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1. Introduction  

The HMG-CoA lyase (HL) deficiency or 3-hydroxy-3-methylglutaric aciduria (MIM 246450) 

is an inborn error of intermediary metabolism that was first described in 1976 by Faull et al 

(Faull et al., 1976). Because its clinical manifestations, it has been included within the 

Sudden Infant Death Syndrome (Wilson et al., 1984). At present, it is considered a rare 

disease (<1/100,000 live neonates) that should be diagnosed at early age because there is a 

simple and effective treatment (Watson et al., 2006).   
HL is a mitochondrial enzyme that catalyzes the cleavage of HMG-CoA to acetyl-CoA and 
acetoacetate, which is the common final step of ketogenesis and leucine catabolism (Figure 
1). Patients with this disease suffer on the one hand, the absence of ketone bodies as 
alternative energy source of glucose and on the other hand, the accumulation of toxic 
metabolites of leucine catabolism. The most frequently affected organs are the liver and the 
brain, but the pancreas and the heart can also be involved. This chapter discusses a recent 
study of differential expression of human HL in liver, pancreas, testis, heart, skeletal muscle 
and brain that can help us to understand the consequences of this deficiency (Puisac et al., 
2010). 
It is an autosomal recessive disease caused by mutations in the HMGCL gene. The study of 
these mutations and patients´ origin helps to draw a map of incidence in which three 
countries stand out for their high frequency: Saudi Arabia (Ozand et al., 1992), Spain and 
Portugal (Menao et al., 2009).  
At present, the functional study of missense mutations is possible thanks to the knowledge 
of the structure (Fu et al., 2006) and mechanism of the enzyme (Fu et al., 2010) and also by 
the development of a method of simple and efficient expression of the protein (Menao et al., 
2009). Finally, despite the current knowledge of the disease, genotype-phenotype 
correlations are difficult to establish. 

2. HL enzyme  

HL is a 325-aminoacid enzyme that has been purified from a variety of organisms and 
tissues, including pig heart (Bachawat et al., 1955), chicken liver (Kramer et al., 1980) and 
Pseudomonas mevalonii (Scher et al., 1989). In addition to the isoform located in the 
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mitochondrial matrix, it has been described another in peroxisomes (Ashmarina et al., 
1994). The native mitochondrial isoform contains a leader peptide of 27 aminoacids at the 
N-terminal end, which guides HL towards the mitochondrial matrix, where the leader 
peptide is removed. This final isoform has a molecular mass of 31.5 kDa and an isoelectric 
point of 6.2. 
 

 

Fig. 1. Metabolic interrelationships of HL 

Human HL has 87% simmilarity with its mouse homologue, 82% with its chicken 
homologue, and 52% with P. mevalonii, and the sequence has been highly conserved 
throughout evolution (Pié et al., 2007). The cathalytic active form is a homodimer of two 
identical monomers bound by a disulphide bridge (Roberts, 1994). The human enzyme is 
very sensitive to oxidation, showing higher activity in reductive conditions. It is also 
sensitive to the conditions of pH, showing an optimum activity at alkaline pH (pH=9). HL 
activity requires the presence of a divalent cation, such as Mg+2 or Mn+2. The Mg+2 ion has 
an octahedral coordination with two water molecules, the imidazole nitrogens of catalitic 
residues His233 and His235, the carboxylate group of Asp42 and the amide oxygen of Asn275. 
Other catalytic residues in the vicinity include Arg41 and Cys266. 
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2.1 Protein structure 

The first attempt to build a 3D structural model of human 3-hydroxy-3-methylglutaryl-CoA 
lyase was based on a threading procedure using the crystallized structure of the TIM-barrel 
hisA gene from Thermotoga maritima as a template (Casals et al., 2003). The proposed model 
correspond to a (ǂǃ)8 barrel with short loops on the NH2 terminal face and, in contrast, long 
and probably non-structured loops on the COOH-terminal face of the ǃ-barrel. This model 
showed, for the first time, the structural proximity of the residues involved in the cathalytic 
activity of the protein: Arg41, Asp42, Glu72, His233 and His235, located near the cavity opened 
in the COOH-terminal face of the protein model (Figure 2). 
This model was confirmed when the cristal structure of human HL was obtained (Fu et al., 
2006). In addition to the basic TIM barrel structure, the monomer of human HL includes an 
additional polypeptide region made of residues 290-323 containing ǃ-strand 9, and ǂ-helices 
11 and 12. The active site is accessible only from the C-terminal side of the TIM barrel and 
the N-terminal barrel end is occluded. Crystal structures of the wild-type enzyme complex 
and inhibitor hydroxyglutaryl-CoA has demostrated the interaction of Arg41 and acyl-CoA´s 
C1 carbonyl oxygen of sustrate and explains why Arg41 mutations cause drastic enzyme  
deficiency (Fu et al., 2010). 
 

 

Fig. 2. Structural location of missense mutations in human HL. Blue spheres represent 
mutated residues 

The native enzyme is a dimer in solution (Tuinstra et al., 2002) that was confirmed when the 
protein was crystallized. The area of contact between monomers is formed by additional 
secondary elements that are not part of the core TIM barrel structure, ǃ-strand 9, and ǂ-
helices 11 and 12. Recently it was suggested that multiple cysteine residues influence 
covalent adduct formation in HMG-CoA lyase as well as the dependence of enzyme activity 
on reducing agent (Montgomery & Miziorko, 2011).  
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2.2 Enzymatic reaction 

The cleavage of HMG-CoA, catalyzed by the HL enzyme is the final step of ketogenesis, in 
which acetyl-CoA, mainly from the ǃ-oxidation of fatty acids, is converted to acetoacetate, ǃ-
hydroxybutyrate and acetone (Figure 1). From a chemical point of view, the enzyme 
reaction is a retro-Claisen condensation, which requires an acid and a base for catalysis 
(Roberts et al., 1996). The base abstracts a proton from the C3 hydroxyl of HMG-CoA, which 
leads to the formation of a ketone (acetoacetate) and C2–C3 bond cleavage (Figure 3). In 
addition, a transient carbanion form of acetyl-CoA, is regenerated by the acid proton. 
However, the exact identity of molecules or residues that act as base or as acid was not 
precised. Recently a water molecule, positioned between D42 and the C3 hydroxyl of bound 
sustrate has been proposed as a proton shuttle (Fu et al., 2010). 
 

 

Fig. 3. Chemical reaction catalyzed by the enzyme HMG-CoA lyase. E-B: base, E-AH acid  

2.3 Enzyme expression 

HL is widely expressed in most tissues (Clikenbeard et al., 1975) mainly because it is 

necessary not only in tissues that synthesize ketone bodies, but for the catabolism of leucine 

as well. Activity levels of this enzyme have been reported in different eucaryotes organism 

tissues: pig heart (Bachawat et al., 1955), bovine liver (Stegink & Coon, 1968) and chicken 

liver, kidney, heart, brain, ileum and muscle (Clikenbeard et al., 1975). However, its 

distribution and activity in human tissues have been limited to enzyme assay in fibroblast 

(Wanders et al., 1988b) lymphoblast (Wysocki et al, 1976b) liver biopsy (Robinson et al,1980) 

amniocytes and chorionic villi (Wanders et al., 1988b) or pancreatic islets (MacDonald et al., 

2007). 

Recently, it has been reported the first study of mRNA levels, protein expression and 

enzyme activity of human HMG-CoA lyase in kidney, pancreas, testis, heart, skeletal muscle 

and brain (Puisac et al., 2010). The highest HL activity was found in liver and pancreas was 

the second with more activity (Figure 4c). This finding indicates that the pancreas has a high 

ketogenic capacity and suggests that if ketone bodies regulate the release of insulin (Biden & 

Taylor, 1983; Malaisse et al., 1990; Rhodes et al., 1985) some of them could be produced in 

the pancreas. HL activity in kidney was high and moderately high in testis and skeletal 

muscle. Surprisingly in muscle, although the mRNA levels were very low (Figure 4a), 

moderate HL activity was measured. Similar cases are reported in the literature (Lewin et 

al., 2001), which suggests that certain tissues may have a lower turnover of the HL protein 

versus an unstable mRNA. In testis, the low activity levels of HL compared with the high 
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enzyme expression (Figure 4b), suggest that HL activity could be regulated after translation 

in this tissue. However, very little HL is found in heart tissue and it is not present in the 

mitochondria from human brain. 

2.4 Isoforms 

Two different protein isoforms of HL have been found, which are codified by a single gene 
located in chromosome 1. While most HL is found in mitochondria, about 16-20% is located 
in peroxisomes (Ashmarina et al., 1999). To date, no satisfactory explanation has been found 
to explain this distribution. The protein found in peroxisomes is guided by the signal CKL 
tripeptide in the C-terminal end and it has 325 aminoacids, a molecular mass of 34.1 kDa 
and an isoelectric point of 7.6, which is much more basic than the mitochondrial protein 
(Ashmarina et al., 1994). As the mitochondrial isoform, it is a dimeric form and has lyase 
activity; however its role inside peroxisomes is still unknown. Probably, this is related to 
cholesterol synthesis or long chain fat acids degradation (Krisans et al., 1996). 

3. HL deficiency  

HMG-CoA lyase deficiency or 3-Hydroxy-3-methylglutaric aciduria (OMIM 246450) is a rare 
autosomal recessive genetic disorder that affects ketogenesis and L-leucine catabolism. For 
this reason, it is included within alterations of fatty acid metabolism and also within organic 
acidemias. This deficiency was first described by Faull et al in 1976 in a 7 month-old male 
with acidosis and hypoglycemia (Faull et al., 1976). Later, Wysocki et al showed that HL 
activity in the leukocytes of this patient was null (Wysocky et al., 1976). The gene knock-out 
in mice results in embryonic lethality (Wang et al., 1998) reflecting the physiological 
importance of this enzyme.  

3.1 Clinical features 

3-Hydroxy-3-methylglutaric aciduria is a severe condition in children, in fasting or in high 
glucose consumption, when ketone bodies are essential as alternative energy substrate. In 
approximately 30% of the cases the first symptoms appear between the second and fifth 
days of life or between 3 and 11 months. However, four patients with late onset (puberty 
and adult) have been reported (Sweetman et al., 1995; Vargas et al., 2007; Bischof et al., 2004; 
Reimao et al., 2009). 

3.1.1 Acute crisis 

Acute crises tend to occur when there is no exogenous intake of glucose (starving cases) or 
when there is an excessive glucose metabolization (conditions of metabolic stress, febrile 
stress and exercise). Initial symptoms may include poor feeding, vomiting, diarrhea, 
followed by further complication as hypotonia, hypothermia, lethargy, cyanosis and apnea. 
(Schutgens et al., 1979; Gibson et al., 1988a; Gibson et al., 1988b). In some cases the 
progresive lowered state of consciousness leads to coma and subsequent death (Wysocki et 
al., 1986). Laboratory data that stand out are the metabolic acidosis and non-ketotic 
hypoglycemia (Table 1). Hypoglycemia can be explained by fasting or other intercurrent 
illness, while the hipoketonemia shows the inability of patients to synthesize ketone bodies. 
Metabolic acidosis and aciduria can be explained by the accumulation of acids metabolites 
from leucine catabolism: 3-hydroxy-isovaleric acid, 3-methylglutaconic acid, 3-methylglutaric 
acid and 3-hydroxy-3-methylglutaric acid. Occasionally, patients present with increased 
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bilirubin, liver transaminases and prothrombin time. It is also reported the appearance of 
hyperammonemia associated with increased proteolysis by deficiency of ketone bodies. 
 

 

 

 

Fig. 4. Comparative analysis of mRNA levels, protein expression and enzymatic activity of 
HMG-CoA lyase in different human tissues. (A) Relative levels of mRNA HL expression in 
human tissues (B) HL protein expression measured in mitochondrial fraction from human 
tissues (C) HL activity was measured in the mitochondrial fraction of human tissues 
spectrophotometrically. Data are presented as mean ±SEM 
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Clinical manifestations in acute clinical episodes 

Vomiting 

Frequent  all of them  if the clinical picture 
worsens 

Diarrhea 

Hipotonia 

Hypothermia 

Lethargy 

Apnea 

Coma 

Laboratory test 

General biochemistry 

Metabolic acidosis Always present 

Hypoglycemia Always present 

Hypoketonemia Always present 

Ketonuria Absent 

Hyperammonemia Elevated frequently 

Hepatic transaminases  Elevated frequently 

Bilirrubin Elevated in some cases 

Prothrombin time Elevated in some cases 

Organic acids 

3-hydroxy-3-methylglutaric Elevated very frequently 

3-methylglutaric  Elevated frequently 

3-methylglutaconic Elevated sometimes 

3-hydroxyisovaleric Elevated sometimes 

 HL enzyme activity Less than 5% 

Affected organs      

Brain Macro o Microcephaly (infrequent) 

 Alterations of the white matter (frequent) 

 Epilepsy (infrequent) 

 Cerebral infarction (infrequent) 

Pancreas Acute pancreatitis (infrequent) 

Liver Hepatomegaly (very frequent) 

Heart Dilated cardiomyopathy with arrythmia (infrequent)  

Table 1. Clinical and laboratory findings of the HMG-CoA lyase deficiency 

3.1.2 Chronic complications 

Chronic complications are uncommon but include: hepatomegalia, macrocephalia (Gibson 
et al., 1988b; Stacey et al., 1985) microcephalia (Lisson et al., 1981) and delayed development 
(Gibson et al., 1994). It has been reported that organs such as the brain, the liver and 
occasionally the pancreas and the heart are affected (Gibson et al., 1994; Leung et al., 2009; 
Muroi et al., 2000a; Urganci et al., 2001; Wilson et al., 1984; Zafeiriou et al., 2007; Zoghbi et 
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al., 1986). Recently, a study of mRNA levels, protein expression and enzyme activity of 
human HMG-CoA lyase in kidney, pancreas, testis, heart, skeletal muscle and brain has 
contributed to better understanding of the enzyme function and of the involvement of these 
organs in 3-hydroxy-3-methylglutaric aciduria (Puisac et al., 2010). 
The liver is the organ most frequently affected in this deficiency, although involvement is 
usually mild, with elevated transaminases and hepatomegaly (Urganci et al., 2001; Wysocki 
& Hahnel, 1986). Ketogenesis is more active in the liver and the blockage of this pathway 
could result in an accumulation of toxic intermediate metabolites.  
Pancreatitis is a potential complication in patients with organic acidemias, (Kahler et al., 1994) 
and some cases have been reported  in 3-hydroxy-3-methylglutaric aciduria (Muroi et al., 
2000a; Wilson et al., 1984). The finding of higher enzymatic activity in pancreas (Puisac et al., 
2010) indicates that it may be more susceptible to toxic accumulation of metabolites. Among 
the brain abnormalities in these patients, cerebral white matter involment is the most common 
reported finding (Lisson et al., 1981; Yalcinkaya et al., 1999; Zafeiriou et al., 2007) and also one 
case of prominent corticospinal tract and pontine involvement has also been reported (Yylmaz 
et al., 2006). HL is not found at different levels of mRNA, protein and enzymatic activity, in the 
mitochondria from human brain (Puisac et al., 2010). This suggests that the neurological 
alterations frequently associated with this deficiency, are related to hypoglycaemia and to the 
absence of the only alternative substrate to glucose for the brain, ketone bodies. 
Concomitantly, the organic acids would not be produced in situ, although they could cross the 
blood-brain barrier of an immature brain (Wajner et al., 2004) and cause damage.  
Dilated cardiomyopathy has been described in two patients with 3-hydroxy-3-
methylglutaric aciduria, one young male (Gibson et al., 1994) and one adult (Leung et al., 
2009). In this last case, the authors suggest that the cardiomyopathy results from impaired 
ketogenesis, intracellular fatty acid accumulation and a secondary carnitine deficiency. 
However, very little HL was found in heart tissue (Puisac et al., 2010). This result does not 
support the hypothesis of local accumulation of organic acids or regulation the entry of fatty 
acids to the heart and thus prevent their accumulation as a cause of the cardiomyopathy. In 
HL deficiency heart disease could be caused by the lack of an alternative energy substrate. 
The heart is a continuously active muscle which uses various energy substrates depending 
on their availability (Kodde et al., 2007). Although ketone bodies are not an indispensable 
substrate, the added L-carnitine deficiency, which is caused by the HL deficiency, could 
alter the transport of fatty acids to the mitochondria for oxidation and the coupling between 
glycolysis and glucose oxidation (Allard et al., 2006). 

3.2 Diagnosis 

This deficiency should be suspected in children with hypoglycaemia, hipoketonemia and 
metabolic acidosis. A preliminary diagnosis is made from a characteristic pattern of organic 
acids in urine, with high levels of 3-hydroxy-3-methylglutaric acid, 3-hydroxy-isovaleric 
acid, 3-methylglutaric acid and 3-methylglutaconic acid (Table 1). The characteristic 
metabolite of this disease is the 3-hydroxy-3-methylglutaric acid, but can also occur in the 
deficiency of carbamyl phosphate synthetase or Leigh-like disease (Faull et al., 1976). The 
confirmation of HL deficiency requires direct assay of the enzyme activity in leukocytes 
(Wysocki et al., 1976a) fibroblasts (Wysocki et al., 1976b; Wanders et al., 1988a) or liver 
biopsy (Schutgens et al., 1979). In prenatal diagnosis the pattern of organic acids in amniotic 
liquid (Chalmers et al., 1979), in maternal urine (Duran et al., 1979) and measurements of HL 
activity in cultured amniocytes or chorionic villi (Mitchell et al., 1995; Chalmers et al., 1979) 
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could be used as diagnostic tools. The molecular characterization of mutations in the gene 
HMGCL, including alterations in the mRNA, helps to complete the diagnosis. 

3.3 Treatment 

During acute episodes, treatment is based on symptoms and consists of intravenous 
administration of glucose to control hypoglycemia, and bicarbonate to correct acidosis. 
Maintenance therapy is based on restrictive protein and fat diet, whose aim is to reduce the 
formation of toxic metabolites. However, the most important concern is to avoid metabolic 
stress such as intercurrent illnesses and starvation. Carnitine treatment has been proposed 
to improve the patient´s general state by facilitating urinary excretion of toxic metabolites 
(Dasouki et al., 1979). Moreover, L-carnitine, can be essential to prevent the development of 
cardiomyopathy (Puisac et al., 2010).   

3.4 Prognosis 

Despite this disease belongs to a group of 29 genetic conditions for which effective treatment 
is currently available (Watson et al., 2006), HMG-CoA lyase deficiency is fatal in 
approximately 20% of the cases. Nevertheless, early and careful treatment may result in a 
good prognosis with normal growth and development. Besides, in absence of complications, 
illness tends to improve with time and adults are usually free of symptoms. 

4. HMGCL gene  

The HMGCL gene (Gen Bank NM_000191.2) located in the short arm of chromosome 1 
(1p36.1-p35), between FUCA1 and TCEB3 encodes human HL. It has 9 exons and 8 introns  
(Figure 5) and a total of 24,336 base pairs. Its 5’-untranslated region bears the characteristic 
elements of a housekeeping gene, as well as a CpG island that contains binding sites for SP1. 
There is no evidence of the existence neither of a TATA box nor a CAAT box (Wang et al., 
1996). Exons size varies between 64 and 527 base pairs (bp) and the introns range between 
600 and 3400 bp. Exon 1 and part of exon 2 codify a 27 aminoacids array that forms the 
signal peptide for mitochondrial entering. Exon 9 codifies for 33 codons at the C-terminal 
ending and also has 406 bp from the 3’untranslated region (Mitchell et al., 1993). The 
polyadenylation signal in humans and mouse is ATTAAA. This gene is present in both 
eukaryotes and prokaryotes and it has been cloned and studied in a variety of organisms, 
including humans (Mitchell et al., 1993), chicken (Mitchell et al., 1993), mouse (Wang et al., 
1993), the Rhodospilirrum rubrum (Baltscheffsky et al., 1997) and bacterial strains such as 
Pseudomonas mevalonii (Anderson et al., 1989), Brucella mellitensis and Bacillus subtillus 
(Forouhar et al., 2006). 
The mRNA transcribed from HMGCL human gene has a size of 1.6 Kb and it has been found 
in all tissues studied albeit in widely differing amounts (Puisac et al., 2010) (Figure 4a) 
Tissues with the highest expression are liver 112.2 arbitrary units (100%) pancreas 43.5 
(39%), kidney 17.56 (16%), testis 26.81 (24%), heart 2.96 (2,6%) brain 2.26 (2%) and skeletal 
muscle 1 (0.89%). 
This gene presents a physiological splicing with three variants, one with all exons encoding 
the active protein and two with deletion of exons 5 and 6 and deletion of exons 5, 6 and 7 
that encode inactive proteins (Muroi et al., 2000; Beatriz Puisac PhD thesis). These last two 
transcripts appear in tissues such as heart, brain and skeletal muscle which have little or no 
ketogenic potential. 
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Fig. 5. Scheme of mutations located in the human HMGCL gene 

4.1 Mutational update 

To date 50 variant alleles in the HMGCL gene (48 mutations and 2 SNPs) in more than 100 
patiens have been reported (Table 2). The missense mutations are the most frequent (25) 
followed by intronic mutations (7), frameshift deletions (6), nonsense mutations (6), large 
deletions (3) and insertions (1). The mutations are uniformly distributed along the gene 
sequences, although some clustering is observed in exon 2 and exon 7, suggesting that they 
could be hot spots for mutations (Figure 5). 
Three mutations are more common than the rest: one is the c.122G>A (81 alleles, 43 patients: 
38 homozygous, 5 heterozygous with an allele unknown), prevalent in Saudi Arabia, where 
40 patients carry it (Mitchell et al., 1998; Al-Sayed et al., 2006) and that has also been found 
in a patient in Italy, another in Turkey (Mitchell et al., 1998) and one in the Tcheck Republic 
suggesting that this mutation may have arisen independently more than once (Pospisilova 
et al., 2003).                                
 

Allelic 
variant 

Exon/ 
Intron 

Aminoacid 
change/ 
Predicted effect 

Patients
Mutant
Aleles 

Origin References 

Missense mutations     

c.109G>A E2 E37K 2 4 2 Pakistani Menao 2009 

c.122G>A E2 R41Q 43 81 
1 Czech, 1 Italian 
(ht), 40 Saudi (4 
ht), 1 Turkish 

Al-Sayed 
2006; 
Mitchell 
1998; 
Pospisilova 
2003 

c.124G>A E2 D42N 1 1 1 Brazilian (ht) Vargas 2007 
c.124G>C E2 D42H 1 1 1 Cajun (ht) Mitchell 1998 

c.125A>G E2 D42G 2 4 
1 German, 1 
Palestinian 

Menao 2009; 
Mitchell 1998 

c.126T>G E2 D42E 1 2 1 Austrian Mitchell 1998 
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Allelic 
variant 

Exon/ 
Intron 

Aminoacid 
change/ 
Predicted effect 

Patients
Mutant
Aleles 

Origin References 

c.144G>T E2 K48N 1 1 1 Spanish 
Carrasco 
2007 

c.208G>C E3 V70L 1 1 
1 French-Canadian 
(ht) 

Mitchell 1992 

c.225C>G E3 S75R 1 2 1 German Casals 2003 
c.425C>T E5 S142F 1 1 1 Spanish (ht) Menao 2009 
c.434A>T E5 E145V 1 1 1 Japanese (ht) Muroi 2000 
c.493C>T E5 R165W 1 2 1 Turkish Koling 2000 
c.494G>A E5 R165Q 1 1 1 French? (ht) Pierron 2009 
c.494G>T E5 R165Q 1 1 1Tawianese (ht) Lin 2009 
c.521G>A E6 C174Y 1 2 1 Palestinian Menao 2009 
c.575T>C E7 F192S 1 2 1 Spanish Menao 2009 
c.598A>T E7 I200F 1 2 1 French Menao 2009 
c.602C>A E7 S201Y 1 2 1 English Casals 2003 
c.608G>A E7 G203E 1 2 1 Italian Mir 2006 

c.610G>A E7 D204N 2 3 
1 Argentinean ,1 
Portuguese (ht) 

Casals 2003; 
Cardoso 2004 

c.698A>G E7 H233R 4 5 
2 Czech (1ht), 1 
French (ht), 1 
English (ht) 

Menao 2009; 
Pospisilova 
2003; Roberts 
1996; Zapater 
1998 

c.788T>C E8 L263P 1 1 1 French (ht) Zapater 1998 

c.796T>C E8 C266R 1 1 1 Greek (ht) 
Zafeiriou 
2007 

c.820G>A E8 G274R 1 1 1 French? (ht) Pierron 2009 
c.835G>A E8 E279K 2 3 2 Japanese (1 ht) Muroi 2000 

Nonsense mutations     

c.109G>T E2 
E37X; Exon 2 
skipping 

31 55 

1 Argentinian, 2 
Moroccan, 13 
Portuguese (4ht) , 
11  Spanish (1ht), 1 
Turkish, 3 
portuguese- 
brazilian (2ht) 

Cardoso 
2004;  Casale 
1998; Menao 
2009; Pié 
1997; Puisac 
2005 

c.121C>T E2 R41X 1 1 
1 English/German 
(ht) 

Mitchell 1998 

c. 242G>A E3 W81X 1 2 1 Ecuatorian Menao 2009 

c.286C>T E4 Q96X 1 2 1 Italian 
Funghini 
2001 

c.559G>T E6 E187X 1 1 1 Spanish (ht) Menao 2009 

c.922C>T E9 Q308X 1 2 1 Japanese Muroi 2000 
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Allelic 
variant 

Exon/ 
Intron 

Aminoacid 
change/ 
Predicted effect 

Patients
Mutant
Aleles 

Origin References 

Deletions/  insertions     

c.27delG E1 
P9P/ frameshift: 
stop codon 33 

1 1 1 Czech (ht) 
Pospisilova 
2003 

c.134-137insA E2 
N46K/frameshift: 
stop codon 47 

2 4 2 Italian 
Mitchell 
1995 

c.61-561del 
E2,E3,E
4,E5, 
E6 

Deletes V21-E187 
in frame 

1 1 1 English Wang 1996 

c.202-
207delCT 

E3 
S69C/ frameshift: 
stop codon 79 

3 6 

2 Acadian 
French-
Canadian, 1 
Spanish 

Mitchell 
1993 

c.145-561del 
E3,E4,E
5, 
E6 

Deletes E49-E187 
in frame 

1 1 1 Turkish Wang 1996 

c.374-
375delTC 

E5 
V125D/frameshift: 
stop codon 150 

1 1 1 Greek (ht) 
Zafeiriou 
2007 

c.504-
505delCT 

E6 

V168V/frameshift: 
stop codon 176; 
Exon 5 and 6, 6 
skipping 

10 11 

3 Portuguese-
brazilian (3ht), 2 
Portuguese (2ht), 
5 Spanish (4 ht) 

Cardoso 
2004; Casals 
1997; Menao 
2009; Vargas 
2007 

c.561-750del E7 
Deletes E187-Q250 
in frame 

1 2 1 Japanese Muroi 2000 

c.853delC E8 
Frameshift: stop 
codon 258 

1 1 1 English (ht) Menao 2009 

c.913-
915delTT 

E9 
F305Y/ frameshift: 
stop codon 314 

3 6 3 Saudi 

Al-Sayed 
2006; 
Mitchell 
1998 

Intronic mutations     

IVS3+1Gdel I3 Exon 3 deletion 1 2 1 Japanese Muroi 2000 

IVS3+1G>A I3 Exon 3 deletion 1 1 1 Tawianese (ht) Lin 2009 

IVS5+4A>G I5 
Exon 5 deletion/ 
exon 5-6 deletion 

1 1 1 English (ht) Menao 2009 

IVS6-1G>A I5  1 1 1 Taiwanese (ht) Lin 2009 

IVS6+1G>A I6  1 2 1 Saudi 
Al-Sayed 
2006 

IVS7+1G>A I7 r.slp 2 2 2 Spanish (2 ht) Menao 2009 

IVS8+1G>T I8 Exon 8 deletion 1 2 1 Turkish Buesa 1996 
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Allelic 
variant 

Exon/ 
Intron 

Aminoacid 
change/ 
Predicted effect 

Patients
Mutant
Aleles 

Origin References 

Polimorfism       

c.252+34C>T I3  1 1 1 Palestinian (ht) Menao 2009 

c.654A>G E7 L218L 1 - 1 Spanish Pié 1997 

c.727A>G E7 T243A 4 8 
1 Moroccan, 1 
Portuguese, 2 
Spanish 

Pié 1997 

Table 2. Mutations and polymorphisms in the HMGCL gene. Position refers to the 
numbering of the HL cDNA sequence in Mitchell et al., 1993.  ht, heterozygous 

The second most frequent mutation is the c.109G>T (Mediterranean mutation) (55 alleles, 31 
patients: 24 homozygous, 6 double heterozygous, 1 heterozygous with an allele unknown), 
found mostly in the Iberian Peninsula (13 patients in Portugal, 11 in Spain and 3 in brazilian-
portugueses). It has also been described two cases in Morocco and another in Turkey (Pié et 
al., 1997; Casale et al., 1998; Cardoso et al., 2004; Puisac et al., 2005; Menao et al., 2009). It has 
been hypothesized that in Portugal and Spain the genetic hit was introduced during the 
Arabian invasions of the Iberian Peninsula in the eighth century. Further studies should be 
necessary to dillucidate if the mutation origin is the Iberian Peninsula itself or the Magreb 
(Pié et al., 2007). 
The third most frequent mutation is c.504_505delCT (11 alleles, 10 patients: 1 homozygous, 9 

double heterozygous), although its incidente is much lower than the first two. It seems to be 

exclusively located in the Iberian Peninsula, where 15% of Portuguese (2 cases) (Cardoso et 

al., 2004) and 27% of Spanish patients have it (Menao et al., 2009). This mutation is also 

present in 3 of the 4 molecularly diagnosed Brazilians patients, though they were of 

Portuguese origin (Vargas et al., 2007). 

In most of the remaining countries, only a few patients are reported, with a high level of 

allelic heterogeneity. In Japan 4 mutations have been reported in 5 unrelated patients (Muroi 

et al., 2000b), in Taiwan 3 mutations in 2 patients (Lin et al., 2009) in Italy, 5 mutations in 5 

patients  (Mitchell  et  al.,  1995;  Mitchell   et  al.,  1998;  Funghini  et  al.,  2001)  in  Turkey  4 

mutations in 4 patients (Wang et al., 1996; Buesa et al., 1996; Pié et al., 1997; Mitchell et al., 

1998) . In the United Kingdom 6 mutations in 5 patients, though one of them was of German 

origin (c.121C>T) (Wang et al., 1996; Mitchell et al., 1998; Casals et al., 2003; Menao et al., 

2009), 3 mutations in 3 patients in the Tcheck Republic (Pospisilova et al., 2003) and in 

Germany 2 mutations in 2 patients (Mitchell et al., 1998; Casals et al., 2003). The French 

group, the Acadians (descendents of the 17th-century French colonists), the Cajuns 

(Acadians settled in Louisiana) and the French-Canadians, despite of their common origin, 

present a great allelic heterogenicity: 6 mutations in 6 patients (Mitchell et al., 1992; Mitchell 

et al., 1993; Zapater et al., 1998; Mitchell et al., 1998; Menao et al., 2009). 

4.2 Genotype-phenotype correlations 

The genotype-phenotype correlation is difficult to establish because the progress of the 
disease seems to be more related to the causes that produce hypoglycaemia (fasting or acute 
illness) than to a specific genotype. For example, patients carrying the same mutation, for 
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instance the so-called Mediterranean mutation (c.109G>T) may have from moderate to 
severe crises of lethal consequences. This is why in clinical practice it is fundamental to 
avoid situations that may cause hypoglycemia in these patients (Pié et al., 2007).  
Several studies agree that studied missense mutations cause a loss of enzyme activity 
greater than 95% although these mutations often produce mild phenotypes (Mitchell et al., 
1998; Carrasco et al., 2007; Menao et al., 2009). This suggests that the illness appears only in 
very severe genotypes, and that partial disruption of the enzyme is probably compatible 
with normal function. This adds more difficulties to establish genotype-phenotype 
correlations because we only see the effects of very severe genotypes. 

5. Conclusion  

Although 3-hydroxy-3-methylglutaric aciduria is a very rare disease, given the availability 
of an effective treatment, we recommend the screening of this disease in any child with 
hypoglycemia and metabolic acidosis. Moreover, in countries with a greater number of 
diagnosed cases (Saudi Arabia, Portugal and Spain), we also recommend to screen for the 
following mutations: c.122G>A, c.109G>T and c.504_505delCT. The high percentage of 
splicing mutations justifies including the measurement of the mRNA.  
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