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1. Introduction 

The aim of this chapter is to show how thermooxidative properties of biological fuels can be 

evaluated by pressure differential scanning calorimetry (PDSC) and used to correctly 

classify the fuels studied. The onset oxidation temperature (OOT) is an important parameter 

for estimating the oxidation stability that can be evaluated by the ASTM method. 

Nevertheless, in addition to the OOT, other meaningful information can be extracted from 

the PDSC tests. That additional information provides a better understanding of the 

thermooxidative process, allowing for identifying subtle differences between similar fuels. 

In fact, the following lines show that the features extracted from heat flow curves obtained 

by PDSC allow to characterize and to differentiate each type of fuel respect to the other ones 

if the adequate statistical tools are applied. Thus, the proposed statistical analysis of the 

PDSC curves allows to classify the different fuels types chosen for this study: two types of 

biodiesel, seven different classes of edible oils and two wood species. The statistical study 

consisted of the application of Analysis of Variance (ANOVA) procedures and the 

implementation of a simulation study, using parametric bootstrap and methods of 

multivariate supervised classification as Linear Discriminant Analysis (LDA), Logistic 

Regression and Naïve Bayes classifier.  

Studying the thermooxidative properties of a fuel is important attending to various reasons. 

For example, vegetable oils are protected against oxidation thanks to antioxidants that 

precisely removed during the production process of biodiesel. For this reason, biodiesel is 

not stable, being susceptible to oxidation to a greater or lesser extent due to several factors 

including the presence of air, temperature, light, presence of hydroperoxides and 

antioxidants (Dunn, 2005; Knothe & Dunn, 2003; Knothe, 2007). The products resulting from 

the oxidation of biodiesel can damage internal combustion engines, it is therefore essential 

to study the oxidation stability of biodiesels. In the case of vegetable oils, they can produce 

significant changes in the salubriousness of food when the same oil is used repeatedly to fry 

due to the possible oxidation processes produced at the relatively high temperatures (Vorria 

et al., 2004). For this reason, the thermal stability to oxidation is an important parameter for 

oils. The study of thermooxidative characteristics of the species of wood is not as common as 
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in oils or biodiesel. However, this is justified as it would allow to estimate the resistance to 

combustion in an oxidizing atmosphere, under similar conditions to wildfire. 

The thermal analysis techniques used to measure thermooxidative stability are: 

thermogravimetry (TG), differential scanning calorimetry (DSC) and PDSC. The oxidation 

stability can be obtained using the TG technique (a) measuring the increase in sample 

weight due to absorption of oxygen, (b) measuring the temperature corresponding to 

maximum weight and (c) the temperature at the beginning of oxidation (Van Aardt et al., 

2004). DSC and PDSC techniques can be applied to study the exothermic oxidation process. 

The PDSC provides results in a shorter time than DSC, further reducing evaporation in the 

sample. It is also important to note that using PDSC we can estimate the oxidation stability 

under pressures similar to those operating in a diesel engine. The values that are determined 

to study the oxidation stability by DSC and PDSC are the oxidation induction time (OIT) 

and the the onset oxidation temperature (OOT). High values of both parameters are related 

to a high oxidative stability. The two methods have been used by several authors to study 

the oxidation stability of biodiesel (Knothe, 2007; Moser et al., 2007; Dunn, 2006; Xu et al., 

2007, Polavka et al., 2005), findding correlations with other procedures (Dunn, 2005; Tan, 

2002). The OOT parameter measures the degree of oxidative stability of a substance at a 

constant heating rate, both at high pressure and high temperature. It is a non isothermal 

dynamic method. The procedure for calculating the OOT is explained in ASTM E2009 

(2008). Recent results concerning the characterization of thermooxidative fuels such as 

biodiesel or edible oils can be found in (Tarrío-Saavedra et al., 2010; Artiaga et al., 2010; 

López-Beceiro et al., 2011). 

2. Materials 

In the present chapter, three different types of fuels are tested:  

1. Two types of biodiesel: obtained from the soybeam and from the palm. 

2. Four classes of vegetable oils: soy, sunflower, corn and two olive oil spanish varieties 

named hojiblanca and picual. 

3. Two species of comercial wood: Pinus sylvestris (Scots pine) and Eucalyptus globulus. 

2.1 Biodiesel 

Biodiesel is a liquid biofuel made from natural fats such as vegetable oils or animal fats 

through a process of esterification and transesterification. The resulting substance of these 

transformations can be applied as a partial replacement of petroleum products. The reaction 

of the base oils with a low molecular weight alcohol and a catalyst (usually sodium 

hydroxide), resulting in fatty acids formed by long chains of mono-alkyl esters which are 

very similar to "diesel " derived from petroleum. The commercial biodiesel used today are 

mixed with other fuels. In this paper we have studied two types of pure biodiesel, obtained 

from the soybeans and, on the other hand, from palm oil. They have been supplied by 

Entaban Biofuels Galicia, SA (Ferrol, Spain). See Table 1. 

2.2 Vegetable oils 

Table 2 shows the chemical composition retrieved from the USDA National Nutrient 

Database for Standard Reference-22 (USDA, 2009). This table is an indication to compare 
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Test Soybean Palm Standard 

Humidity 193 μg/g 216 μg/g EN ISO 12937 

Neutralization number 0.37 mg KOH/g 0.31 mg KOH/g EN 14104 

Ester content 99.3 % 97.3% EN 14103 

Methyl esters of linolenic 
acid 

6.45 % 1.0% 
 

Iodine index 124.5 g I2/100g 66.1 g I2/100g EN 14111 

Free Glycerol 0.002 % 0.003 % 
EN 14105 
EN 14106 

Total Glycerol 0.14 % 0.19 % EN 14105 

Monoglycerides 0.47 % 0.62 % EN 14105 

Diglycerides 0.10 % 0.15 % EN 14105 

Triglycerides 0.003 % 0.05 % EN 14105 

Stability to oxydation 6.76 h 12.5 h EN 14112 

Cold filter plugging point -3 ºC 9 ºC EN 116 

Methanol 0.04 % 0.1 % EN 14110 

Sulphated ashes 0.003 % 0.002 % ISO 3987 

Density 
877.7 kg/m3 

at 23 ºC 
872 kg/m3 

at 21 ºC 
------------ 

Density at 15ºC 883.5 kg/m3 876.3 kg/m3 
ISO 3575 

EN ISO 12185 

Kinematic 
viscosity at 40ºC 

4.1 mm2/s 4.4 mm2/s EN ISO 3104 

Na+K < 1 μg/g < 1 μg/g EN 14538 

Ca+Mg < 1 μg/g < 1 μg/g EN 14538 

Phosphorous < 1 μg/g < 1 μg/g EN 14107 

Table 1. Characteristics of soybean and palm based biodiesel studied. 

different types of oils. While poliinsaturated acids like linoleic acid are abundant in corn and 

sunflower oils, the monoinsaturated oleic acid is the predominant fatty acid in olive oil. The 

levels of palmitic and estearic acids, which are saturated fatty acids in sunflower oil are 

lower than the others. Other components of vegetable oils are the acilglycerides, 

phospholipids, and non-glycerides compounds as vitamin E, vitamins D and A, sterols, 

carotenoids, methyl sterols and squalene.  

2.3 Wood species 

The wood is mainly composed by three components that conditon the degradation of wood 

in an inert atmosphere (Alén et al., 1996). These are hemicellulose, cellulose and lignin (Yang 

et al., 1999; Alén et al., 1996; Grønli et al., 2010). Cellulose represents about 40 and 60% in the 

overall weight of dry wood, while lignin represents the 23–33% in softwoods and the 16–

25% in hardwoods; finally, the hemicellulose represents the 25–35% (Miller et al., 1999; 

Grønli et al., 2010). The hemicellulose decomposes at 200-260 ºC, the cellulose at 240-350 ºC 

and the ligning in a temperature range between 280-500 ºC (Alén, 1996; Wang, 2009; Mohan, 

2006). Therefore, changes in the thermooxidative stabiliy are expected due to percentage 

differences in these 3 componens. Percentages that characterize the different wood species. 
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Common name 

Sunflower 
mid-oleic 

Soybean Corn 

Total fat/g 100 100 100 

Saturated fat/g 9 15.6 12.9 

14:00 Myristic acid 57 0 24 

16:00 Palmitic acid 4219 10455 10580 

17:00 Margaric acid 37 34 67 

18:00 Stearic acid 3564 4436 1848 

20:00 Arachidic acid 297 361 431 

22:00 Behenic acid 836 366 0 

Monounsaturated fat/g 57.3 22.8 27.6 

16:1 undifferentiated Palmitoleic acid 95 0 114 

16:1 c 95 N.A. 114 

17:01 N.A. 0 N.A. 

18 undifferentiated Oleic acid 57024 22550 27335 

18:1 c 57024 22550 27335 

20:01 Gadoleic acid 211 233 129 

Polyunsaturated fat/g 29 57.7 54.7 

18:2 undifferentiated Linoleic acid 28925 50960 53510 

18:2 n-6 cc 28703 50422 53510 

18:2 tt N.A. 533 N.A. 

18:2 i 219 N.A. 286 

18:03 Linolenic acid 37 6789 1161 

18:3 n-3 ccc 37 6789 1161 

Total trans fatty acids/g 0.2 0.5 0.3 

Total trans-polyenoic fatty acids/g 0.2 0.5 0.3 

Total omega-3 fatty acids 37 6789 1161 

Total omega-6 fatty acids 28925 50422 53510 

Tocopherols 41.08 94.64 14.3 

Table 2. Chemical composition of sunflower, soybean, corn and olive oil, retrieved from the 
USDA National Nutrient Database for Standard Reference-22 (USDA, 2009). 

3. Data collecting 

A design of experiments consisting of 1 factor (type of fuel) at 9 different levels (soy 
biodiesel, palm biodiesel, sunflower oil, soy oil, corn oil, hojiblanca olive oil, picual olive oil, 
eucalyptus wood and Scots pine) was done. Three samples per each fuel type were 
considered, capturing the existing variability. In fact, this sampling process seeks to obtain a 
compromise between capturing the existing variability and the minimization of the time of 
the experimental test. The tests are carried out by PDSC to study the oxidation stability of 
the fuels and to compare these materials according to this concept. The PDSC tests were 
performed in a TA Instruments pressure cell mounted on a Q2000 modulated DSC. The 
experimental conditions were the following: T-zero open aluminum pan, a heating rate of 
10 ºC min-1 from room temperature to 300 ºC -taking into account the recommendations to 
obtain a better oxidation peak (Riesen & Schawe, 2006)-, sample mass in the 3-3.30 mg 
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range, and an oxygen pressure of 3.5 MPa, applying a flow rate of 50 mL min-1 according to 
the ASTME2009 method. The experiments were manually stopped once the end of the 
exotherm was reached. 
The Universal Analysis software supplied by the company TA was utilized to calculate the 
OOT using the standard E2009. The standard determines that the OOT corresponds to the 
temperature assigned to the crossover point between the tangent to the curve of heat flow at 
the point of maximum slope and tangent to the curve just before the occurrence of the peak 
corresponding to oxidation (which coincides with the baseline). 

4. Analysis of variance (ANOVA) 

The analysis of variance is a statistical tool performed to study the dependence of a 
quantitative variable with respect to one or more qualitative variables. In this chapter, an 
experimental design consisting of an nine-level factor was performed. The quantitative 
variable is the parameter OOT, an indicator of oxidation stability, while the factor is the type 
of fuel. The F test allows testing whether the mean OOT values for each fuel type are 
statistically equal or, conversely, there are at least one mean different (Maxwell, 2004).  
H0: m1 = m2 =...=m9 = μ 
H1: at least one mi ≠ μ, where μ is the global mean 
If the before mentioned test is significant, Tukey's test can answer the question of which 
means are really different. Tukey's test applied to this case, provides information about 
what levels or types of fuel present OOT values statistically different (Maxwell, 2004). The 
significance level used in this work is 0.05. 

5. Classification methods 

The process of assigning a p-dimensional observation to one of several groups 
predetermined is called supervised classification. The principal aim is to obtain a 
discriminant function that summarizes the information corresponding to the different p 
variables that define a sample according to an indicator, with which each observation can be 
correctly classified as belonging to a group. In the statistical literature can be found several 
methods developed to address the classification problem.  

5.1 Linear discriminant analysis 

One of the most popular techniques in classification was proposed by Fisher (Fisher, 1936), 
this approach is called linear discriminant analysis (LDA) and basically divides the sample 
space into subspaces through the use of hyperplanes that allow to better separating the 
groups studied. The assumptions for the use of LDA are: multivariate normality and equal 
covariance matrices between groups. Under these assumptions, the LDA is based on finding 
a linear combination of features that describe or separate two or more classes of objects or 
events. The resulting combination can be used as a linear classifier, or more commonly, to 
reduce the dimension of the problem before a subsequent classification. 
LDA is closely related to other statistical techniques such as analysis of variance (ANOVA) 
and regression analysis, however, in these two techniques, the dependent variable is a 
number, while in LDA is a categorical variable (class labels). Other statistical procedures 
related to LDA are the Principal Component Analysis (PCA) and Factor Analysis (FA), used 
when you look for linear combinations of variables that better explain the data. 
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Although the terms LDA and Fisher linear discriminant analysis are commonly used to 
indicate the same procedure of supervised classification, in fact, the early work of Fisher 
(Fisher, 1936) does not imply the assumptions of normality and equal covariances, 
undertaken by LDA. 
The LDA has been successfully applied in fields as diverse as engineering, economics, 
computing science, biology, etc. Recently, the LDA has been applied in some works related 
to the classification of weeds (Lopez-Granados et al, 2008) and the classification of different 
species of wood through the use of features extracted by image processing (Mallik et al., 
2011). 

5.2 Logistic regression 

The Logistic model is currently applied to these cases where the explicative variables (or set 
of different features) do not have a multivariate normal distribution (McLachlan, 2004). 
Considering only two classes (C1 and C2), the Logistic regression equation used to solve this 
classification problem is the following1: 
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where p = P(Y = C1|x) is the posterior probability of Y equal to C1 class, log (p/(1-p)) = ǂ+ǃ’x 

is the logit transformation, x is the p-dimensional vector of features or explanatory variables, 

ǃ is a vector of p parameters and p/(1−p) the odds ratio. Nevertheless, in the present study is 

necessary to use a classification model that could be applied in the case of the existence of 

multiples classes. This can be solved using the logit model generalized to more than two 

populations, i.e. for qualitative response with more than two possible classes. If G 

population are supposed, then, defining p as the probability that the observation i belongs to 

the class g, it is possible to write2: 
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This equation2 is an estimator of the posterior probabilities, i.e. the probabilities of belonging 
to a specific class, given the values of a vector of features (values of x). The pig, or posterior 
probabilities, satisfy a multivariate logistic distribution. The following expression is used to 
do the different possible comparisons3:  
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The logistic regression has been applied for classifying species of wood through the use of 
features extracted by image segmaentation (Mallik et al., 2011). 

5.3 Bayes Naïve classifier 

Naïve Bayes classifier is a supervised multivariate classification technique based on Bayes 

theorem, particularly suitable when the dimension of the vectors of features or inputs is 

considerably high. Calculating the posterior probability for an event among a group of 
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possible outputs, X = {x1,x2,...,xd}, is intended. That is, using Bayes rule we intend to 

calculate the probability that a sample belongs to a particular class, Cj, from a group of 

possible classes C = {c1,c2,...,ck}, given some particular values corresponding to the 

characteristics that define the sample. Using Bayes rule, the probability that X belongs to Cj 

or posterior probability is4: 

 1 2 1 2( | , ,..., ) ( , ,..., | ) ( )j d d j jp C x x x p x x x C p C  (4) 

Using Bayes' rule, we estimate the class of the event or sample using the class corresponding 

to the largest posterior probability obtained. Since Naïve Bayes assumes that the conditional 

probabilities of the independent variables are statistically independent, the posterior 

probabilities can be rewrite as5: 

 
1

( | ) ( ) ( | )j j k j
k

p C X p C p x C




   (5) 

In addition, due to the assumption that the predictor variables are statistically independent, 

we can reduce the size of the estimated density function using a kernel estimation consisting 

of one dimension.  

The Naïve Bayes classifier can be modeled with normal, log-normal, Gamma and Poisson 

density functions. 

Naïve Bayes method appears in the 80's and is the supervised classification method most 

popular based on the Bayes rule. Several variants and extensions of the Naïve Bayesian 

classifier have been developed, for example, Cestnik (Cestnik, 1990) developed the m-

estimations of the posterior probabilities and Kononenko (Kononenko, 1991) designed a 

semi-naïve Bayesian classifier that goes beyond the "naive" and detects dependencies 

between attributes. The advantage of fuzzy discretization of continuous attributes in the 

Naïve Bayesian classifier is described in the work of Kononenko (Kononenko, 1992). 

Langley (Langley, 1993) studied a system that uses the Naïve Bayesian classifier at the nodes 

of decision trees. Other recent works are those for Webb et al. (Webb et al, 2005) and Mozina 

et al. (Mozina et al., 2004). This technique has been used successfully in classification 

problems of spam and in areas such as medicine (to resolve, among other tasks, medical 

diagnosis), acoustic (automatic classification of sound and voice), image classification 

(Kononenko, 2001; Tóth et al., 2005; Mallik et al., 2011).  

5.4 K nearest neighbors (KNN) 

K Nearest Neighbors (KNN) is a non-parametric supervised classification method, which 

has been used successfully in populations where the assumption of normality is not verified. 

This assumption is required by traditional techniques such as linear discriminant analysis. 

We can summarize the KNN operation in the following three points: 

1. A distance is defined between samples (represented by feature vectors), usually the 
Euclidean or Mahalanobis distances. 

2. The distances between the test sample, x0, and the other samples are calculated. 
3. The k nearest samples to those that we want to classify are selected. Then, the 

proportion of these k samples belonging to each of the studied populations is 
calculated. Finally, the sample x0 is classified within the population corresponding to 
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the highest existing frequency. Among the different methods available for choosing the 
value of k, the minimization of error of cross validation is one of the most used. 

KNN method was introduced by Fix and Hodges (Fix & Hodges, 1951). Later, he shown 

some of the formal properties of this procedure, for example, that the classification error rate 

is bounded by twice the Bayes error value when you have an infinite number of samples for 

classifying and k is equal to 1 (Cover & Hart, 1967). Once developed the formal properties of 

this classifier, he established a line of research that goes up today, highlighting the work of 

Hellman (Hellman, 1970), which show a new approach to rejection, Fukunaga and Hostetler 

(Fukunaga & Hostetler, 1975), which sets out refinements with respect to the Bayes error 

rate, or those developed by (Dudani, 1976) and Bailey and Jain (Bailey & Jain, 1978), in 

which new approaches were established to the use of weighted distances. Other interesting 

work on the subject is related to soft computing (Bermejo & Cabestany, 2000) and fuzzy 

methods (Jozwik, 1983, Keller et al., 1985). Recent interesting papers are those of Bremner et 

al. (Bremner et al., 2005), Nigsch et al. (Nigsch et al., 2006), Hall et al. (Hall et al., 2008) and 

Toussaint (Toussaint, 2005). They are also very interesting applications of this algorithm to 

the analysis of functional data (Ferraty & Vieu, 2006). 

The development of computer tools in recent years and the creation of the information 
society have led to that the technique KNN be used successfully in such diverse fields as 

chemistry, biology, medicine, computer science, genetics and materials science (Tarrío-
Saavedra et al., 2011; Mallik et al, 2011). 

5.5 Validation procedure: Leave-one-out cross validation 

When we want to classify samples using supervised classification methods, working with 

training and testing data, extracted from the observed instances, is necessary. Each instance 

in the training set consists of the corresponding class label and a vector of several sample 

features. The aim of the classification methods applied is to produce a model, using the 

training sample, to estimate the class labels corresponding to each data instances 

corresponding to the testing set for which we only know the features. Leave-one-out cross-

validation is the procedure used to obtain the probabilities of correct classification for each 

test sample and, therefore for comparing the different classification methods proposed. This 

is a technique widely used for the validation of an empirical model, especially suitable for 

working with small samples sizes. This procedure consists on the following steps: 

1. One instance is leaving out: the testing sample. 
2. Then, a model is obtained using the remaining samples (the training sample). 
3. Finally, the developed model is used for classifying the left out instance.  
This sequence is repeated until all the instances are left out once. The percentages (measured 
as per one) of correct classification are obtained using this procedure. 
All the classification methods have been implemented using R statistical package 

6. Parametric bootstrap resampling 

In the case of the parametric bootstrap, the model from which data was generated of the 
original sample is known or assumed, ie the type of distribution is known. Therefore, 
successive resamplings are obtained by substituting the parameters of the distribution of 
probability corresponding to the studied variables by the maximum likelihood estimators, 
calculated from the original sample. In the present chapter the normal distribution of the 
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features is assumed. In addition, we suppose a model where the observations (the chosen 
features) are independent, i.e. a diagonal covariance matrix is assumed. Taking into account 
these assumptions, knowing the mechanism that generates the data, generating new data 
from the parameters of the original sample is possible using the sample means and 
variances. This allows to do a simulation study to evaluate the discrimination power of the 
heat flow PDSC curves and their extracted features. 

7. Results 

The PDSC curves obtained using ASTME2009 are shown in Fig. 1. They represent the heat flow 
vs. temperature signals corresponding to the 9 different fuels, obtained using a heating ramp. 
 

 

Fig. 1. PDSC curves corresponding to the studied fuel samples. 

The Fig. 1 shows that the curves are different at lesser or major extend depending on the 
class of fuel tested. At a first glance, it seems there are two main groups. The first group is 
corresponding to the different studied oils and biodiesel types, and the second one consists 
of the wood species. It is clear that the OOT values corresponding to the first group are 
significantly lower than the OOT ones of the second group. But there are differences in 
oxidation stability (measured by OOT parameter, according to the Fig. 2) within these main 
groups? For answering this question we have used well known statistical tools as the F test 
and Tukey test. Using F test we can confirm that at least one class of fuel presents different 
OOT mean value than the others with statistical significance (p-value ≈ 0 < 0.05). By means 
the Tukey test we can know which fuels are statistically different, observing the OOT 
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variable. Table 3 shows the result of Tukey test. Each column represents a group of fuels 
different from the others, on the basis of the OOT value. For example, in the group number 1 
there are three species that present no different OOT values (p-value = 0.154 < 0.05). We can 
observe that there are not differences between soy and soy biodiesel OOT. However, they 
are different to all the olive oil varieties tested and to the wood fuels studied. In fact, olive 
varieties form an independent group. On the other hand, palm biodiesel OOT is statistically 
different from the sunflower, picual and wood species OOT. It is important to note that the 
high OOT values obtained for wood species may condition the results for the remaining fuel 
classes. Attending to the means, the following fuels are sorted from largest to smallest OOT: 
Scots Pine > Eucalyptus > Picual > Hojiblanca > Palm biodiesel > Corn > Soy > Soy biodiesel 
> Sunflower  
 

Fuel class N 
Different Groups 

1 2 3 4 5 6 

Sunflower 3 165.8100      

Soy biodiesel 3 172.9450 172.9450     

Soy 3 173.0967 173.0967     

Corn 3  175.7933     

Palm biodiesel 3  181.6833 181.6833    

Hojiblanca 3   184.9933 184.9933   

Picual 3    192.2767   

Eucalyptus 3     235.6567  

Scots pine 3      245.1867 

p-value  0.154 0.054 0.911 0.154 1.000 1.000 

Table 3. Mean values of OOT in the homogeneous subsets for the fuel class factor. Different 
groups obtained  by applying the Tukey test (with significance lever α = 0.05). 

Foccusing to the soy and soy biodiesel OOT values, the OOT mean corresponding to soy oil 
is higher than soy biodiesel OOT, according to the theory. But when we want to compare an 
important quantity of fuels that presents a wide range of OOT values, the variance of the 
OOT measurements can prevent to distinguish the different fuels. The OOT is an important 
parameter that contains much information about the oxidation stability of a fuel. But, as we 
have observed, the OOT by itself is not enough to distinguish between all studied fuels. 
Obtaining more information about the PDSC curves is necessary to classify correctly among 
the different fuels. Therefore, additional features are chosen: the maximum slope of heat 
flow versus time (slope max, V) obtained in each case, the temperature at that point of 
maximum slope (T at max slope, H) and the slopes of the heat flow curves vs. temperature 
in the range from 5 to 10 Wg-1 (slope between 5 and 10, m). The Fig. 2 and 3 show the 
additional features extracted from the PDSC signals.  
Moreover, having a large number of samples in a supervised classification problem is 
recommended. There are three samples of each fuel but, as shown in Fig. 1, the PDSC   

www.intechopen.com



 
Thermooxidative Properties of Biodiesels and Other Biological Fuels  

 

57 

 

Fig. 2. OOT, H and V features extracted from the PDSC heat flow signal and its derivative. 

 

 

Fig. 3. The slopes corresponding to the heat flow curves vs. temperature in the range from 5 
to 10 Wg-1 (slope between 5 and 10, m). 
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curves variability has been properly represented. So we can do a simulation study taking into 
account the sample parameters (mean and variance of the features measured in each fuel class).  
Then, a simulation study is presented to evaluate the power of classification of the chosen 
features. A parametric bootstrap resampling is chosen to increase the sample size until 100 
items per fuel class. The parametric bootstrap is implemented for generating new values 
from OOT and the other chosen features, assuming that are independently distributed 
according a Gaussian distribution where the mean is the sample mean and the variance is 
the sample variance. The leave-one-out cross-validation method technique is used for the 
validation of the empirical model. It allow to estimate the probabilities of correct 
classification corresponding to the different classification methods. It works by leaving out 
one sample (represented by the features above mentioned); then a model is trained with the 
remaining parameter samples and, finally, the developed model is used for classifying the 
sample left out. This is repeated 900 times, until all the vectors have been left out once. Table 
4 shows the probability of correct classification obtained by the above mentioned 
classification methods. These probabilities are very high, regardless of the method used. The 
best result corresponds to the use of logistic regression (99.7%) through almost all the 
samples are correctly classified. Table 5 shows the confusion matrices corresponding to the 
application of logistic regression, LDA, Bayes Naïve and KNN classification methods. The 
percentage of simulated samples correctly classified is shown in the diagonal of the 
matrices. The percentages of confusion obtained between the fuel types, two by two, are 
presented outside the diagonal. The little confussions existing between the two types of 
wood and between palm biodiesel and hojiblanca olive oil are solved using the logistic 
regresion method. According to these results, the OOT and the other characteristics are very 
useful parameters for classification purposes. 
 

Classification method Percentage of correct classification/ % 

LDA 94.2 

Logistic regression 99.7 

Bayes Naïve Classifier 98.0 

KNN 98.1 

Table 4. Percentages of correct classification obtained by the three proposed methods. The 
best results are obtained by Logistic regression. 

 
  Actual         

Method Estimated Corn Eucal. Hojib. 
Palm 
Biod. 

Picual 
Scots 
p. 

Soy 
Soy 
Biod. 

Sunfl. 

Logistic Corn 100 0 0 0 0 0 0 0 0 

Regress. Eucal. 0 100 0 0 0 0 0 0 0 

 Hojib. 0 0 100 0 1 0 0 0 0 

 PalmBiod. 0 0 0 99 0 0 0 0 0 

 Picual 0 0 0 1 98 0 0 0 0 

 Scots p. 0 0 0 0 0 100 0 0 0 

 Soy 0 0 0 0 1 0 100 0 0 

 Soy Biod. 0 0 0 0 0 0 0 100 0 

 Sunfl. 0 0 0 0 0 0 0 0 100 
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LDA Corn 75 0 0 0 0 0 0 0 0 

 Eucal. 0 98 0 0 0 19 0 0 0 

 Hojib. 0 0 100 4 2 0 0 0 0 

 PalmBiod. 1 0 0 96 0 0 0 0 0 

 Picual 0 0 0 0 98 0 0 0 0 

 Scots p. 0 2 0 0 0 81 0 0 0 

 Soy 7 0 0 0 0 0 100 0 0 

 Soy Biod. 17 0 0 0 0 0 0 100 0 

 Sunfl. 0 0 0 0 0 0 0 0 100 

Bayes Corn 99 1 0 0 0 0 0 0 0 

Naïve Eucal. 0 94 0 0 0 8 0 0 0 

 Hojib. 0 0 100 3 0 0 0 0 0 

 PalmBiod. 1 0 0 97 0 0 0 0 0 

 Picual 0 0 0 0 100 0 0 0 0 

 Scots p. 0 5 0 0 0 92 0 0 0 

 Soy 0 0 0 0 0 0 100 0 0 

 Soy Biod. 0 0 0 0 0 0 0 100 0 

 Sunfl. 0 0 0 0 0 0 0 0 100 

KNN Corn 100 0 0 0 0 0 0 0 0 

 Eucal. 0 96 0 0 0 10 0 0 0 

 Hojib. 0 0 100 3 0 0 0 0 0 

 PalmBiod. 0 0 0 97 0 0 0 0 0 

 Picual 0 0 0 0 100 0 0 0 0 

 Scots p. 0 4 0 0 0 90 0 0 0 

 Soy 0 0 0 0 0 0 100 0 0 

 Soy Biod. 0 0 0 0 0 0 0 100 0 

 Sunfl. 0 0 0 0 0 0 0 0 100 

Table 5. Confusion matrix or prediction percentages obtained by each classification method 
and leave-one-out cross-validation, using the features extracted from PDSC signals. The 
feature data set was tested with 9 classes or types of fuels. The results are shown as 
percentages. 

8. Conclusion  

The thermooxidative stability of 9 different types of fuels (including two types of biodiesel, 
soy and palm oil) has been measured using the OOT parameter. The use of the OOT 
parameter and ANOVA techniques allows to differentiate various groups of fuels: the 
varieties of olive oil, the two types of wood and finally the remaining fuels (although the 
sunflower oil is slightly different). But the OOT by itself is not enough to distinguish 
between all studied fuels with statistical significance. 
The classification of the 9 fuels according to the thermooxidative properties has been possible 
using multivariate supervised classification method and additional features extracted from the 
PDSC curves as dataset: the maximum slope of heat flow versus time (slope max) obtained in 
each case, the temperature at that point of maximum slope (T at max slope) and the slopes of 
the heat flow curves vs. temperature in the range from 5 to 10 Wg-1 (slope between 5 and 10). 
That additional information provides a better understanding of the thermooxidative process, 
allowing for identifying subtle differences between similar fuels. 
The evaluation of the discriminant power of the extracted thermooxidative features has been 
possible using parametric bootstrap resampling. 
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The overall percentages of correct classification are very high, in particular when Logistic 
regression classifier is used (99.7%); it seems to work better than LDA, Bayes Naïve and KNN. 
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