formation of a crescent or ringlike structure [Cummings et al., 
1997]. This is followed by nuclear changes including convolution of the nuclear outlines and 
peripheral nuclear chromatin breakdown. Early in apoptosis, and contemporaneously with 
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the described nuclear changes, cells cease to contact neighboring cells, usually accompanied 
by loss of special membrane structures such as microvilli and desmosomes, and apoptotic 
cells begin to exhibit protrusions of the plasma membrane [Wyllie,1997]. 
Apoptosis is accompanied by cell volume decreases, cell density increases, more compact 
cytoplasmic organelles, and convolution of both cellular and nuclear outlines [Cummings et 
al., 1997; Kerr et al., 1994]. Concommitantly, cytoplasmic changes may be detected, including 
aggregation of cytoskeletal filaments, clumping of ribosomal particles, and rearrangement of 
the rough endoplasmic reticulum. Cytoplasmic and nuclear condensation is followed by 
production of numerous membrane protuberances, resulting in development of membrane-
bound apoptotic bodies with well-preserved cytoplasmic organelles [Cummings et al. 1997; 
Kerr et al., 1994; Wyllie, 1997]. Finally, the protrusions detach from the cells, forming 
apoptotic bodies densely packed with cellular organelles and nuclear fragments, which are 
phagocytosed by neighboring cells in the absence any inflammatory reaction. The latter 
feature is crucial, because it allows cell death to occur without damage to adjacent cells 
[Cummings et al., 1997; Kerr et al., 1994; Wyllie 1997]. 

Biochemical features of apoptosis 

Cleavage of chromosomal DNA into oligonucleosomes is a biochemical hallmark of 
apoptosis. During the early stage of the process, DNA is broken into large fragments (50-300 
kb in size) [Bortner et al., 1995], which are subsequently cleaved into nucleosomal units (180 
bp in size) [Zhang et al., 2010]. 
Another biochemical feature of apoptosis is expression of cell surface markers that result in 
recognition and eventual phagocytosis of apoptotic cells, but with minimal damage to 
surrounding tissue. This is achieved by externalization of phosphatidylserine from the 
normal location on the inner leaf of the plasma membrane lipid bilayer to the outer leaf 
[Bratton et al., 1997]. Normally, viable cells show asymmetric distributions of particular 
phospholipids between the inner and outer leaflets of the plasma membrane. Early in 
apoptosis, however, loss of such plasma membrane asymmetry, accompanied by 
phosphatidylserine externalization, occurs in all cell types [van Engeland et al., 1998].  
Condensation of the cytoplasmic space resulting in cell shrinkage is a universal characteristic 
of apoptosis [Wyllie, 1986]. Apoptotic cell shrinkage is associated with a decrease in [Na+]i 
and [K+]i which occurs after chromatin condensation and internucleosomal DNA 
fragmentation, and prior to apoptotic body formation [Mc Carthy & Cotter, 1997]. Coupled 
with this loss of intracellular ions, the cell may also lose the ability to take up ions, as 
exemplified by an early inhibition of the Na+/K+-ATPase in certain model systems [Bortner 
et al., 2007]. This dramatic decrease in intracellular ions results in a cellular ionic 
environment permitting the activation of various cell death enzymes including caspases and 
apoptotic nucleases. The presence of high extracellular potassium prevents cell shrinkage by 
inhibiting the efflux of this ion, indicating that the normal intracellular ionic environment 
has a repressive effect on the apoptotic process [Bortner et al., 2007]. 

2.3 The apoptotic process 

Apoptosis is an active, energy-requiring process which can be separated into three distinct 
phases: (a) signaling, (b) commitment, and (c) execution.  
In the signaling phase pro-apoptotic stimuli (ligand-induced activation of the death 
receptors, cellular stress signals etc..) initiate the sequence of events that leads to cell death. 
The commitment phase is the step by which the cell either commits to apoptosis or activates 
mechanisms stopping the signaling cascade initiated during the signaling phase. The 
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execution phase begins after the cell fully commits to apoptosis. This is the point of no 
return for the cell, which is now irreversibly committed to die. Enzyme systems become 
activated; these actions result in the biochemical and morphological features of apoptosis. 
The enzyme systems cleave proteins, externalize phosphatidylserine, and degrade DNA. 
During this phase, the cell membrane begins to bleb, forming vesicles that contain high 
concentrations of cellular components that were formerly distributed in a more widespread 
manner with the cell [Mills, 2001; Hengartner, 2000]. At the end of the execution phase, vital 
cell structures and functions are destroyed. Externalization of phosphatidylserine serves as 
an “eat-me” signal to phagocytosing cells, which ingest newly dead cells without causing 
inflammation. 

Apoptosis occurs via two major pathways: the intrinsic and extrinsic pathways 

The intrinsic pathway is initiated from within the cell when intracellular stress is sensed. 
This pathway is controlled by the balance of activity of pro- and anti-apoptotic members of 
the Bcl2 gene family and involves regulation of mitochondrial membrane permeability.  
In response to pro-apoptotic signals, cytochrome c, apoptotic protease activating factor 1 
(APAF-1), and caspase-9 are released from the mitochondrial membrane and form 
apoptosomes [Hengartner, 2000], which in turn activate caspase cascades. In contrast, the 
extrinsic pathway is initiated by cell surface signaling following binding of an extracellular 
ligand to a “death receptor”. Formation of the death-induced signaling complex (DISC) 
directly stimulates the caspase cascade via activation of caspase-8, without any mitochondrial 
involvement. Caspase-8 acts on pro-caspase-3, generating active caspase-3, which in turn 
cleaves the DNA fragmentation factor (DFF) [Hengartner, 2000]. The active (cleaved) form 
of the latter factor induces internucleosomal DNA strand cleavage at 200 bp intervals, a 
hallmark of apoptosis [Nagata, 2000]. 
 

 

Fig. 3. Intrinsic and extrinsic pathways of apoptosis 
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Links between the extrinsic and the intrinsic pathway exist at several levels (Fig 3). Upon 
death receptor triggering, activation of caspase-8 may result in cleavage of Bcl-2 interacting 
domain (BID), which in turn translocates to the mitochondria to release cytochrome c [Cory 
& Adams, 2002; Yin, 2000]. In addition, cleavage of caspase-6 (a downstream component of 
the mitochondrial pathway) may generate feedback to the receptor pathway, via cleavage of 
caspase-8 [Cowling & Downward, 2002]. The extrinsic and intrinsic pathways share a 
common endpoint at the level of caspase-3 activation [Guerin et al., 2006]. 

2.3.1 Direct signal transduction (death receptors)  

Death receptors are cell surface molecules that transmit apoptotic signals initiated by 
specific death ligands from the extra- to the intra-cellular environment, and play central 
roles in initiation of apoptosis. In addition, all death receptors contain a homologous 
cytoplasmic aminoacid sequence termed the “death domain” [Itoh & Nagata, 1993; Tartaglia 
et al., 1993]. Death receptors belong to the tumor necrosis factor (TNF) receptor family. Eight 
members of the death receptor family sharing homologous cytoplasmic death domains have 
been characterized to date; these are Fas/Apo-1/CD95, TNF-R1 [tumor necrosis factor 
(TNF) receptor 1], DR3 (death receptor 3), TRAIL-R1 (TNF-related apoptosis-inducing 
ligand receptor 1), TRAIL-R2, DR6, p75-NGFR (p75-nerve growth factor receptor), and 
EDAR (ectodermal dysplasia receptor) [Lavrik et al., 2005]. 
Binding of a death-inducing ligand to the appropriate receptor can result in release of 

ceramide, typically produced by the action of acid sphingomyelinase [Gulbins, 2003], that in 

turn rapidly forms ceramide-enriched signaling platforms within the cell membrane [Zhang 

et al., 2009]. Such platforms result in clustering of receptor molecules, which greatly 

enhances apoptotic signaling. Indeed, this effect is so marked that death receptor signaling 

in the absence of receptor clustering is rarely able to activate the full apoptotic process. 

Binding of the appropriate ligand to a death receptor typically causes a conformational 

change in the intracellular region of the receptor that in turn results in the death domain 

motif becoming accessible [Zimmermann et al., 2001]. Such exposure allows various adaptor 

proteins to bind to the receptor to form a death-inducing signalling complex (DISC). The 

adaptor proteins, such as FADD (Fas-associated death domain) contain motifs described as 

death effector domains, which permit recruitment of pro-caspases, typically pro-caspase 8, 

to the DISC [Kaufmann et al., 2002]. Activation of caspase 8 follows, and apoptosis is 

initiated within seconds after ligand binding. 

TNF receptor-1, a death receptor, has recently been identified to be one mediator of the RGC 

death evident in patients with various neurodegenerative injuries [Tezel et al., 2004]. 

Immunohistochemical studies and in situ hybridization have shown that the level of TNF 

receptor-1 is greater in glaucomatous eyes than in age-matched control eyes [Tezel et al., 

2001]. RGCs of glaucoma patients were usually positive when immunostained for TNF-α 

receptor-1. It is tempting to speculate that the relatively selective expression of this receptor 

in RGCs may in part explain the increased vulnerability of such cells to apoptosis during 

glaucomatous optic nerve degeneration [Tezel et al., 2001]. 

Fas is a transmembrane protein expressed by numerous cells. Components of the FAS/FAS-

ligand system represent the prototypical receptor-mediated apoptosis pathway [Love, 2003]. 

Fas-Associated protein with death domain (FADD) is an adaptor molecule that bridges the 

Fas death receptor, to caspase-8. In rats with elevated intraocular pressure, FADD 

immunoreactivity was evident in Müller glial cells and RGCs [Ju et al., 2006].  
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2.3.2 Mitochondrial abnormalities 

Mitochondrial dysfunction leads to RGC death via caspase-dependent and -independent 
pathways, initiated by the loss of mitochondrial membrane potential, release of cell death 
mediators, and/or oxidative stress [Tezel et al., 2004]. Members of the Bcl-2 protein family 
regulate the mitochondrial pathway. This protein family is subdivided into two protein 
groups: anti-apoptotic proteins, such as Bcl-2 and Bcl-XL; and pro-apoptotic multidomain 
proteins, such as BAX and “BH3 domain-only” proteins [Antonnsson, 2001]. Mitochondrial 
membrane integrity is maintained by the actions of the anti-apoptotic group members. 
Internal stimuli from cell damage sensors (e.g., p53) can stimulate mitochondrion-driven 
apoptosis by activation of the pro-apoptotic proteins. Protein p53 and members of the Bcl-2 
family are active in retinal ganglion cells in glaucoma [Nichells, 1999]. 
Protein localization studies suggest that, upon activation of cell death, Bcl-2-associated X 
protein (BAX) is recruited from the cytoplasm to the mitochondrial outer membrane 
[Nichells, 1999]. The transition to membrane permeability and the release of cytochrome c 
are critical events in terms of the subsequent steps taken toward apoptosis. Release of 
cytochrome c activates the caspase cascade via protein association with pro-caspase 9 and 
apoptosis protease activating factor-1 (Apaf-1) [Adams & Cory, 2007; Danial & Korsmeyer, 
2004].  
Several studies have found that BAX is a major effector of apoptotic ganglion cell death in 
the retina after exposure to ischemia, excitotoxicity, or axotomy; and during retinal 
degeneration [Chen et al., 2003; Isenmann et al., 1997; Isenmann et al., 1999; Zhang et al., 
2002]. Complete BAX deficiency of the DBA/2J mouse line prevented RGC somal death 
during glaucoma development [Libby et al., 2005].  

Mitochondrial permeability transition pores (MPTPs) 

The mitochondrial permeability transition pore (MPTP) is a pore protein that spans the 
inner and outer mitochondrial membranes, allowing the passage of any molecule <1,500 Da 
in size [Crompton et al., 1987]. MPTP induction can lead to mitochondrial swelling and cell 
death, and plays an important role in some types of apoptosis. Mitochondrial calcium 
overload, oxidative stress, adenine nucleotide depletion, depolarization, and/or elevated 
phosphate concentration, results in opening of the MPTP. This leads to osmotic swelling of 
the mitochondrial matrix as water influx is followed by compression of the intercristal 
space. It is presumed that cytochrome c and other apoptogenic factors, including apoptosis-
inducing factor (AIF), are released through the pores, [Zoratti et al., 2005] although the 
mechanism of mitochondrial membrane permeabilization remains unclear. 

Release of cytochrome c 

Cytochrome c is an electron carrier of the respiratory chain, normally located in the space 
between the inner and outer mitochondrial membranes. The protein is released by the 
mitochondria to the cytosol in response to pro-apoptotic stimuli. Such release activates the 
caspase-dependent apoptotic pathway. Once in the cytosol, cytochrome c forms a complex 
with apoptotic protease-activating factor 1 (APAF-1) and caspase-9 to form the apoptosome 
[Cain et al., 2002], which initiates a cascade of proteolytic cleavages. 

2.4 Signaling mechanisms protecting RGCs from apoptosis 

Bcl-2, an anti-apoptotic protein of mitochondria, has been shown to inhibit cytochrome c 
release and to protect against oxidative stress-induced apoptosis [Takahashi et al., 2004]. The 
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actions of members of the Bcl-2 protein family thus counterbalance the effects of 
proapoptotic BAX proteins [Antonnsson, 2001]. When BAX species are predominant, 
apoptosis occurs. However, if Bcl-2 levels are higher, cell survival is favored. For example, if 
a rise in intraocular pressure leads to neurotrophin insufficiency, this will in turn cause 
downregulation of Bcl-2 and upregulation of BAX, resulting in apoptosis. 

2.5 Killing of RGCs by activated proteolytic caspases 

Many signals and pathways cause apoptosis, but the only cell killing mechanism is the 
organized degradation of cellular organelles by activated proteolytic caspases. The enzymes 
belong to the cysteine proteases that upon activation through the intrinsic and/or extrinsic 
pathways destroy essential cellular proteins. In a healthy cell, caspases are held in inactive 
zymogenic states, thus as pro-caspases, and do not become functional until proteolytically 
processed. Caspases can be divided into two groups; the initiator (e.g., caspases 8 and 9) and 
effector (e.g., caspases 3, 4, and 7) caspases [Alenzi et al., 2010]. Initiator caspases activate 
effector caspases in response to specific cell death signals, and effector caspases in turn 
cleave other protein substrates within the cell resulting in apoptotic process [Chang & Yang, 
2000]. 
Caspase activation in mammalian cells is mediated via two main routes, often referred to as 
'the intrinsic pathway and 'the extrinsic pathway [Hengartner, 2000]. Enzymes at the upper 
end of the cascade include caspase-8, 10 and caspase-9. Caspase-8 is the initial caspase of the 
extrinsic pathway, thus representing the cellular response to triggering of receptors with 
death domains. While caspases 8 and 10 act as initiator caspases of the extrinsic apoptosis 
pathway, caspase 9 acts as an initiator caspase of the intrinsic apoptosis pathway [Kuida K. 
2000]. The intrinsic pathway commences with release of cytochrome c from mitochondria, 
which then interacts with apoptosis protease activating factor-1 (Apaf-1), resulting in self-
cleavage and activation of caspase-9. Caspase 3 is considered to be the main effector caspase 
involved in both intrinsic and extrinsic pathways. Caspases-3, -6, and -7 are downstream 
enzymes that are activated by upstream proteases, and act to cleave cellular targets. These 
caspases are responsible for destruction of key cytoskeletal proteins, causing the 
morphological changes typically observed in cells undergoing apoptosis. Caspases activate 
DNAses, inhibit DNA repair enzymes, and break down nuclear structural proteins 
[Kitazumi & Tsukahara  2011]. 
To prevent unnecessary cell death, cells synthesize inhibitors of apoptosis proteins (IAPs); 
these proteins are grouped into a family that modulates initiator and effector caspase 
activity. 
Several studies have found that caspase-3 is involved in the apoptotic death of RGCs 
induced by ischemia [Lam et al., 1999; Tezel & Wax, 1999], excitotoxicity [Tezel & Wax, 
1999], and chronic ocular hypertension [McKinnon et al., 2003]. Inhibition of caspase-3 
activity reduced the level of apoptotic cell death induced in retinal cells by either 
excitotoxicity or ischemia [Lam et al., 1999, Chen et al., 2001].  

3. Mechanisms of RGC death 

3.1 Mechanical stress  

Optic nerve axons exit the eye at the lamina cribrosa. At this site, the glial-wrapped axon 
bundles are confined within the rigid pores of the laminar cribriform plates, termed the 
lamina cribrosa pores. Axon bundles are thought to be vulnerable to mechanical stress in the 
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region of passage through the laminar pores. It has been suggested that compression at the 
level of the lamina cribrosa (often caused by elevated intraocular pressure) damages RGC 
axons [Quigley & Addicks, 1981]. Although differences in lamina cribrosa pore shape in 
glaucomatous eyes have been observed in glaucoma patients, it remains unknown whether 
such alterations precede the onset of RGC loss [Tezel et al, 2004]. 
It is hypothesized that the force exerted by extrinsic intraocular pressure on the optic nerve 
results in backward bowing of laminar support tissues, distortion of laminar plates, 
misalignment of laminar pores, and nerve cell damage caused by direct mechanical 
compression or interruption of axoplasmic flow [Quigley et al., 1980]. It is also possible that 
mechanical distortion of extracellular matrix plates contributes to glaucoma, as blood 
vessels are thereby affected [Quigley & Addicks, 1981]. Importantly, the extracellular matrix 
plates of the lamina are covered by astrocytes that provide the axons with support that is 
both neurotrophic in nature and otherwise. 
Elevated intraocular pressure may obstruct the retrograde transport that is thought to 
inhibit delivery of neurotrophic substances to RGCs, thereby triggering apoptosis [Quigley, 
1999]. An alternative hypothesis is that intraocular pressure elevation alters glial cells in 
some manner, resulting in damage to RGC axons [Hernandez et al., 2000]. Loss of glial 
support functions may also be important in terms of neuronal compromise [Lappe & Siefke, 
2003]. 
In addition, RGC death induced by elevated intraocular pressure involves caspase activation 
(including that of caspases-3,8 and -9) in experimental rat models of glaucoma [Hanninen et 
al., 2002; Huang et al., 2005; McKinnon et al., 2002;].  

3.2 Hypoxia-ischemia 

Dysregulation of blood flow, causing tissue hypoxia, either secondary to or independent of 
intraocular pressure elevation, has been suggested to cause retinal damage in glaucoma 
patients [Cioffi,2001; Flammer et al., 2002; Osborne et al., 2001]. The structural and 
functional integrity of the retina depends on a regular supply of oxygen. The inner retinal 
layers exhibit the highest sensitivity to hypoxic challenge, whereas the outer retina is more 
resistant to hypoxic stress [Kaur et al., 2008]. 
RGCs have been reported to be particularly sensitive to acute, transient, and mild systemic 
hypoxic challenge [Kergoat et al., 2006]. RGC death has been found to occur in many 
different models of induced retinal ischemia [Adachi et al., 1996, Lafuente et al., 2002]. 

Analysis of the expression of a hypoxia-induced transcription factor, HIF-1α, the synthesis 
of which is tightly regulated by cellular oxygen concentration, has provided direct evidence 
that hypoxia occurs in the retina and optic nerve head of glaucomatous eyes, and hypoxic 
signaling is likely to be one pathogenic mechanism involved in glaucomatous 

neurodegeneration [Tezel & Wax, 2004]. Hypoxia induces HIF-1α synthesis; the target genes 
of this transcription factor include those encoding vascular endothelial growth factor 
(VEGF) and nitric oxide synthase (NOS) [Levy et al., 1995]. NOS is the the enzyme 
responsible for production of nitric oxide (NO), an important cellular signaling molecule. 
Upregulated expression of VEGF and NOS in the retina has been reported following 
hypoxic injury [Kaur et al., 2006], as well as in the glaucomatous retina [Tezel & Wax, 2004]. 
NO synthesis by NOS contributes to the cytotoxicity that culminates in cell death and axonal 
damage. In addition to generating free radicals, NO induces the pro-apoptotic cascade by 
enhancing phosphorylation of Bcl-2 [Mishra et al., 2004; Seminara et al., 2007], which in turn 
results in the loss of anti-apoptotic potential.  
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Hypoxia-ischemia causes accumulation of reactive oxygen species (ROS), which have been 
shown to be cytotoxic to RGCs [Tezel & Yang, 2004]. ROS are chemically-reactive molecules 
containing oxygen. ROS cause necrotic cell death via direct oxidative damage to cellular 
constituents. ROS also trigger apoptotic death, as they participate in the signal transduction 
pathway characteristic of apoptosis [Kortuem et al., 2000, Levkovitch-Verbin et al., 2000, 
Lieven et al., 2003]. Hypoxia activates microglia, the immune effector cells of the retina, 

resulting in release of TNF-α (an inflammatory cytokine) [Kaur et al., 2008]. 
Abnormally high-level release of the excitatory amino acid glutamate under hypoxic-
ischemic conditions has been implicated in hypoxic and ischemic neuronal death 
[Benveniste et al., 1984], and glaucoma [Sucher et al., 1997]. RGCs are very sensitive to the 
toxic effects of elevated glutamate, but the mechanism by which this response is mediated 
remains unclear. Upon hyperstimulation of one or more glutamate receptors, neuronal cell 
death is induced by excitotoxins; the process is complex and is not yet fully understood. 
Several studies have found that both the apoptotic and necrotic pathways of cell death can 
be activated under such conditions [Ankarcrona et al., 1995]. 

3.3 Free radical-induced damage 

The source of reactive oxygen species (ROS) may be either exogenous (the extracellular 
fluid) or endogenous. ROS are created in the eye by sunlight, mitochondrial respiration, and 
intra- and extra-cellular metabolic reactions [Roth, 1997]. The major producers of ROS in 
RGCs are mitochondria. The lamina cribrosa contains more mitochondria than are present 
in other regions of the RGC axon. As the number of mitochondria increases, more oxygen is 
consumed, and ROS synthesis rises. ROS initiate many metabolic cascades that have a wide 
variety of downstream effects. In vitro studies with RGC-5 cells (RGC-5 is a clonal rat RGC 
line) showed that oxidative stress perturbs calcium homeostasis, activates pro-apoptotic 
caspases, depletes glutathione levels, and increases the extent of DNA fragmentation, 
suggesting that a final common pathway of oxidative stress-induced cell death may exist 
[Maher & Hanneken 2005a, Maher & Hanneken 2005b]. 

3.4 Excessive glutamate stimulation  

Glutamate, the excitatory neurotransmitter of the retina, is released by photoreceptors, 

bipolar cells, and ganglion cells, and mediates the transfer of visual signs from the retina to 

the brain [Wong et al., 2007]. However, when glutamate levels are elevated, neuronal death 

can occur via either apoptosis or necrosis [Ankarcrona et al., 1995]. Thus, appropriate 

clearance of synaptic glutamate is required if retinal excitatory synapses are to function 

normally, and to prevent neurotoxicity. Glial cells surround glutamatergic synapses; such 

cells express glutamate transporters and the glutamate-metabolizing enzyme glutamine 

synthetase. Together, these enzymes convert glutamate to the non-toxic amino acid 

glutamine [Bringmann et al., 2009].  

Glutamate interacts with numerous receptor subtypes; these fall into two major classes. One 
class is coupled to G-proteins (the metabotropic class), the other class connect directly to 
transmembrane channels (the ionotropic class, including the amino-methyl-propionic-acid 
[APMA], NMDA, and kainate glutamate receptors). The toxic effects of elevated glutamate 
levels are predominantly mediated by overstimulation of receptors for the glutamate analog 
N-methyl-D-aspartate (NMDA). Activation of NMDA receptors by glutamate results in 
overloading of intracellular Ca2+, which in turn activates calcium-dependent enzymes and 

www.intechopen.com



 
Retinal Ganglion Cell Death 

 

45 

leads to principally necrotic cell death [Shen et al., 2006]. Excess glutamate, which may result 
from ischemia, can trigger apoptosis. It has been shown that glutamate, acting via the 
ionotropic receptors, significantly elevates the levels of neuronal nitric oxide synthase 

(nNOS), TNF-α, and interleukin-1β [Kaur et al., 2009]. This results in influx of Na+ and Cl- 
ions, in turn inducing osmotic swelling and glutathione depletion. 
Glutamate release has been implicated as a mechanism of RGC death in glaucoma [Levin & 
Peeples 2008, Osborne et al., 1999, Levkovitch-Verbin et al., 2001]. Although numerous 
studies have examined the role played by glutamate in acute ischemia, the relevance of 
glutamate excitotoxicity in glaucoma remains doubtful. 

3.5 Activated glial cells 

Microglial and macroglial cells (Müller cells and astrocytes) have important 
immunoregulatory functions and control the extracellular environment of the optic nerve 
head and retina. In the optic nerve, glial cells include astrocytes, oligodendrocytes (located 
behind the lamina cribrosa), and microglia [Johnson & Morrison, 2009]. In the retina, Müller 
cells and astrocytes are predominant. Under normal conditions, glial cells support neuronal 
function via a variety of mechanisms including structural and nutritional roles as well as the 
removal of ions and neurotransmitters from the extracellular space [Johnson & Morrison, 
2009].  
It is possible that activation of glial cells in glaucomatous eyes serves primarily to support 
neuronal function. However, at some point, triggered by the prolonged stress associated 
with glaucoma, a shift in cell function seems to occur; the cells are no longer supportive but 
rather damage neuronal tissue. The injury involves both mechanical insult and changes in 
the microenvironment. In addition, a growing body of evidence suggests that, under 
glaucomatous stress conditions, glial cells may even become neurodestructive, releasing 

increased amounts of neurotoxic substances including TNF-α and nitric oxide (NO) [Tezel, 
2006].  
Astrocytes become reactive in response to various stimuli, including elevated intraocular 
pressure, excitotoxicity, and retinal ischemia [Neufeld & Liu 2003, Hernandez et al., 2008]. 
Reactive astrocytes in glaucomatous optic nerve heads apparently play important roles in 
the development of local neurotoxicity, confined to the retinal ganglion cell axons, by 
producing excessive levels of NO in patients with glaucomatous optic neuropathy [Liu & 
Neufeld 2000]. The use of inhibitors of nitric oxide synthase, such as 3-aminoguanidine, 
reduced RGC loss in rat eyes with elevated intraocular pressure [Neufeld et al., 1999]. 
Chronic activation of retinal and optic nerve head glia in glaucomatous eyes also involves 
activation of the antigen-presenting abilities of such cells, thereby facilitating initiation of an 
autoimmune process via antigen presentation [Tezel et al., 2007]. 
In glaucoma patients, microglia become activated and redistributed within the optic nerve 
head [Neufald et al., 1999], after which cytokines and chemokines are synthesized [Block 
2007, Kim 2005]. However, the influence of microglial factors on other retinal cells, including 
RGCs, is unclear, although such interactions may be relevant to glaucoma pathology. This 
aspect of the field merits further study. 

3.6 Inflammatory cytokines (tumor necrosis factor-α and NO) 

Glial production of tumor necrosis factor- α (TNF-α) is increased, and the level of TNF 
receptor-1 upregulated, in RGCs and their axons in glaucomatous donor eyes [Tezel G, 
2008]. The two main subgroups of the TNF receptor superfamily, TNF-R1 and TNF-R2, 

www.intechopen.com



 
Glaucoma - Basic and Clinical Concepts 

 

46 

recognize both the membrane-bound and soluble forms of TNF-α. The current view of TNF-

α-mediated signaling is that binding of the factor to TNF-R1 promotes neuronal cell death 
whereas messages from TNF-R2 trigger proliferative and regulatory signals promoting cell 
survival. Establishment of a critical balance between the considerable variety of intracellular 

signaling pathways determines whether an RGC will die or will survive exposure to TNF-α. 
This factor, secreted by stressed glial cells within glaucomatous tissues, can induce RGC 
death via induction of a receptor-mediated caspase cascade, mitochondrial dysfunction, 
and/or oxidative damage. In addition to direct neurotoxic effects on RGCs and axons 

thereof, TNF-α signaling is likelyto contribute to secondary degeneration of primarily 
uninjured RGCs [Tezel G, 2008].  

TNF-α can induce glial NO production thus the extent of excitotoxic injury. NO induces the 
proapoptotic cascade in hypoxic neural tissues by enhancing phosphorylation of Bcl-2 
[Mishra et al. 2004]. The anti-apoptotic potential of Bcl-2 is lost because the protein can no 
longer heterodimerize with the pro-apoptotic protein BAX, resulting in BAX-mediated 
activation of caspases and initiation of apoptosis. Other mechanisms by which NO may 
contribute to cytotoxicity include peroxynitrite-mediated oxidative injury, DNA damage, 
and energy failure [StClair et al., 1997].  

Involvement of TNF-α in the innate immune response may also have implications in terms 

of axonal degeneration in glaucomatous eyes. TNF-α signaling may be associated with 

axonal dysfunction and Wallerian degeneration. One function of TNF-α during the latter 
type of degeneration has been suggested to be induction of macrophage recruitment for 
debris removal [Tezel G, 2008].  

TNF- α also activates matrix metalloproteinases, which are involved in tissue remodeling 
within the glaucomatous optic nerve head. The matrix metalloproteinases are a family of 
proteolytic enzymes secreted by glial cells, and are capable of degrading almost all 
components of the extracellular matrix. The intensity of immunostaining for matrix 
metalloproteinases (MMP-1, MMP-2, and MMP-3), was greater in glaucomatous optic nerve 

heads compared with controls [Yan X et al., 2000]. TNF-α induced matrix metalloproteinase 
activity has also been shown to facilitate macrophage recruitment by nerves injured during 
delayed axonal degeneration [Tezel G, 2008]. 

TNF- α stimulates endothelin-1 synthesis and secretion in optic nerve head astrocytes [Tezel 
G, 2008]. Endothelin-1 is a vasoconstrictor peptide and along with nitric oxide (NO) regulate 
optic nerve head, retinal, and choroidal blood flow. Exposure of retinal ganglion cells 
(RGCs) or RGC-5 cells, a transformed cell line, to endothelin-1 causes apoptic cell death [ 
Salvatore & Vingolo, 2010] 

4. Axonal compromise  

The human RGC axon travels a distance of approximately 50 mm from the cell body to the 
target synapse. On leaving the eye, axons turn through 90° to enter the optic nerve head and 
then traverse the lamina cribrosa to enter the retrobulbar optic nerve [Morgen, 2004]. The 
lamina cribrosa provides structural and functional support to the RGC axons as they pass 
from the relatively high-pressure environment in the eye to a low-pressure region in the 
retrobulbar cerebrospinal space. Within the lamina cribrosa, axonal viability requires 
adequate delivery of nutrients (assessed in terms of lamellar capillary volume flow) and 
sufficient diffusion of such nutrients (from lamellar capillaries across endothelial cell 
basement membranes, through the trabecular extracellular matrix, and across astrocyte 
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basement membranes) to the centers of axon bundles. The route taken by individual axons 
can place them at increased risk of damage [Morgen, 2004]. 
Specifically, compartmental degeneration of axons, synapses, and dendrites can occur 
independently of somal loss [Whitmore et al., 2005]. Using a murine model of inherited 
glaucoma, Libby et al [2005] showed that axonal loss occurred independently of somal loss, 
not just in a spatial sense but via a distinct molecular pathway. The cited authors also found 
that distinct degeneration pathways were activated in different regions of retinal nerve cells. 
It was noted that appropriate biochemical function of the nerve cell body, which resides in 
the retina, required the pro-apoptotic protein BAX (the Bcl2-associated X protein). In 
contrast, metabolic pathway function in the part of the cell (the axon) that connects the cell 
body to the brain did not require BAX. In addition, work in a primate model of experimental 
glaucoma showed that retinal ganglion cells undergo a pattern of degeneration that 
originates in the dendritic arbor and concludes with shrinkage of the cell soma. In DBA/2J 
mice, in which intraocular pressure rises spontaneously, axons degenerate before cell 
bodies, and distal axons appear to be first affected [Schlamp et al., 2006]. 
The mechanism of vision loss in glaucoma is not understood, but various lines of evidence 
indicate that RGC axons are critical sites for early pathological changes, including retention 
of intraretinal RGC axons concomitant with axon loss in the optic nerve [Soto et al., 2008], 
retrograde degeneration as assessed via axon quantification [Schlamp et al., 2006], and 
maintenance of RGC somata under circumstances in which retrograde label is lost 
[Buckingham et al., 2008].  
These findings indicate the need to understand axon-specific degeneration pathways in 
glaucoma, suggesting, first, that distinct somal and axonal degeneration pathways may exist 
and, second, that both pathways must be to targeted to save vision. 

4.1 Axoplasmic flow 

RGCs are long projecting neurons, the axons of which form the optic nerve. As with other 
neurons, ganglion cells must possess a mechanism whereby the cell body remains informed 
of conditions along the axon and at the synapse, to allow axon size and functions to be 
maintained. This is accomplished via active axonal transport, a complex energy-driven 
process that moves molecules from the cell body to the axon terminus (anterograde 
transport) and also toward the cell body (retrograde transport). Anterograde transport can 
be divided into fast (50–400 mm/day) and slow (less than 10mm/day) transport. Fast 
anterograde transport is related to the transport of synaptic vesicles proteins, kinesins, and 
enzymes involved in the metabolism of neurotransmitters. Slow anterograde transport is 
given over to the transport of neuronally synthesised proteins that include cytoskeletal 
components, polymers, and protein complexes that are to be delivered to the axon and its 
terminal regions. Retrograde transport is classified as fast (200–400 mm/day) and is 
concerned with the movement of endosomes and lysosomes containing internalised 
membrane receptors and neurotrophins towards the cell body [Morgan, 2004]. 
Both anterograde and retrograde transport require integrity of the axonal cytoskeleton, 
which is composed of microtubules, neurofilaments, and microfilaments. Active axonal 
transport refers to the process whereby vesicles are transported along microtubules by the 
dynein and kinesin motor molecules; the kinesins drive anterograde transport and the 
dyneins retrograde transport. Kinesins typically contain two heavy chains with motor heads 
which move along microtubules via a pseudo-processive asymmetric walking motion. In 
comparison with kinesin, the size of a dynein is much larger. Dyneins don’t seem to follow 
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paths that are parallel to protofilament direction but they move across the microtubule 
surface [Ross et al., 2008]. The dynein and kinesin motor molecules acquire energy by 
hydrolysis of ATP produced by mitochondria. Active axonal transport is essential to ensure 
communication along axons and interruption thereof is potentially fatal to cells.  
Obstruction of axonal transport in RGCs compromises cell viability by preventing delivery 
of substrates, such as neurotrophic factors, that are necessary for somal survival. Such small 
growth-enhancing peptides include brain-derived neurotrophic factors (BDNFs), nerve 
growth factors (NGFs), and neurotrophin-3 (NT-3) and -4 (NT-4) [Funakoshi et al., 1993]. 
Brain-derived neurotrophin factor (BDNF) is one mediator known to be vital for the buildup 
and preservation of neurons. BDNF is transported to retinal ganglion cell bodies via 
retrograde axonal transportation, using synaptic connections within these cells. BDNF has a 
specific receptor, termed TrkB, which exists in all retinal layers except those of the 
photoreceptors and the optic nerve. Activation of TrkB directly elicits pro-survival signals 
during glaucoma progression, and rescues RGCs from death in the context of optic nerve 
axotomy or glaucoma [Bai, 2010]. Mechanical stress at the level of the lamina cribrosa 
impairs the retrograde transport of neurotrophins, including BDNF. Thus, retinal ganglion 
cell somae are deprived of the mediator and the apoptotic cascade is activated [Wong et al., 
2011]. 

4.2 Retrograde degeneration  

Wallerian degeneration generally occurs in severely damaged axons and is characterized by 
a rapid loss of axonal structure throughout the length of the axon. Die-back occurs in axons 
with more moderate injury and is characterized by a slower retrograde degeneration that 
proceeds from the synapse to the soma [Levin & Albert 2010]. Although it is not known how 
axons in a glaucomatous human eye degenerate, clues to this process have come from recent 
studies in (Wld(S)) mutant rats; suggesting that axonal degeneration in glaucoma follows a 
Wallerian-like mechanism [Beirowski et al., 2008].  
Damage to the optic nerve in mammals induces retrograde degeneration and apoptosis of 
the retinal ganglion cell (RGC) bodies. The molecular mechanisms responsible for 
transforming the repellent guidance cue from the damaged axon into a death signal that 
may affect the cell body are yet to be discovered. 
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