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1. Introduction  

Coronary heart disease is the leading cause of morbidity and mortality worldwide. To date, 
management of myocardial infarction (MI) has been limited to timely revascularization and 
drug therapy aimed to restore coronary blood flow and to reduce myocardial workload. 
When disease progresses to life-threatening end-stage heart failure, heart transplantation is 
the only effective therapeutic option available. However, its usage is very much restricted 
by the severe shortage of heart donors and the complications associated with enduring 
immune suppressive drug treatments (Miniati & Robbins, 2002). Therefore, innovative 
treatment strategies are clearly needed to improve patient outcomes. Recent advances in 
stem cell medicine have shed new light on potential MI therapies by exploiting the 
pluripotency of stem cells for cardiac repair and regeneration. Although immense progress 
has been made on the choice of cells and optimizing transplantation conditions, these 
remain critical issues when translating into the clinical setting of MI. In particular, poor 
survival of transplanted cells in the hostile microenvironment of the ischaemic myocardium 
and hence lack of significant engraftment in the heart has been a major impediment for 
achieving an effective stem cell therapy for MI (Pagani et al., 2003). Various cytoprotection 
strategies have been developed over the past decade to circumvent this limitation and the 
non-genetic approach of preconditioning has emerged as one of the most promising 
clinically adaptable strategies to promote stem cell survival and function under various 
ischaemic conditions. Although genetic enhancement of stem cells has been very successful 
in pre-clinical studies, the technical complexity and safety concerns (oncogenicity and 
mutagenesis) associated with this alternative approach have precluded its application in 
clinical translation (Bonaros et al., 2008; Penn & Mangi, 2008). This review will focus on 
current pre-clinical development of non-genetic preconditioning approaches to improve the 
therapeutic potential of stem and progenitor cells for repair of the heart after MI.  

2. History of ischaemic and pharmacological preconditioning 

The protective phenomenon of preconditioning was first described by Murry et al. in 1986 

whereby exposure to brief cycle(s) of sub-lethal ischaemia with intermittent reperfusion, 

which in itself does not induce injury, render the heart more resistant to subsequent lethal 

ischaemic insults; this phenomenon was termed ischaemic preconditioning (IPC) (Murry et 
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al., 1986). Subsequent studies by various laboratories have quickly established IPC as the most 

powerful and effective means of endogenous protection against ischaemic injury. Although 

this protective intervention can be easily reproduced in various pre-clinical studies, successful 

translation into clinical practice has been limited by the safety consideration of needing to 

manipulate the already injured heart. To circumvent this limitation, effort has been 

concentrated on clarifying the underlying molecular mechanisms governing the 

cardioprotective effect of IPC which have lead to the discovery of various pharmacological 

agents that can directly activate the protective signalling pathways to achieve myocardial 

protection without ischaemia, an intervention called pharmacological preconditioning. Despite 

extensive research, the mechanism(s) underlying the protective effect of preconditioning 

remain to be fully elucidated. It is believed to involve multiple intricate endogenous signalling 

pathways (Yellon & Downey, 2003; Huffmyer & Raphael, 2009) including agonists of G-

protein coupled receptors (adenosine, bradykinin, opioids, etc), growth factors (IGF, TGFǃ, 

VEGF, etc), phosphodiesterase inhibitors, mitochondrial KATP channel openers, cytokines 

(TNFǂ, IL-1ǃ, IL-6, etc), nitric oxide (NO), and others. Some of these have been promoted into 

the clinical arena, for example adenosine in AMISTAD I (Mahaffey et al., 1999) and II (Ross et 

al., 2005) trials. In general, non-genetic preconditioning strategies employed by current pre-

clinical studies to improve survival and function of stem and progenitor cells can be 

categorized into ischaemic/hypoxic and pharmacological preconditioning.   

3. Ex vivo ischaemic and hypoxic preconditioning of stem cells 

The ischaemic conditions used to simulate IPC in vitro are quite diverse. The majority of 

studies have experimented with hypoxia or anoxia alone, termed hypoxic preconditioning 

(HPC), while others include nutrient deprivation. In some studies, hydrogen peroxide 

(H2O2) was used to simulate the ischaemic condition of oxidative stress (Li et al., 2009; 

Sharma et al., 2008). Furthermore, different HPC protocols, from the classical multiple cycles 

of brief hypoxia with intermittent reoxygenation to a single long-term exposure to hypoxia, 

have been employed to demonstrate the cytoprotective effect of HPC on stem and 

progenitor cells in vitro. It is also interesting to note that subjecting stem and progenitor cells 

to heat shock, as a form of sublethal cell stress, also capable of promoting their survival and 

in vivo engraftment (Laflamme et al., 2005; Maurel et al., 2005; Suzuki et al., 2000). Despite 

these differences and the lack of an optimal protocol definition, the beneficial effects of HPC 

on stem and progenitor cell function were unequivocally demonstrated in all these studies 

and involved multiple signalling molecules (Table 1) (Figure 1).  

3.1 Survival 

The poor survival and retention of transplanted stem and progenitor cells has driven the 

investigation towards effective cytoprotective strategies which aim to enhance their survival 

in the ischaemic environment. The extent of retention of the delivered cells was documented 

to be rather low with recent studies suggesting that more than 90% are lost partly because of 

necrosis and apoptosis in the ischaemic myocardium following their delivery by 

intramyocardial, retrograde transvenous, intracoronary or systemic routes (Terrovitis et al., 

2010; Aicher et al., 2003; Goussetis et al., 2006). One means of overcoming this limitation 

would be to increase the survival of transplanted cells, thus avoiding the impractical and 

costly alternative of delivering large excesses of stem cells into the injured myocardium.  
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Fig. 1. Mechanisms underlying the cytoprotective effect of hypoxic preconditioning in stem 
and progenitor cells. 

HPC by sublethal hypoxia has been shown to enhance the survival of stem and progenitor 

cells isolated from various species including humans in vitro (Table 1). Similarly, the 

cytoprotective effect of HPC was demonstrated in a number of in vivo studies using 

clinically relevant ischaemic models (Table 2). In these studies, ex vivo HPC rendered stem 

and progenitor cells more resilient to cell death when transplanted into the infarcted 

myocardium (He et al., 2009; Hu et al., 2008; Tang et al., 2009; Uemura et al., 2006), 

ischaemic limb (Akita et al., 2003; Kubo et al., 2008; Li et al., 2002; Rosova et al., 2008) or 

ischaemic brain (Theus et al., 2008), and this finding was significantly correlated with 

improved functional recovery of the ischaemic tissues. For instance, transplantation of 

hypoxic preconditioned mesenchymal stem cells (MSCs) into the ischaemic myocardium 

showed enhanced therapeutic benefits in terms of infarct size reduction, increased 

angiogenesis, improved ventricular function and less adverse cardiac remodelling (Hu et al., 

2008). These beneficial effects of hypoxic preconditioned stem cells are attributed to 

enhanced pleiotropic paracrine activities instead of transdiffentiation and cell fusion, which 

occurred at insignificantly low frequency. Convincing evidence in support of the paracrine 

paradigm were provided by in vitro studies with conditioned media, where media from 

hypoxia-conditioned MSCs was shown to be cytoprotective in cultured human aortic 

endothelial cells (Hung et al., 2007a) and primary rat cardiomyocytes (Gnecchi et al., 2006) 

subjected to hypoxic injury.  

Mechanistic evaluations of the cytoprotective effect of HPC in stem and progenitor cells 

have implicated the up-regulation of a diverse array of soluble survival proteins such as 

growth factor VEGF (Akita et al., 2003; Potier et al., 2007), anti-apoptotic proteins Bcl-2 and 

Bcl-xL (Francis & Wei, 2010; Hu et al., 2008; Theus et al., 2008; Wang et al., 2008a), 

antioxidants heme oxygenase-1, hexokinase-2, catalase and superoxide dismutase (Kubo et 
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 Stem cells PC stimulus End points Mechanisms References 

Hypoxia     

MSCs (mouse) <0.1% O2, 4 h 
↑ survival of co-

cultured adult CMs 
Akt; VEGF; SDF-1; 

eNOS 
Uemura et 

al., 2006 

MSCs (mouse) 0.5% O2, 24 h ↑ survival 

HIF-1ǂ; Ang-1; 
VEGF/Flk1; Bcl-2; 
Bcl-xL; p105; EPO; 

NFκB 

Hu et al., 
2008 

MSCs (mouse) 0.5% O2, 24 h ↑ survival 
HIF-1ǂ; EPO; Bcl-2; 

Bcl-xL 
Theus et al., 

2008 

MSCs (mouse) 1% O2, 36 h 
Conditioned media ↑ 

cell migration 
Wnt4 

Leroux et 
al., 2010 

MSCs (mouse) 3% O2, 3-24 h 
↑ survival; 

↑ cell migration; 
↑ cell adhesion 

Akt; HIF-1ǂ; 
CXCR4; CXCR7 

Liu et al., 
2010 

MSCs (rat) 
<0.1% O2 & 

serum-free, 3 h
↑ survival of co-

cultured neonatal CMs
- 

He et al., 
2009 

MSCs (rat) 0.5% O2, 12 h 
Conditioned media ↑ 
adult CMs survival 

VEGF; HGF; bFGF; 
Thymosin ǃ4 

Gnecchi et 
al., 2006 

MSCs (rat) 0.5% O2, 24 h ↑ survival Akt; VEGF; HIF-1ǂ Chacko et 
al., 2010 

MSCs (rat) 1% O2, 24 h ↑ survival 
Catalase, Mn-SOD, 

p38MAPK, Bcl-2 
Peterson et 

al., 2011 

MSCs (rat) 2% O2, 4-48 h 
↑ angiogenic factors 

secretion 
VEGF/Flk1; VE-

cadherin 
Li et al., 

2002 

MSCs (rat) 
8% O2, 10-30 

min 
↑ survival 

 
Akt; ERK1/2; Bcl-2; 

Bax; VEGF 
Wang et al., 

2008a 

MSCs (rat) 
<0.1% O2, 10/30 

min x 1-3 
↑ survival 

Akt; ERK1/2; Bcl-
xL; HIF-1ǂ; miR-210 

Kim et al., 
2009 

MSCs (human) 1% O2, 22 h ↑ cell migration 
HIF-1ǂ; CX3CR1; 

CXCR4 
Hung et al., 

2007b 

MSCs (human) 1% O2, 2 d 
↑ angiogenic factors 

secretion 
↓ osteogenic diff. 

VEGF 
Potier et al., 

2007 

MSCs (human) 
1% O2 & serum-

free, 2 d 

Conditioned media ↑ 
endothelial cell survival 

& angiogenesis 
Akt; IL-6; eNOS 

Hung et al., 
2007a 

MSCs (human) 2% O2, 3d 
Restore hypoxia-

induced ↓ of osteogenic 
diff. 

- 
Volkmer et 

al., 2010 

MSCs (human) 1-3% O2, 16 h ↑ cell migration Akt; HGF/cMet 
Rosova et 
al., 2008 

PB-MNCs 
(mouse) 

2% O2, 24 h ↑ survival 
HO-1, autocrine 
motility factor, 
hexokinase-2 

Kubo et al., 
2008 
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PB-MNCs 
(mouse) 

2% O2, 24 h ↑ cell migration VEGF; NOS Ii et al., 2005 

PB-MNCs 
(human) 

pO2 of 
35mmHg, 7 d 

↑ endothelial diff.; 
↑ cell migration 

VEGF; KDR 
tyrosine kinase 

Akita et al., 
2003 

ESNPCs 
(mouse) 

1% O2, 4-12 h + 
24 h Reoxy. 

↑ survival; 
↑ neuronal diff. 

HIF-1ǂ; EPO; Bcl-2
Theus et al., 

2008 

ESNPCs 
(human) 

0.1% O2, 12 h + 
0-5 d Reoxy. 

↑ survival; 
↑ neuronal diff. 

HIF-1ǂ; HIF-2ǂ; 
EPO; VEGF; Bcl-2; 

Bax; Akt 

Francis & 
Wei, 2010 

ASCs (human) 
1% O2, 24 h + 24 

h Reoxy. 
↑ survival of co-
cultured NSCs 

- 
Oh et al., 

2010 

CLK (mouse) 0.1% O2, 4-24 h ↑ cell migration 
HIF-1ǂ; SDF-

1/CXCR4 
Tang et al., 

2009 

Bone marrow 
CD133+  
(human) 

1.5% O2, 24 h + 
2 d Reoxy. 

↑ endothelial diff.; 
↑ angiogenic-related 

genes 
- 

Ong et al., 
2010 

NSCs (mouse) 0.5% O2, 3 h 
↑ functional 
engraftment 

Connexin-43 
Jaderstad et 

al., 2010 

Hydrogen peroxide    

MSCs (rat) 
20 μM H2O2,   

24 h 
↑ survival 

↑ cell migration 
SDF-1/CXCR4; 

ERK1/2 
Li et al., 

2009 

NPCs (mouse) 
0.05-0.5 μM 
H2O2, 24 h 

↑ survival - 
Sharma et 
al., 2008 

Heat shock    

Skeletal Mb 
(rat) 

420C, 1 h ↑ survival HSP72 
Suzuki et 
al., 2000 

Skeletal Mb 
(rat) 

420C, 70 min ↑ survival HSP70 
Maurel et 
al., 2005 

ESCM (human) 430C, 30 min ↑ survival 
HSP60, HSP70, 

HSP90 
Laflamme et 

al., 2005 

Table 1. Effect of ischaemic or hypoxic preconditioning on stem and progenitor cells in vitro. 
CLK (cardiosphere-derived Lin-c-kit+ progenitor cells), CMs (cardiomyocytes), diff. 
(differentiation), ESCM (embryonic stem cell-derived cardiomyocytes), ESNPCs (embryonic 
stem cell-derived neural progenitor cells), HO-1 (heme oxygenase-1), HSP (Heat shock 
protein), KDR (kinase insert domain receptor), Mb (myoblasts), NPCs (neural progenitor 
cells), NSCs (neural stem cells), PB-MNCs (peripheral blood mononuclear cells), Reoxy 
(reoxygenation), Wnt4 (wingless-related MMTV integration site 4).   

al., 2008; Peterson et al., 2011) , erythropoietin (EPO) (Hu et al., 2008; Theus et al., 2008) and  

NO (Uemura et al., 2006; Ii et al., 2005) as the contributing factors. Other potential cytokines 

and growth factors that have been suggested are basic fibroblast growth factor (bFGF) 

(Gnecchi et al., 2006), hepatocyte growth factor (HGF) (Gnecchi et al., 2006), IL-1ǃ (Kubo et 

al. 2008), IL-6 (Hung et al., 2007a) and thymosin ǃ4 (Gnecchi et al., 2006), though more 

supporting evidence for these factors in mediating the pro-survival effect of HPC in the 

context of stem cell preconditioning are warranted. In addition, HPC has also been shown to 

activate several transcription factors and signal transduction cascades that are known to be 
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 In vivo models Stem cells PC stimulus End points References 

MI (mouse) 
MSCs 

(mouse) 
Anoxia, 4 h + 2 h 

reoxygenation 
↓ infarct size & apoptosis;

↑ LV function 
Uemura et 

al., 2006 

MI (mouse) 
CLK 

(mouse) 
0.1% O2, 6 hours

↓ infarct size; 
↑ angiogenesis; 
↓ LV remodelling; 
↑ LV function 

Tang et al., 
2009 

MI (rat) 
MSCs 

(mouse) 
0.5% O2, 24 h + 2 
h reoxygenation

↑ cell survival; 
↓ infarct size; 
↑ angiogenesis; 
↑ LV function 

Hu et al., 
2008 

MI (rat) MSCs (rat)
Anoxia & serum-

free, 3 h 
↓ infarct size & apoptosis;

↑ LV function 
He et al., 

2009 

MI (rat) MSCs (rat)
10/30 min 

anoxia-
reoxygenation 

↑ cell survival 
Kim et al., 

2009 

Limb ischaemia 
(mouse) 

MSCs 
(mouse) 

1% O2, 36 h 

↑ cell survival; 
↑ skeletal muscle 

regeneration; 
↑ limb perfusion; 

↑ neovascularization 

Leroux et 
al., 2010 

Limb ischaemia 
(mouse) 

MSCs 
(human) 

1-3% O2, 16 h ↑ limb perfusion 
Rosova et 
al., 2008 

Limb ischaemia 
(mouse) 

PB-MNCs 
(mouse) 

2% O2, 24 h 
↑ cell survival; 
↑ limb perfusion; 

↑ neovascularization 

Kubo et al., 
2008 

Limb ischaemia 
(rat) 

MSCs (rat) 2% O2, 24 h 
↑ limb perfusion; 

↑ neovascularization 
Li et al., 

2002 

Limb ischaemia 
(rat) 

PB-MNCs 
(human) 

pO2 of 35mmHg, 
7 d 

↑ limb perfusion; 
↑ neovascularization 

Akita et al., 
2003 

Brain ischaemia 
(rat) 

ESNPCs 
(mouse) 

1% O2, 8 h 
↑ cell survival; 

↑ recovery of sensorimotor 
function 

Theus et al., 
2008 

Diabetic 
cardiomyopathy 

(rat) 
MSCs (rat) Anoxia 

↓ apoptosis; 
↑ angiogenesis; 
↓ LV remodelling; 
↑ LV function 

Li et al., 
2008 

Spinal cord injury 
(rat) 

ASCs 
(human) 

1% O2, 24 h + 24 h 
reoxygenation 

↑ survival of co-
transplanted NSCs 

Oh et al., 
2010 

Table 2. Therapeutic potential of hypoxic-preconditioned stem and progenitor cells.  

protective and functionally beneficial including the survival kinase Akt (Hung et al., 2007a; 

Kim et al., 2009), ERK1/2 (Wang et al., 2008a), p38MAPK and survivin (Peterson et al., 

2011), SDF-1/CXCR4 and CXCR7 chemokine signalling pathway (Liu et al., 2010), 

microRNA(miR)-210 (Kim et al., 2009), transcription factors HIF-1ǂ (Kim et al., 2009; Francis 

& Wei, 2010) and NFκB (Hu et al., 2008). It is also important to note that these mechanistic 

www.intechopen.com



 
Cytoprotection and Preconditioning for Stem Cell Therapy 

 

95 

pathways and paracrine factors interact with each other and are not mutually exclusive. For 

example, stabilisation of HIF-1ǂ by HPC, possibly through activation of the PI3K/Akt 

pathway (Francis & Wei, 2010; Liu et al., 2010), allows its translocation into the nucleus to 

up-regulate the transcription and translation of various anti-apoptotic proteins such as 

CXCR7 (Liu et al., 2010), Bcl-2 (Francis & Wei, 2010) and miR-210 (Kim et al., 2009) in stem 

and progenitor cells. Furthermore, up-regulation of miR-210 has been demonstrated to 

down-regulate the expression of CAP8AP2, a pro-apoptotic protein that activates death-

effector caspase-8 and promotes Fas-induced apoptosis (Kim et al., 2009).  

3.2 Differentiation and engraftment 

In addition to cell survival and retention, lack of significant functional cell engraftment of 
transplanted cells in the injured tissues has posed another significant challenge for cell-
based therapy. In most studies, transplanted stem and progenitor cells do not appear to be 
trans-differentiated and incorporated into host tissues. Instead, the functional improvement 
of the ischaemic conditions is likely attributed to the paracrine activities of transplanted 
cells. Therefore, interventions that can promote stem cell differentiation and functional 
engraftment in the target tissues post-transplantation should deserve much attention. HPC 
has been shown not only to enhance stem cell survival but also to promote their 
differentiation and engraftment. Hypoxia is a potent differentiation inducer of stem cells 
and studies have demonstrated an acceleration of MSC differentiation when cultured under 
hypoxic conditions (5-8% O2) compared with that in normoxic culture, possibly through 
stabilisation of the oxygen sensitive transcription factor HIF-1ǂ (Lennon et al., 2001; Ren et 
al., 2006). In contrast, a number of studies have indicated that hypoxia strongly inhibits the 
differentiation capacity of human bone marrow-derived MSCs (Hung et al., 2007b; Potier et 
al., 2007; Salim et al., 2004; Volkmer et al., 2010) and adipose-derived mesenchymal stem 
cells (ASCs) (Malladi et al., 2006; Wang et al., 2005), without affecting the cell viability. 
Similar conflicting results on stem cell differentiation potential were demonstrated by 
studies on short-term exposure to hypoxia. Studies on mouse (Theus et al., 2008) and human 
(Francis & Wei, 2010) embryonic stem cells (ESCs) have indicated a favourable effect of HPC 
in promoting their neuronal differentiation. A recent study by Volkmer et al. has also 
reported that HPC can restore the osteogenic differentiation capacity of human MSCs which 
was otherwise compromised under hypoxic conditions (Volkmer et al., 2010). Conversely, 
Potier et al. showed that short-term exposure of human MSCs to hypoxia (<1% O2) has a 
negative impact on their osteogenic differentiation under normal in vitro culture condition 
(21% O2) (Potier et al., 2007). Although the reason for this discrepancy remains unclear, the 
differences in cell type and species, oxygen tension, duration of exposure to hypoxic 
conditions and culture conditions could be the answers to these contradictory results.  
In terms of functional engraftment, a recent in vitro study by Jaderstad and associates has 

reported an increased in gap-junctional intercellular communication between hypoxic 

preconditioned neural stem cells and host cells in vitro, a consequence of increased 

expression of connexin 43 (Jaderstad et al., 2010). In support of this finding was a previous 

study reporting that HPC of human MSCs enhanced their xenografting efficiency into chick 

embryos, a model employed to examine the in vivo engraftment and differentiation potential 

of stem cells (Hung et al., 2007b). In addition, Xie et al. has reported that conditioned 

medium from rat neonatal cardiomyocytes subjected to 2 hours of hypoxia followed by 

overnight reoxygenation can induce MSC differentiation into cardiomyocyte lineage as 
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indicated by an increase in cardiac myosin heavy chain and troponin T expression (Xie et al., 

2006). The latter study has also suggested that HPC may induce secretion of various soluble 

differentiation factors, whose identity remains to be determined and depend on the cell 

types. However, what remains unknown is whether these effects of HPC in promoting stem 

cell differentiation and in vivo engraftment can be translated when preconditioned stem cells 

are transplanted into adult tissues. To this end, early studies on peripheral blood 

mononuclear cells (Akita et al., 2003; Kubo et al., 2008) and MSCs (Leroux et al., 2010; Li et 

al., 2002) have indicated that HPC enhances not only their differentiation into endothelial 

progenitor cells (EPCs) in vitro but also promotes neovascularisation when transplanted into 

the ischaemic hindlimb. This effect was associated with improvement of blood perfusion 

and acceleration of tissue repair. Nevertheless, the lack of detailed histological analysis of 

angiogenesis in the host tissues, i.e. quantifying the blood vessels derived from implanted 

cells, has cast doubt on the enhanced functional integration of these transplanted cells as the 

contributing mechanism (Akita et al., 2003). Instead, the improvement in overall 

neovascularisation in these studies can be interpreted as a result of increased angiogenic 

cytokines released by preconditioned cells, such as VEGF (Akita et al., 2003; Leroux et al., 

2010; Li et al., 2002), thus promoting intrinsic angiogenesis in the host. Supporting this 

notion is a study that showed MSCs subjected to ex vivo HPC expressed a higher level of 

VEGF mRNA and induced greater local VEGF production in the ischaemic hindlimb after 

implantation, possibly through activation of the canonical Wnt (wingless-related MMTV 

integration site) pathway (Li et al., 2002; Leroux et al., 2010).  

3.3 Cell migration 

In cell-based therapy, effective treatment also relies on the ability of transplanted stem and 
progenitor cells to migrate to the site of injured tissues to exert reparative and regenerative 
effects. Short-term exposure to hypoxia has been shown to enhance the migratory capacity 
of stem and progenitor cells ex vivo by modulating the expression of various chemokines 
and cytokines receptors. Hung et al. reported an upregulation of CXC3R1 and CXCR4 
expression on both mRNA and protein levels when MSCs were cultured under hypoxic 
condition compared with normoxia, resulted in an increased cell migration in response to 
the fractalkine/CX3CL1 and SDF-1ǂ/CXCL12, respectively (Hung et al., 2007b). A recent 
study also showed that HPC enhances MSC adhesion, an important step during cell 
trafficking in vivo, through upregulation of CXCR4 and CXCR7 (Liu et al., 2010). The 
induction of these chemokine receptors has been shown to be driven mainly by transcription 
factor HIF-1ǂ (Liu et al., 2010; Hung et al., 2007b; Tang et al., 2009). Using low dose of H2O2 

as a preconditioning stimulus, Li et al. also showed that the enhanced chemotaxis of 
preconditioned MSCs was attributed to the up-regulation of CXCR4 in an ERK-dependent 
manner (Li et al., 2009). Translating these in vitro findings into an in vivo setting, Tang et al. 
has shown that short-term exposure of murine cardiac progenitor cells to hypoxia not only 
enhanced their migratory activity in vitro but also in vivo recruitment to the ischaemic 
myocardium when administered intravenously, through a CXCR4-dependent manner (Tang 
et al., 2009). In addition to the chemokine mechanisms, other studies have suggested that 
HPC enhanced migratory function of stem and progenitor cells through regulation of 
cytokine signalling (Akita et al., 2003; Rosova et al., 2008; Ii et al., 2005). For instance, 
hypoxia enhanced the migratory function of human EPCs in response to VEGF, possibly 
through up-regulation of KDR/VEGFR2 expression (Akita et al., 2003). In another study, 
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Rosova and colleagues showed that HPC increased the expression of the tyrosine kinase 
receptor, c-Met, in preconditioned MSCs rendered the cells more responsive to HGF 
(Rosova et al., 2008). Interestingly, HPC can also induce the secretion of chemo-attractants 
from preconditioned MSCs to promote endothelial cell migration through Wnt4-dependent 
signalling pathway (Leroux et al., 2010).  

3.4 Cell proliferation 
Stem and progenitor cells self-renew and this is one of the properties that make them an 
attractive autologous cell source for cell-based therapy and tissue engineering, where 
success is highly dependent on abundant cell supply. Ex vivo cell expansion is traditionally 
performed under ambient oxygen concentration of 20% O2, which is considered to be 
hyperoxia compared to their physiological niches (2-7% O2). Thus, it is imperative to 
simulate various aspects of the stem and progenitor cells’ endogenous microenvironment, 
including hypoxia, in order to maintain their native characteristics and to comprehend how 
they respond to a hypoxic environment in injured ischaemic tissues. Studies investigating 
the effect of hypoxia on stem cell proliferation potential have yielded contradictory results, 
possibly due to the differences in hypoxic conditions, cell type, serum concentration and 
culture duration (Das et al., 2010). Compared to the routine normoxic culture of 20% O2, 
long-term culture of human MSCs in 1% O2 has been shown to reduce their proliferative 
potential (Hung et al., 2007b). Conversely, bone marrow-derived MSCs (D'Ippolito et al., 
2006; Grayson et al., 2007; Lennon et al., 2001; Ren et al., 2006), but not ASCs (Wang et al., 
2005), cultured under hypoxic conditions with slightly higher oxygen tension (≥2% O2), 
showed increased cell proliferation. Importantly, short-term exposure to hypoxia did not 
negatively affect the proliferative potential of stem cells (Francis & Wei, 2010; Leroux et al., 
2010; Rosova et al., 2008), an observation that will alleviate the safety concerns of HPC when 
clinical applications are being considered. 

4. Ex vivo pharmacological preconditioning of stem cells 

While ischaemic or hypoxic preconditioning has been shown to regulate multiple stress-
responsive mechanisms that promote stem and progenitor cell survival under various 
ischaemic conditions, preconditioning with specific pharmacological agents seems to target 
a more linear signalling pathway.  This has been explored in various studies on stem and 
progenitor cells (Table 3). 

4.1 Diazoxide 
The mitochondrial ATP-sensitive potassium (mitoKATP) channel is an important mediator of 
cardioprotection (Yellon & Downey, 2003; O'Rourke, 2004) where opening of the channels 
has been shown to induce protection by preventing calcium overload, inhibiting 
mitochondrial permeability transition pore (mPTP) opening, preserving ATP production, 
uncoupling of mitochondrial oxidative phosphorylation, succinate dehydrogenase 
inhibition, reducing detrimental reactive oxygen species (ROS) production at reperfusion 
and PKC activation. Using the mitoKATP opener diazoxide, Baines and colleagues were the 
first to demonstrate that opening of mitoKATP channels prior to ischaemia could mimic the 
infarct-limiting effect of IPC in the setting of myocardial ischaemia-reperfusion injury 
(Baines et al., 1999). Recently, diazoxide has also featured in a number of studies by Ashraf’s 
group to precondition stem and progenitor cells. They have shown that ex vivo 
preconditioning with diazoxide can promote skeletal myoblasts (Haider et al., 2010; Niagara  
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PC stimulus Cells In vitro In vivo Mechanisms References 

Diazoxide (200 
μM), 30 min 

Skeletal Mb 
(rat) 

↑ survival 
(MI) ↑ survival; ↑ 
angiomyogenesis;
↑ LV function 

Akt; bFGF;  
HGF 

Niagara et 
al., 2007 

Diazoxide (200 
μM), 30 min 

Skeletal Mb 
(rat) 

↑ survival 

(MI) ↑ survival & 
proliferation; ↑ 

angiomyogenesis;
↑ LV function 

Akt; ERK1/2; 
STAT3; IL-11; 

miR-21 

Haider et al., 
2010 

Diazoxide (200 
μM), 30 min 

MSCs (rat)
↑ survival 

 
 

(MI) ↑ survival; 
↓ infarct size; ↑ 

angiomyogenesis;
↑ LV function 

Akt; GSK3ǃ; 
NFκB; HGF; 
IGF; FGF-2; 

Ang-2 

Afzal et al., 
2010 

Diazoxide (200 
μM), 1-3 h 

MSCs (rat)
↑ survival 

 
- 

NFκB; Fas;  
miR-146a 

Suzuki et al., 
2010 

Diazoxide (200 
μM), 30 min 

MSCs (rat)
↑ survival 

 

(MI) ↑ survival; ↓ 
infarct size; ↑ LV 

function 

Akt; bFGF;  
HGF 

Cui et al., 
2010 

SDF-1 (50 ng/mL), 
1 h 

MSCs (rat)
↑ survival; 

↑ proliferation 

(MI) ↑ survival; 
↓ infarct size; ↑ 

angiomyogenesis;
↑ LV function 

Akt; CXCR4; 
VEGF 

Pasha et al., 
2008 

SDF-1 (10-100 
ng/mL), 24 h 

MSCs (rat)
↑ survival 

 
- CXCR4 

Chen et al., 
2009 

IGF-1 (100 nM), 30 
min 

BM Sca-1+ 
(mouse) 

↑ survival; 
↑ myogenic diff.

 

(MI) ↑ survival; ↓ 
infarct size; ↑ 

myogenic diff.; ↑ 
angiogenesis; 
↑ LV function 

Akt; Cx43 Lu et al., 2009

IGF-1 (100 nM), 30 
min 

BM Sca-1+ 

(mouse) 
↑ survival 

 
- ERK1/2;    Cx43Lu et al., 2010

TGFǂ (0.25 μg/mL),
24 h 

MSCs 
(mouse) 

- 
(MI) ↓ apoptosis; ↑

LV function 
VEGF; 

p38MAPK 
Herrmann et 

al., 2010b 

TGFǂ (0.25-1 
μg/mL), 24 h 

MSCs 
(human) 

↑ VEGF production - PI3K; MEK 
Wang et al., 

2008b 

TGFǂ (0.01-1 
μg/mL), 24 h 

MSCs 
(human) 

↑ HGF production - 
PI3K; MEK; 

TNFR; 
p38MAPK 

Wang et al., 
2009b 

PDGF (0.4 nM), 
5 d 

MSCs (rat) ↑ adipogenic diff. - - 
Tamama et 

al., 2006 

PDGF (0.4 nM), 
5 d 

MSCs 
(human) 

↓ adipogenic-; 
↑ osteogenic- diff.

- - 
Tamama et 

al., 2006 

BMP-2 + bFGF + 
IGF-1 (10, 50 & 2 

ng/mL), 1-7 d 
MSCs (rat)

↑ survival; 
↑ myogenic diff.

(MI) ↑ survival; ↓ 
infarct size; ↑ LV 

function 

Cx43; Akt; 
CREB 

Hahn et al., 
2008 

IGF-1 + bFGF (50 &
50 ng/mL), 1 h 

MSCs 
(mouse) 

↑ survival & 
proliferation; 
↑ angiogenic 

potential 

- 

Akt; SOD; Ang-
1; Bax; Bak; 

16INK4a; p66shc; 
p53 

Khan et al., 
2011 
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PC stimulus Cells In vitro In vivo Mechanisms References 

Sevoflurane (2%), 
30 min x 3 

EPCs 
(human) 

↑ CFC - VEGF 
Lucchinetti et

al., 2009 

Isoflurane (0.5 
mM), 10 min 

ESCM 
(human) 

↑ survival - 
mitoKATP; 
ΔΨm; ROS 

Sepac et al., 
2010 

CsA (0.5-5 μM), 
30 min 

MSCs (rat) ↑ survival - 
Bcl-2; BAD; 
ΔΨm 

Wang et al., 
2008a 

LPS (1 μg/mL), 
12 h 

MSCs 
(mouse) 

↑ survival 
 

- 
TRL-4; Akt; 

NFκB 
Wang et al., 

2009c 

LPS (1 μg/mL), 
2 d 

MSCs 
(mouse) 

- 

(MI) ↑ survival; ↓ 
cardiac fibrosis; ↑ 

angiogenesis; ↑ LV
function 

TRL-4; Akt; 
VEGF; NFκB 

Yao et al., 
2009 

Melatonin (5 μM), 
24 h 

MSCs (rat)

↑ survival ; 
Conditioned media
↑EPCs proliferation

& angiogenesis 

(Renal IR) ↑ 
survival; ↑ renal 
function; ↑ renal 

cell proliferation; ↑
angiogenesis 

Catalase; SOD, 
bFGF; HGF 

Mias et al., 
2008 

Trimetazidine 
(10 μM), 6 h 

MSCs (rat) ↑ survival 
(MI) ↓ infarct size; 
↑ LV function 

Akt; HIF-1ǂ; 
survivin;  

Bcl-2 

Wisel et al., 
2009 

Fucoidan (10 
μg/mL), 36 h 

EPCs 
(human) 

↑ cell migration;
↑ angiogenic 

potential 
- - 

Zemani et al.,
2005 

LPA (10 μM), 1 h MSCs (rat) - 
(MI) ↑ survival; ↑ 

angiogenesis 
VEGF 

Liu et al., 
2009 

Lithium Chloride
(5-20 mM), 24 h 

Skeletal Mb 
(rat) 

↑ survival & 
proliferation; 
↑ gap junction 

formation 

- 
Cx43; VEGF; 
ǃ-catenin;  
GSK-3ǃ 

Du et al., 
2009 

rhHsp90ǂ (0.1-10 
μM), 24 h 

MSCs (rat) ↑ survival - 
Akt; ERK1/2; 

NO; Bcl-2;  
Bcl-xL; Bax 

Gao et al., 
2010 

ǃ-met (2 mM),  
1 h 

MSCs (rat) ↑ survival - HSP72 
Cizkova et 

al., 2006 

rhEPO (10 U/mL), 
24 h 

ESNPCs 
(mouse) 

↑ survival - Bcl-2 
Theus et al., 

2008 

Carbamylated EPO 
(100 ng/mL), 30 

min 

ESCM 
(human) 

- (MI) ↑ survival Akt 
Robey et al., 

2008 

Simvastatin (25 
μM), 24 h 

EPCs 
(human) 

↑ survival - - 
Henrich et 

al., 2007 

Ang (angiopoietin), ǃ-met (ǃ-mercaptoethanol), CFC (colony forming capacity), CREB (cAMP response 
element binding protein), Mb (myoblasts), rh (recombinant human), ΔΨm (mitochondrial membrane 
potential). 

 

Table 3. Pharmacological preconditioning of stem and progenitor cells. 
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et al., 2007) and MSCs (Afzal et al., 2010; Suzuki et al., 2010) survival both in vitro and in vivo 

post-transplantation. Furthermore, transplantation of these preconditioned cells into the 

infarcted myocardium was associated with smaller infarct size, improved LV function, 

myogenic differentiation and angiogenesis (Afzal et al., 2010; Haider et al., 2010; Niagara et 

al., 2007). The potential mechanisms responsible for the cytoprotective effect of diazoxide in 

skeletal myoblasts include enhanced release of paracrine growth factors such as bFGF and 

HGF, and activation of survival kinase PI3K/Akt (Niagara et al., 2007). A later study by the 

same group expanded the mechanistic finding to include IL-11, the ERK1/2-STAT3 

signalling pathway and up-regulation of miR-21 (Haider et al., 2010). In MSCs, Afzal et al. 

reported NFκB activation as another important underlying mechanism of diazoxide-

induced protection especially during the late phase preconditioning (Afzal et al., 2010). The 

activation of NFκB in diazoxide preconditioned MSCs was subsequently implicated to 

regulate the expression of miR-146a, which in turn acts as a negative regulator of the Fas 

gene, a death receptor of apoptosis (Suzuki et al., 2010). 

4.2 Stromal cell-derived factor-1 (CXCR12) 

SDF-1 or CXCL12 is a cytokine belonging to the CXC chemokine subfamily. Specific binding 

of SDF-1 to CXCR4 induces dimerization of the receptor and activates multiple signalling 

pathways to regulate trafficking and differentiation of stem and progenitor cells (Chen et al., 

2011; Kucia et al., 2004). In addition, activation of the SDF-1/CXCR4 axis has been shown to 

promote cell survival and proliferation (Broxmeyer et al., 2003; Kucia et al., 2004; Hu et al., 

2007). The therapeutic potential of SDF-1 was later illustrated in an experimental model of 

myocardial infarction (Takahashi, 2010). For example, SDF-1 administration conferred 

cardioprotection through the PI3K/Akt signalling pathway in the setting of acute ischaemia-

reperfusion injury (Hu et al., 2007) and chronic ischaemic heart failure (Saxena et al., 2008). 

In the setting of hindlimb ischaemia, intramuscular injection of SDF-1 increased angiogenic 

factor VEGF expression, and enhanced the retention and neovascularisation efficacy of 

transplanted EPCs (Yamaguchi et al., 2003). Other delivery methods for SDF-1 include direct 

gene delivery with adenoviral vector (Abbott et al., 2004) and plasmid DNA (Hiasa et al., 

2004) encoding for SDF-1, or transplantation of genetically modified cardiac fibroblasts 

(Askari et al., 2003), MSCs (Zhang et al., 2007) or skeletal myoblasts (Elmadbouh et al., 2007) 

that over-expressed SDF-1 into the ischaemic tissues. Therefore, it is not surprising that SDF-

1 has been exploited as a potential preconditioning agent to enhance stem and progenitor 

cells survival and function without the long-term concern of genetic manipulation. In this 

regard, pre-treatment with SDF-1 has been shown to enhance MSC survival both in vitro 

(Chen et al., 2009; Pasha et al., 2008) and following intramyocardial transplantation in the 

infarcted myocardium through activation of PI3K/Akt signalling pathway and is dependent 

on CXCR4 (Pasha et al., 2008). In this study, the authors also demonstrated that SDF-1 

preconditioning enhances paracrine activities of transplanted MSCs in the infarcted 

myocardium and contributes to a smaller infarct size, improved cardiac function and 

promoted revascularization. Interestingly, the cytoprotective effect of SDF-1 appears not to 

be limited to pre-treatment. Treatment of EPCs with SDF-1 at the end of lethal serum 

deprivation also significantly reduced apoptotic cell death (Yamaguchi et al., 2003). 

However, in vivo application of SDF-1 requires vigilant safety evaluation before translating 

into the clinical setting because of the potentially detrimental side effects of its cleavage 
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products. For instance, SDF-1(5-68), a toxic product of SDF-1 cleavage by exopeptidases and 

metalloproteinase-2, has been implicated in neuroinflammation and neuronal death (Zhang 

et al., 2003). In which case, SSDF-1(S4V), a modified SDF-1 that is resistant to endogenous 

proteases cleavage, may have a better clinical safety profile (Segers et al., 2007). 
 

4.3 Growth factors 

Various growth factors have been employed to precondition stem and progenitor cells in order 
to enhance their paracrine activity, cell survival and differentiation (Abarbanell et al., 2009). 
For example, Lu and colleagues showed that preconditioning with IGF-1 improved bone 
marrow Sca-1+ stem cell survival against simulated ischaemia in vitro and after in vivo 
transplantation. This pro-survival effect of IGF-1 was shown to be dependent on the activation 
of PI3K/Akt (Lu et al., 2009) and ERK1/2 (Lu et al., 2010) signalling pathways, and a down-
stream mediator connexin-43. A subsequent study indicated that pre-treatment with IGF-1 
also enhances Sca-1+ cell cardiomyogenesis potential and transplantation of these 
preconditioned cells into infarcted heart mitigated myocardial infarction and ventricular 
dysfunction (Lu et al., 2009). Moreover, MSCs exposed to IGF-1 had an enhanced migratory 
response to SDF-1, a response dependent on the PI3K/Akt signalling pathway (Li et al., 2007).  
It has been well documented that epidermal growth factor (EGF), the prototypical growth 
factor with intrinsic protein tyrosine kinase activity, plays an important role in the regulation 
of cell growth, proliferation and differentiation by binding to its receptor (Wells, 1999). In 
MSCs, EGF has been shown to promote cell proliferation and motility which are beneficial for 
ex vivo cell expansion prior to in vivo transplantation, but fail to rescue MSCs from low serum-
induced apoptosis despite an elevation of Akt. Similar effects were observed with platelet-
derived growth factor (PDGF) (Tamama et al., 2006). On the other hand, pre-treatment with 
TGFǂ, another member of the EGF superfamily and a potent activator of EGF receptor, has 
been shown to enhance the therapeutic potential of MSCs in an experimental model of acute 
myocardial ischaemia-reperfusion injury in terms of myocardial function recovery and 
inflammation (Herrmann et al., 2010b). These beneficial effects of TGFǂ have been attributed 
to the reduction in pro-inflammatory cytokine production and increased VEGF production. 
The latter effect was shown to be mediated by MEK and PI3K signalling pathways (Herrmann 
et al., 2010b). It is interesting to note that the effect of TGFǂ on VEGF production in MSCs has 
been demonstrated as bimodal, i.e. production of VEGF was suppressed by low concentrations 
of TGFǂ whereas high concentrations increased the secretion (Wang et al., 2008b). In addition 
to VEGF, TGFǂ treatment also increases the production of HGF from MSCs (Wang et al., 
2009b). HGF is an important signalling factor in stem cell-mediated repair where it promotes 
stem cell adhesion, migration and survival (Vandervelde et al., 2005). Although the potential 
of HGF as a preconditioning agent to promote stem and progenitor cell survival is yet to be 
confirmed, existing studies have showed that short-term exposure of MSCs to HGF can 
activate Akt and ERK1/2 pro-survival kinases, and induce expression of anti-apoptotic 
protein, Bcl-2 and Bcl-xL (Forte et al., 2006). Additionally, HGF treatment also increased MSC 
motility function through up-regulation of c-Met receptors and induced their differentiation 
along a myogenic lineage, effects that can enhance their therapeutic potential in cardiac repair 
(Forte et al., 2006; Neuss et al., 2004; Rosova et al., 2008). Regarding cell proliferation, HGF 
treatment was reported to have a negative impact on MSC proliferation by blocking cells in the 
G0-G1 phase through p38 MAPK pathway and concomitant up-regulation of cell cycle 
progression inhibitors, p21waf1 and p21kip (Neuss et al., 2004; Forte et al., 2006).  
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Although different growth factors may share some common downstream signalling 

pathways in modulating stem and progenitor cell functions, they also independently 

activate distinct signalling cascades (Abarbanell et al., 2009). This rationale that a 

combination of multiple growth factors may have additive and synergistic effects in 

promoting stem and progenitor cell survival and functional improvement, offers a strategic 

advantage over the approach involving the use of a single factor. In this respect, a recent 

study by Hahn et al has demonstrated the pro-survival effect of multiple growth factors in 

MSCs using a combination of IGF-1, bFGF and BMP-2 (Hahn et al., 2008). Treatment with 

this growth factor cocktail also enhanced MSC cardiac differentiation efficiency and 

incurred cytoprotection of co-cultured adult cardiomyocytes. This effect was dependent on 

gap-junction communication leading to phosphorylation of Akt and c-AMP response 

element binding protein (CREB) in cardiomyocytes. Moreover, the therapeutic efficacy of 

MSCs in infarcted myocardium was also significantly potentiated with this multiple growth 

factors preconditioning method (Hahn et al., 2008). Similarly, Khan et al preconditioned 

MSCs isolated from diabetic mice with a combination of IGF-1 and bFGF and showed 

enhanced cell survival, proliferation, motility and angiogenic potential compared to 

untreated cells or cells treated with single growth factor (Khan et al., 2011). Furthermore, a 

potent synergistic effect between TGFǂ and TNFǂ has been demonstrated to enhance the 

MSC-derived VEGF and HGF production that may be essential for cell survival, migration 

and angiogenesis (Herrmann et al., 2010a; Wang et al., 2008b; Wang et al., 2009b). 

4.4 Anaesthetics 

Anaesthetics, routinely administered in patients during surgery, are widely recognised to have 
preconditioning properties protecting the heart and many other organs against ischaemia and 
reperfusion injury in laboratory settings as well as in humans with coronary heart diseases 
(Huffmyer & Raphael, 2009; Yellon & Downey, 2003). The efficacy of anaesthetic-induced 
preconditioning has been shown to be similar to IPC in terms of infarct size reduction, 
increased collateral blood flow and attenuated inflammatory responses during ischaemia. 
Although the mechanisms underlying the protective effect of anaesthetic-induced 
preconditioning have been shown to resemble those responsible for IPC (Zaugg et al., 2003), 
Mullenheim et al showed that administration of sevoflurane combined with IPC can 
synergistically protect rabbit hearts against myocardial infarction indicating the existence of 
parallel protective mechanisms (Mullenheim et al., 2003). In ESC-derived cardiomyocytes, 
brief exposure to the commonly used volatile anaesthetic, isoflurane, significantly attenuated 
cell death against oxidative stress through opening of mitoKATP channels, production of 
signalling ROS and inhibition of mPTP opening (Sepac et al., 2010). Other benefits include 
enhanced cell growth capacity and increased expression of pro-angiogenic VEGF as 
demonstrated in human EPCs preconditioned with sevoflurane (Lucchinetti et al., 2009). 

4.5 Cyclosporin-A (CsA) 

The mPTP is a non-specific channel of the inner mitochondrial membrane, whose opening at 
the onset of reperfusion is a critical mediator of lethal myocardial ischaemia-reperfusion 
injury. IPC exerts its cardioprotective effect by inhibiting the opening of the mPTP and 
pharmacological inhibition of mPTP with CsA has been shown to confer cytoprotection both in 
vitro and in vivo (Hausenloy & Yellon, 2003; Lim et al., 2007). In addition to inhibiting mPTP 
opening, CsA can also inhibit calcineurin-mediated dephosphorylation of the apoptogenic 
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protein BAD and uncouple the mitochondrial respiratory chain, which might, in itself, result in 
protection (Wilkins et al., 2004). Interestingly, mPTP can also open reversibly under basal 
conditions without causing cell death. This form of reversible non-pathological mPTP opening 
has been noted to contribute to the cardioprotection elicited by IPC through the mitochondrial 
generation of signalling ROS and the subsequent activation of the pro-survival kinases Akt 
and ERK1/2 (Hausenloy et al., 2010). In stem cells, pre-treatment with CsA has been shown to 
protect MSCs from hypoxia-reoxygenation induced apoptosis through stabilizing 
mitochondrial membrane potential and promoting Bcl-2 and phosphorylated BAD protein 
expression (Wang et al., 2008a). In line with this study, we recently showed that pre-treatment 
with 0.2 μM of CsA for 30 minutes effectively increased the resistance of human ASCs to 
subsequent simulated ischaemia-induced cell death (Figure 2, unpublished data). 
 

 

Fig. 2. Preconditioning with CsA confers cytoprotection in stem cells. Pre-treatment with 
CsA (0.2 μM, 30 min) reduced cell death (determined by propidium iodide staining, arrow 
heads) in hASCs subjected to 15 hours of simulated ischaemia (<1% O2 and ischaemic buffer 
as described previously (Lim et al., 2008)) from 58.5±2.6% to 42.5±1.8% (n=4-5, P < 0.05). 

4.6 Lipopolysaccharide 

LPS is an antigenic component of the outer membrane of gram-negative bacteria and an 

agonist of Toll-like receptor-4 (TLR4) capable of eliciting immune responses in animals. The 

cardioprotective effect of LPS preconditioning was previously demonstrated in an in vivo 

murine model of myocardial ischaemia-reperfusion injury (Ha et al., 2008). Evidence 

supporting the pro-survival effect of LPS preconditioning in MSCs was recently provided 

by Wang and colleagues. The authors reported that activation of Toll-like receptor-4 (TLR4) 

with low dose of LPS can prevent MSCs from apoptotic cell death induced by oxidative 

stress and serum deprivation through PI3K/Akt- and NFκB-dependent mechanisms (Wang 

et al., 2009c). Furthermore, transplantation of these LPS-preconditioned MSCs into infarcted 

rat hearts significantly improved cardiac function, reduced apoptosis and fibrosis, and 

enhanced angiogenesis (Yao et al., 2009).  

4.7 Other agents 

Other drugs and hormones have also been employed as preconditioning agents to promote 
stem and progenitor cell survival and function. For example, pre-treatment with the pineal 
hormone melatonin can improve the therapeutic effectiveness of MSCs in the setting of 
acute renal ischemia-reperfusion injury by potentiating their survival and paracrine activity 
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(Mias et al., 2008). Trimetazidine is a cytoprotective anti-ischaemic agent that acts to reduce 
ischaemia-induced metabolic damage by shifting the energy substrate preference from fatty 
acid oxidation to glucose oxidation. It has been employed recently to precondition MSCs 
and showed increased cell survival and enhanced therapeutic potential in reducing 
myocardial ischaemic injury (Wisel et al., 2009). Fucoidan, a high molecular weight 
sulphated polysaccharide, also favourably enhanced the migratory potential of pre-treated 
EPCs in vitro. Although alone it did not promote angiogenesis, treatment with fucoidan 
potentiated the angiogenenic effect of bFGF in EPCs (Zemani et al., 2005). Du et al. 
preconditioned skeletal myoblasts with lithium chloride and showed enhanced cell 
survival and increased gap-junctional coupling with co-cultured neonatal cardiomyocytes, a 
result of increased Cx43 expression (Du et al., 2009). Similarly, pre-treatment with the 
endogenous phospholipid signalling molecule, lysophosphatidic acid (LPA), can improve 
MSC survival in vivo in ischaemic myocardium and enhance their angiogenic effects (Liu et 
al., 2009). Interestingly, an in vitro study by the same group indicated that LPA failed to 
precondition MSCs (Chen et al., 2008). In this study, the anti-apoptotic effect of LPA was 
only evident when the drug was present throughout the hypoxia and serum deprivation 
insult but not when LPA was removed after the pre-treatment period. Nevertheless, the 
cytoprotective effect of LPA was demonstrated to be dependent on the activation of LPA 
receptor-1, and pertussis toxin-sensitive PI3K/Akt and ERK pathways (Chen et al., 2008).  
Heat shock proteins (HSP) are known protective mediators of preconditioning induced by 

ischaemia, hypoxia, heat stress and oxidative stress (Das & Maulik, 2006) (Table 1). In MSCs, 

preconditioning with recombinant human HSP90ǂ produced an anti-apoptotic effect via 

activation of PI3K/Akt and ERK signalling pathways (Gao et al., 2010). Prior to this study, 

genetic modification to over-express HSP20 had been shown to enhance the survival of 

MSCs against oxidative stress and improve their therapeutic potential in ischaemic rat heart 

(Wang et al., 2009a). Therefore, it is not surprising that drugs capable of increasing HSP 

expression are potential preconditioning agents. Indeed, short-term exposure to β-

mercaptoethanol has been shown to protect MSCs from oxidative injury, a cytoprotective 

effect associated with an elevation of HSP72 expression (Cizkova et al., 2006).  

The haematopoietic cytokine erythropoietin (EPO) also exerts cardioprotection in both 

animal and clinical studies with many intracellular signalling pathways implicated, 

including PI3K/Akt, ERK1/2, p38 MAPK, PKC, eNOS and guanylyl cyclase and the 

opening of mitochondrial KATP channels (Riksen et al., 2008). In MSCs (Hu et al., 2008; Theus 

et al., 2008) and embryonic stem cell-derived neural progenitor cells (NPCs) (Francis & Wei, 

2010; Theus et al., 2008), EPO is already involved in the cytoprotective effect of HPC. As a 

preconditioning agent, recombinant human EPO mimicked the cytoprotective effect of HPC 

in protecting mouse NPCs against serum deprivation-induced apoptotic cell death (Theus et 

al., 2008). Similarly, ESC-derived cardiomyocytes survived better in the infarcted mouse 

hearts when they were preconditioned with carbamylated EPO prior to implantation (Robey 

et al., 2008). The hydroxyl-methylglutaryl coenzyme A reductase inhibitors, also known as 

statins, are effective for lowering serum cholesterol and have been widely prescribed for 

patients with coronary heart diseases as the primary and secondary preventive treatment of 

cardiovascular events. In addition to lipid-lowering effects, statins have been shown to exert 

multiple pleiotropic effects including protection from MI, improved endothelial function 

and reduced platelet adhesion and atherosclerotic plaque rupture (Ludman et al., 2009). In 

MSCs, treatment with lovastatin has been shown to improve cell survival when challenged 
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with hypoxia and serum deprivation, a protection mediated by PI3K/Akt and ERK1/2 

pathways (Xu et al., 2008). Similarly, human EPCs pre-treated with simvastatin also exhibit 

higher resistance against TNFǂ induced apoptotic cell death (Henrich et al., 2007).  

5. Ischaemic or hypoxic preconditioning in vivo mobilises endogenous stem 
and progenitor cells 

Endogenous stem and progenitor cells can be mobilized from their niches in various organs 

and tissues, including bone marrow, skeletal muscle, heart, brain, skin, liver, adipose, blood 

vessels and others, and then home to target tissues. This property of stem and progenitor 

cells has fuelled investigations of potential clinically adaptable strategies to actively recruit 

endogenous stem and progenitor cells to serve as integrated participants in regenerating the 

injured tissues through stem cell trans-diffentiation and/or as supportive players via 

pleiotropic paracrine effects (Chen et al., 2011; Krankel et al., 2011). By subjecting rats to 3 

weeks of chronic hypoxia, Rochefort et al have unveiled the potential of HPC in mobilising 

endogenous MSCs. In this study, circulating MSCs were higher in rats subjected to chronic 

hypoxia compared to the control normoxic cohort (Rochefort et al., 2006) (Table 4). 

Interestingly, this hypoxic condition did not affect the circulating level of haematopoietic 

stem cells (HSCs) indicating a possible cell-type specific effect of HPC (Rochefort et al., 

2006). In line with this study, rats preconditioned with 6 hours of hypoxia daily for 6 weeks 

also have a higher level of CD34+CXCR4+ cells in their blood circulation and in the infarcted 

hearts with concomitant reduction in acute myocardial ischaemia-reperfusion injury (Lin et 

al., 2008). Using a relatively more invasive preconditioning protocol of transient coronary 

artery occlusion and reperfusion, Ii and colleagues have showed that IPC modulates 

endogenous EPC kinetic and increases their recruitment to the infarcted myocardium (Ii et 

al., 2005). This observation was associated with infarct size limitation, increased 

angiogenesis and cardiac function improvement, beneficial effects that were shown to be 

strongly dependent on the iNOS and eNOS activities of the EPCs (Ii et al., 2005). The 

mobilizing and homing effect of IPC was subsequently illustrated on other cell types such as 

MSCs and HSCs using a clinically relevant porcine myocardial ischaemia-reperfusion injury 

experimental model (Gyongyosi et al., 2010). Excitingly, Kamota et al showed that 

preconditioning applied on the abdominal aorta can also increase the accumulation of bone 

marrow-derived sca-1+ and c-kit+ stem cells in infarcted hearts through a SDF-1/CXCR4-

dependent mechanism, thus protecting the hearts against injury (Kamota et al., 2009). This 

finding is clinically important as it supported the translation of the non-invasive strategy of 

remote IPC into clinical practise. Remote IPC is a clinically amenable strategy which can be 

induced by simple transient limb ischaemia. This cardioprotective strategy has been 

extensively trialled in patients undergoing cardiac surgeries such as coronary angioplasty 

and coronary artery bypass surgery, and has thus far showed tangible beneficial effects in 

reducing myocardial injury with no known adverse risks (Hausenloy & Yellon, 2008). 

Although the precise molecular and cellular mechanisms governing the homing effect of 

ischaemic/hypoxic preconditioning on endogenous stem and progenitor cells remain to be 

fully addressed, evidence of a role for the chemokine axis SDF-1/CXCR4 (Kamota et al.,  

2009; Lin et al., 2008) and EPO (Lin et al., 2008) has been found in recent studies. Other 

possible stem cell homing factors include VEGF, colony-stimulating factor, monocyte  
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PC stimulus Models End points Mechanisms References 

Hypoxia; 
24 h of 50kPa O2 
daily for 3 weeks

Rat, Sham ↑ circulating MSCs - 
Rochefort et 

al., 2006 

Hypoxia; 
6 h of 10% O2 daily 

for 6 weeks 
Rat, MI 

↑ circulating & heart 
CD43+CXCR4+ cells; ↓ 

infarct size; ↑ LV function; ↓ 
plasma CK-MB 

SDF-1/CXCR4; 
EPO; VEGF 

Lin et al., 
2008 

Ischaemia; 
4 x 4 min/4 min 
coronary artery 

O/R 

Mouse, MI

↑ circulating & heart EPCs;
↓ infarct size; ↑ LV function; 

↑ angiogenesis 
 

eNOS; iNOS; 
VEGF 

Ii et al., 2005 

Ischaemia; 
2 x 5 min/5 min 
coronary artery 

O/R 

Pig, MI 

↑ circulating HSCs; 

↑ heart MSCs & HSCs; 

↓ infarct size & apoptosis;

↑ LV function 

SDF-1ǂ; VEGF; 
TNFǂ; IL-8 

Gyongyosi et 
al., 2010 

Ischaemia; 
4 x 5 min/5 min 

abdominal artery 
O/R 

Mouse, MI

↑ circulating CD43+flk-1+ 
cells; ↑ heart Sca-1+ & c-kit+ 

BMSCs; ↓ infarct size & 
apoptosis; ↑ LV function 

SDF-1/CXCR4; 
VEGF 

Kamota et al., 
2009 

Ischaemia; 
25 min/7 d renal 

artery O/R 
Mouse, RI ↑ renal EPCs - 

Patschan et 
al., 2006 

Table 4. Effect of in vivo ischaemic/hypoxic preconditioning on endogenous stem and 

progenitor cells. BMSCs (bone marrow stem cells), O/R (occlusion/reperfusion), RI (renal 

ischaemia). 

chemotactic protein-3, HGF, IGF-1, IL-8/growth regulated oncogene-1, stem cell factor, 
TGF-ǃ3, Wnt antagonist and other chemokines (Krankel et al., 2011; Binger et al., 2009; Chen 
et al., 2011). However, whether these navigational factors govern the homing effect of in vivo 
IPC warrants further investigation. In perspective, a living body appears to host a great 
reservoir of various stem and progenitor cells ready to be recruited for regeneration and 
repair, and can be catalysed by external stimuli such as IPC. This is of great clinical 
importance because in vivo IPC can be readily and non-invasively achieved in patients. 
However, given the fact that majority of ischaemic disease sufferers are elderly patients, and 
endogenous stem and progenitor populations and functions are known to decline with age 
and are negatively affected by other co-morbidity such as diabetes and hypertension 
(Krankel et al., 2011), it is important to determine whether there are sufficient populations of 
functionally competent resident stem and progenitor cells to be mobilised and recruited to 
the target tissues to exert significant repair in older patient cohorts. Otherwise, a 
combination of exogenously administered cells and potent homing factors might be utilised 
to supplement the endogenous reservoirs for effective cell-based therapy. Therefore, 
detailed characterisation of various endogenous stem cell niches and deciphering the 
mechanisms governing endogenous stem cell repopulation, mobilisation and homing to 
target tissues are pivotal to the future development of clinically sound pharmacological 
interventions to harness fully the host’s innate regenerative capacity. 
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6. Conclusion 

Based on the existing literature, it is undeniable that non-genetic approaches of 

preconditioning techniques offer much promise as cytoprotective strategies for stem cell 

therapy, without the long-term concern of genetic manipulation. These pro-survival 

strategies are therefore well suited to clinical translation. Collectively, preconditioning of 

stem and progenitor cells elicits multiple beneficial effects including (1) promotion of cell 

survival in the hostile ischaemic environment, (2) enhancement of paracrine activity to 

create a supportive environment that is rich in trophic and angiogenic factors, (3) increase of 

cell motility and trafficking, (4) increase of cell proliferative potential, (5) promotion of cell 

differentiation allowing functional integration, and (6) enhancement of therapeutic efficacy 

in ischaemic tissues in vivo.  

In cell based therapy for ischaemic diseases, the ability of preconditioning ex vivo to enhance 

stem and progenitor cell survival and function means more implanted cells will be available 

for tissue repair and thus fewer donor cells may be needed to achieve the same functional 

outcome. In parallel, in vivo preconditioning is capable of harnessing the host’s inherent 

regeneration mechanisms through activation of various paracrine signalling cascades, and 

mobilizing and recruiting resident stem and progenitor cells for effective therapeutics 

(Figure 3). Therefore, it will be of great therapeutic interest to determine whether there is an 

additive or synergistic effect of ex vivo preconditioning of implanted cells and in vivo 

preconditioning of host tissues, which may provide an optimal regenerative environment 

for tissue repair and regeneration, and contribute to successful stem cell therapy and tissue 

engineering.  

 

 
 

Fig. 3. Potential additive effect of ex vivo preconditioning (transplanted exogenous stem 
cells) and in vivo preconditioning (patients) to enhance tissue repair and tissue engineering 
with stem cells.  
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