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1. Introduction 

TP53 is a central hub integrating stress signals from oncogenic genetic lesions and cytotoxic 

anti-cancer agents. The function of p53 as a regulator of transcription is well documented. 

More recently it was shown to directly interact with BCL2 family members and induce 

mitochondrial cell death. Stress-induced activation of p53 leads to cell cycle arrest that 

allows metabolic adjustments and repair mechanisms to take place prior to the next cycle; 

p53 may also induce senescence or apoptosis depending on the strength and nature of stress 

stimuli and/or cell type.  

In 50% of human cancers, the TP53 gene is deleted or mutated with a high proportion of 

gain of oncogenic function mutations. It is noteworthy therefore that TP53 is rarely mutated 

in T-ALL. However, its tumor suppressor activity is circumvented by genetic lesions. We 

will discuss here the most frequent T-ALL genetic abnormalities of INK4A/ARF, NOTCH1 

and PTEN genes and how they affect TP53 expression and function. Current understanding 

of the signaling pathways governed by these oncogenes is advanced enough to find points 

of intersection with p53 downstream targets and attempt to translate the accumulated 

knowledge to the clinic. 

In addition, we will discuss the results of our analysis of publicly available expression 

profiling data indicating the existence of a TP53-anchored transcriptional program targeted 

by T-ALL oncogenes such as NOTCH, MYC and TLX1 in primary leukemic cells and how it 

can be exploited for cancer intervention. 

Overall, the goal of this chapter is to describe how T-ALL pathobiology affects the p53-

interacting network, highlighting some new potential therapeutic targets as well as some 

still unresolved questions. 

2. INK4A-ARF inactivation circumvents oncogene-induced p53  

Inactivation of INK4A-ARF occurs in 70% of T-ALL cases by mutations, biallelic deletions or 

hypermethylation (Hebert et al., 1994; Gardie et al., 1998; Sulong et al., 2009; Van 

Vlierberghe et al., 2008; Ferrando et al., 2002; Omura-Minamisawa et al., 2000). The locus 

encodes two stress-induced proteins with distinct tumor suppressing functions (Quelle et 

al., 1995): one, INK4A, targets cell cycle entry and another, ARF, inhibits cell cycle 

progression and cell survival. The two completely unrelated protein sequences derive from 

the same locus via expression of two alterative reading frames. This unusual feature was 
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suggested to be important for coordinate regulation of these gene products in response to 

stress signals (Gil & Peters, 2006; Popov & Gil, 2010). The tumor suppressor functions of 

INK4A and ARF are not redundant since animals with individually inactivated products of 

the locus showed less spontaneous tumors than the double knockouts (Sharpless et al., 

2004). It is well established that the function of INK4A is to inhibit cyclin D-dependent 

protein kinases and thus suppress proliferation, loss of function contributing to signal-

independent cell cycle entry (Serrano et al., 1993). Recently, INK4A was also implicated in 

regulation of thymocyte apoptosis in response to oxidative stress or gamma irradiation 

(Bianchi et al., 2006). An excellent review summarizing the biological functions of the INK4 

family of proteins has been published (Canepa et al., 2007). Our focus will be on the ARF 

protein since, as shown in Figure 1, the best characterized activity of ARF is activation of 

p53. The mechanisms include direct inhibition of the enzymatic activity of the MDM2 E3 

ubiquitin ligase and sequestering of the protein in nucleoli (Llanos et al., 2001; Honda & 

Yasuda, 1999): MDM2 binding is one of the major mechanisms keeping the apoptotic and 

growth-arresting function of p53 in check. MDM2 blocks p53 transactivation function and 

enforces its nuclear export and proteasomal degradation (Honda et al., 1997; Zhang & 

Xiong, 2001; Weber et al., 1999) (See Figure 1 for more details). In addition ARF was 

suggested to have p53-independent functions; for example, modulation of activity of 

transcription factors such as MYC, E2F and NFκB family members leads to their enhanced 

apoptotic activity or stress-induced inhibition of protein synthesis (Sherr, 2006; Qi et al., 

2004). 

ARF is regulated at multiple levels. Its protein stability and subcellular localization is 
controlled by the nucleolar phosphoprotein NPM1. ARF-NPM1 complexes are 
predominantly localized in nucleoli where ARF is more stable (Bertwistle et al., 2004; Brady 
et al., 2004). Its half life significantly decreases in the nucleoplasm via ubiquitination and 
proteasome-mediated degradation (Rodway et al., 2004; Kuo et al., 2004). Perhaps the most 
important aspect of ARF regulation is at the level of transcription. ARF is not expressed in 
most normal tissues; however, it can be activated in response to stress or aberrant 
hyperproliferative signals (e.g. RAS mutations, MYC overexpression, BCR-ABL 
translocation).  
In adult hematopoietic stem cells and in immature thymocytes, the INK4A-ARF locus is 
silenced by the Polycomb-group gene BMI1 (Jacobs et al., 1999; Bracken et al., 2007). This 
epigenetic regulation is required for survival of normal T cell precursors (Miyazaki et al., 
2008). However, ARF expression can be induced at this stage and activates apoptosis in cells 
with aberrant T cell receptor gene rearrangements or other genetic lesions leading to ectopic 
activation of protooncogenes. The most frequent T-ALL-associated oncogenic events, 
involving NOTCH1 (50%) and TAL1 (60%), as well as other less frequent genetic 
abnormalities, such as activation of LMO2 (9%), were directly demonstrated to cooperate 
with the loss of INK4A-ARF function (Shank-Calvo et al., 2006; Treanor et al., 2011). The 
response of the locus may be developmentally specific. For example, the responsiveness of 
the INK4A-ARF locus to the constitutively-active truncated form of NOTCH1 depends on 
the stage of development, with the locus being silent in hematopoietic stem cells but 
inducible in thymocytes (Volanakis et al., 2009). From that perspective, it is noteworthy that 
in immature T-ALL cases, the INK4A-ARF locus is predominantly found intact but kept 
inactive by epigenetic mechanisms (Ferrando et al., 2002). Thus these silencing mechanisms 
may serve as potential therapeutic targets in immature T-ALLs.  
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Fig. 1. Regulation of p53 protein stability via ARF and MDM2/MDMX. From left to right: 
nucleolar phosphoprotein NPM1 controls ARF protein stability and subcellular localization. 
ARF-NPM1 complexes are predominantly localized in nucleoli where ARF is more stable. 
Liberated ARF may be degraded by proteasomes or may associate with MDM2 and prevent 
degradation of p53 via direct binding to MDM2 and inhibition of its ubiquitin ligase activity. 
p53 is stabilized in MDMX complexes, but for full activation of p53-dependent  transcription 
MDMX is replaced by transcriptional cofactors. MDM2 and MDMX are subjected to stress-
induced proteasomal degradation. 

Because the immature T-ALL subset represents the highest risk among T-ALL, we will 
describe in more detail BMI1 function and regulation to highlight potential therapeutic 
strategies aiming to reactivate the INK4A-ARF locus. In thymocytes, BMI1 binds directly to 
the locus and specifically maintains trimethylation of histone H3 at lysine 27 (3mH3K27 
modification) (Miyazaki et al., 2008). For maintenance of the repressed state through 
multiple rounds of cell divisions, DNA methylation markers are necessary. Polycomb 
proteins interpret DNA methylation marks and translate them into histone modifications to 
initiate/maintain repression (Spivakov & Fisher, 2007). Thus it is not surprising, but  may be 
very important for potential clinical translation, that inhibition of DNA methyltransferase 
(DNMT) was shown to derepress the INK4A-ARF locus by affecting this mechanism in 
human cord blood-derived multipotent stem cells. The authors used 5-azacytidine, an 
inhibitor of DNMT analogous to cytidine; they showed that loss of DNA methylation marks 
caused diminished recruitment of EZH2, a key histone methyltransferase, and decreased 
3mH3K27 modification of the INK4A-ARF locus (So et al., 2011). Another attractive 
candidate for therapeutic intervention is Hedgehog signaling, required for survival and 
proliferation of early thymocyte precursors (El Andaloussi et al., 2006). Moreover, it was 
recently shown that Sonic hedgehog activates BMI1 expression during cerebellar 
development (Leung et al., 2004). Thus testing Hedgehog inhibitors such as cyclopamine or 
vismodegib on immature T-ALL samples might be a promising approach. The strategy of 
reactivating the INK4A-ARF locus is complicated, however, by the fact that the locus 
responds to the same oncogenic signals that support the survival and proliferation of 
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malignant cells. For example, a powerful pro-survival kinase AKT1 targets EZH2 and 
suppresses methylation of histone H3 at lysine 27 (Cha et al., 2005) while MAPKAP kinase 3, 
a convergence point downstream of activated ERK and p38, inhibits BMI1 association with 
chromatin (Voncken et al., 2005). For these reasons and because the INK4A-ARF locus is 
deleted in the majority of T-ALL cases, current therapeutic strategies are based on activation 
of p53 in an ARF-independent manner. 

3. NOTCH-governed network affects ARF and p53  

Mutations activating the developmental regulator NOTCH1 occur in more than 50% of T-
ALL cases (Weng et al., 2004). NOTCH1 was initially implicated in T-cell leukemogenesis by 
the finding of rare chromosomal translocations that place a constitutively-active truncated 
form of NOTCH1 (NIC) under the T cell receptor (TCR) beta chain promoter (Ellisen et al., 
1991). NOTCH1 is a transmembrane receptor (Kopan & Ilagan, 2009). The Delta-like and 
Jagged ligands activate proteolytic processing of NOTCH1 that releases its cytoplasmic 
portion allowing it to translocate to the nucleus. In the nucleus, NOTCH1 activates 
transcription via a DNA-bound protein CSL (Aster et al., 2008). Subsequently, a high 
frequency of NOTCH1-activating mutations were characterized that enhance its proteolytic 
processing and/or stabilize its intracellular portion (Weng et al., 2004). Thus in T-ALL, 
NOTCH signaling is represented by a broad spectrum of levels of activation that may still be 
ligand dependent and also inhibited by drugs targeting the NOTCH1 processing machinery 
(Lewis et al., 2007; Sulis et al., 2011).  
NOTCH signaling is required for several consecutive stages of normal thymocyte 

development, from the earliest stage of T-cell fate commitment until the late cortical 

thymocyte stage with fully rearranged TCR genes (Tanigaki & Honjo, 2007). NOTCH1 

provides survival and stimulates growth of normal thymocytes and leukemic T cells 

(Grabher et al., 2006; Ciofani & Zuniga-Pflucker, 2005). That said, the functional role of 

NOTCH1 in T-ALL cells undergoing chemotherapeutic treatment is less clear. As NOTCH1 

promotes their survival, NOTCH1 mutations would be expected to confer enhanced drug 

resistance. Interestingly, however, mutations activating NOTCH1 were found to associate 

with good initial response to treatment (Kox et al., 2010; Asnafi et al., 2009). In this context, 

and consistent with these observations, it is worth mentioning that we and others observed 

that NOTCH1 inhibition decreases sensitivity of T-ALL cell lines to selected 

chemotherapeutic agents while NOTCH1 activation enhances the response (De 

Keersmaecker et al., 2008; Liu et al., 2009; Riz et al., 2011). 

The function of NOTCH1 is mediated by several signaling hubs that in turn impact ARF 

and p53 function: among them, mTOR kinase, a key growth regulator constitutively 

activated in many cancers; eIF4E, a selective regulator of translation initiation; SKP2, an 

E3 ubiqutin ligase; and transcription factors such as MYC and NFκB (Chan et al., 2007; 

Mungamuri et al., 2006; Hsieh & Ruggero, 2010; Kao et al., 2009; Dohda et al., 2007; 

Murphy et al., 2008).  

The accumulated evidence indicates that ectopic activation of NOTCH1 in premalignant 
thymocytes may lead to ARF induction. First, in T-ALL, NOTCH1 mutations frequently 
coincide with INK4A-ARF inactivation (Ferrando et al., 2002; Treanor et al., 2011). Second, 
in mice, progression to full malignancy in NIC-expressing thymocytes is associated with 
decreased ARF expression (Li et al., 2008). And finally, oncogenic cooperation of these 
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two genetic aberrations was directly demonstrated in a murine T-ALL model (Volanakis 
et al., 2009). Moreover, the authors showed indirect activation of the ARF promoter by 
expression of NIC. Thus these data demonstrated that NOTCH1 mutations may activate 
ectopic signaling that triggers the oncogene-induced stress response exemplified by ARF 
induction. However, there is also evidence suggesting that NOTCH1 may downregulate 
the tumor suppressor function of p53. In an elegant system allowing regulatable NIC 
expression, it was shown that downregulation of NIC levels in mouse lymphomas in vivo 
is associated with activation of p53 (Beverly et al., 2005). Other work also demonstrated 
that ectopic expression of NIC partially downregulates the p53-mediated apoptotic 
response to DNA-damaging drugs in human leukemic cell lines (Mungamuri et al., 2006). 
The effect was mediated by the mTOR kinase. The authors showed that mTOR inhibition 
by rapamycin prevented (and eIF4E overexpression restored) the NOTCH1 pro-survival 
effect. Subsequently, in experiments with loss or gain of NOTCH1 function, MYC was 
placed upstream of the mTOR-eIF4E pathway (Chan et al., 2007). In agreement with these 
findings, eIF4E-driven CAP-mediated translation was shown to be required for MYC 
transforming function (Ruggero et al., 2004; Lin et al., 2008; Barna et al., 2008). Other work 
indicated that the oncogenic function of the mTOR-eIF4E pathway is mediated at least in 
part by inhibition of p53 via enhanced translation of MDM2 (Kao et al., 2009). The authors 
reported that rapamycin increases the p53/MDM2 protein ratio by inhibition of MDM2 
translation without affecting its mRNA expression or protein stability. Ectopic expression 
of eIF4E abrogated the effect. With some gaps yet to be filled, the accumulated data 
indicate the existence of a signaling axis in T-ALL cells connecting the following 
components NOTCH1-MYC-mTOR-eIF4E-MDM2-p53 (see Figure 2 for a complete 
representation of the pathway). 
NOTCH1 was shown to positively regulate the ubiqutin ligase SKP2 and, as a result, 

downregulate the p27 Kip1 and p21 Cip1 cell cycle inhibitors in T-ALL cell lines (Dohda et 

al., 2007; Sarmento et al., 2005). Moreover, SKP2 was shown to inhibit p53 function by 

targeting the acetyltransferase p300 (Kitagawa et al., 2008). Notably, MYC protein is 

targeted for degradation by SKP2 (Kim et al., 2003; von der Lehr et al., 2003) and SKP2 is not 

required for the transforming function of MYC (Old et al., 2010). However, as mentioned 

earlier, MYC gene expression is directly activated by NOTCH1 (Weng et al., 2006; Sharma et 

al., 2007). It is possible therefore that NOTCH1-induced SKP2 counteracts the NOTCH1-

mediated transcriptional activation of MYC to keep MYC protein levels within a pro-

survival range. Recently published data suggest that this is indeed the case. It was reported 

(although not discussed by the authors) that downregulation of NIC in murine T-cell 

lymphomas expressing MYC under a NOTCH1-independent constitutive promoter showed 

very strong activation of MYC protein levels without affecting mRNA levels [see Figure 4A 

and C in (Demarest et al., 2011)]; of note, the process coincided with strong upregulation of 

p53 protein and tumor regression. Because overexpression of MYC was documented to 

activate oncogene-induced stress via p53 in ARF-dependent and -independent manners 

(Murphy et al., 2008), it is tempting to propose that another potential NOTCH1 survival 

function is mediated by SKP2 control of MYC protein levels. This mechanism may play a 

particularly prominent role in those cases when, as a result of chromosomal rearrangements, 

MYC transcription is constitutive and no longer dependent on NOTCH1. 

Finally, it is important to note that NOTCH was shown to activate NFκB transcriptional 

function on multiple levels that includes upregulation of expression of NFκB subunits,  

www.intechopen.com



 
Novel Aspects in Acute Lymphoblastic Leukemia 

 

240 

 

Fig. 2. NOTCH and p53 network. The function of NOTCH1 is mediated by several signaling 
hubs that in turn impact ARF and p53 function: NOTCH1 activates AKT, AKT directly 
activates MDM2. NOTCH activates SKP2 and Skp2 suppresses p300-mediated acetylation of 
p53 and the transactivation ability of p53. MYC gene expression is directly activated by 
NOTCH; MYC protein levels are controlled by SKP2 and AKT; ectopic MYC activation may 
cause activation of p53. NOTCH and/or MYC activate mTOR and eIF4E; eIF4E mediates 
protein synthesis of MYC and activators of AKT kinase; MYC and eIF4E promote CAP-
mediated translation of MDM2. Solid arrows indicate direct interaction, dashed arrows 
indicate functional interaction via one or more intermediaries. 

direct interaction with its upstream regulatory components such as IKK kinase, and inhibition 
of a negative loop of regulation (Osipo et al., 2008; Shin et al., 2006; Espinosa et al., 2010). NFκB 
and p53 exhibit a well documented history of cross-talk as well as synergistic interactions. For 
example, p53 and the p52 NFκB subunit coordinately regulate SKP2 gene expression (Barre & 
Perkins, 2010). NFκB is not only a pro-survival factor, it was shown to activate apoptosis in 
response to chemotherapeutic drug treatments (Radhakrishnan & Kamalakaran, 2006). 
Moreover, NFκB can induce p53 function, while p53 was shown to selectively inhibit the 
survival function of NFκB but to cooperate with the NFκB-mediated transcriptional activation 
of apoptotic genes (Meley et al., 2010; Ryan et al., 2000). Thus the functional outcome of 
NOTCH1-NFκB-p53 pathway interaction is not easy to predict; and, depending on the 
conditions (e.g., chemotherapy-induced stress levels), the NOTCH1-NFκB-p53 pathways may 
cooperate in promoting apoptosis. In addition, our data indicate that NOTCH1 may positively 
contribute to NFκB apoptotic function in a p53-independent manner.  
We believe therefore that additional studies should be carried out to address the conflicting 
laboratory and clinical findings about the role of NOTCH1 activation in the regulation of T-
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ALL cell survival in response to therapy. Briefly, as mentioned above, a number of 
preclinical studies have demonstrated a pro-survival role of NOTCH signaling in T-ALL; 
based on these studies, T-ALL clinical trials investigating the therapeutic potential of γ-
secretase inhibitors have been initiated (ClinicalTrials.gov, NCT01088763; NCT00878189); so 
far, the drugs tested have demonstrated low anti-leukemic efficacy. A novel approach 
targeting NOTCH1 processing via inhibition of ADAM10 (a disintegrin and metalloprotease 
10) was also suggested (Sulis et al., 2011). Moreover, on the basis of results obtained with T-
ALL cell lines, in which inhibition of NOTCH signaling was reported to enhance 
glucocorticoid sensitivity, combination therapies of γ-secretase inhibitors and 
glucocorticoids were proposed (Real & Ferrando, 2009; Real et al., 2009). Clearly, the 
inclusion of γ-secretase inhibitors in T-ALL protocols needs to be reevaluated in light of the 
new clinical data showing that activated NOTCH1 is associated with a better initial response 
regardless of the type of treatment and particularly to prednisone (Kox et al., 2010). On the 
other hand, perhaps if it is not combined with conventional therapy, NOTCH1 inhibition 
may prove to be a successful approach; for example, in combination with Sonic hedgehog 
inhibition (Okuhashi et al., 2011) or mTOR and PTEN-PI3K/AKT modulation (see below). 

4. PTEN: AKT-dependent and -independent activation of p53 

Recurring oncogenic events in T-ALL involve inactivation of the PTEN tumor suppressor 
gene (Zhang et al., 2006; Palomero et al., 2008). The frequency of PTEN mutations was 
estimated to be about 20%; however, its  functional downregulation is more common (Jotta 
et al., 2010; Silva et al., 2008). PTEN is a lipid phosphatase hydrolyzing phosphate in 
position 3 from phosphoinositides. In primary T-ALL,  PTEN was suggested to be a major 
factor contributing to elevated levels of phosphoinositides and thus indirectly contributing 
to MYC protein stability (Silva et al., 2010; Bonnet et al., 2011).  
Phosphoinositides, such as phosphatidylinositol-(3,4,5)-trisphosphate (PIP3), are membrane 
second messengers connecting cytokine and growth factor signaling with intracellular 
components such as the serine threonine protein kinase AKT (Carracedo & Pandolfi, 2008). 
PTEN dephosphorylates PIP3 while phosphoinositide-3 kinase (PI3K) reverses the reaction 
such that the levels of PIP3 are controlled by the balance of these two enzymes (Figure 3). 
PI3K is activated by various genetic lesions, the most common of which activate NOTCH1 
(Sade et al., 2004). In addition, about 20% of mutations are in genes encoding upstream 
activators of the PI3K pathway; among them, IGF signaling components are the most 
prominent (Remke et al., 2009) while mutations directly affecting PI3K subunits are more 
rare (Gutierrez et al., 2009). Thus, as a result of PTEN inhibition and/or PI3K activation, 
close to 90% of T-ALL show elevated PIP3 levels (Silva et al., 2008). The signal from PIP3 is 
transmitted via membrane recruitment and activation of a member of the pleckstrin 
homology domain protein family, one of the best characterized being AKT kinase. Indeed in 
T-ALL, AKT levels were shown to be activated very frequently (close to 90%) (Silva et al., 
2008). AKT phosphorylates about 100 different proteins and mainly promotes survival (by 
inactivating BAD, MDM2 and forkhead transcription factors) and growth (by inhibition of 
p27, GSK3 kinase), and regulates glucose homeostasis (by enhancing the glucose transporter 
GLUT4). Importantly, AKT regulates protein translation and ribosome biogenesis via 
activation of the mTOR pathway (Carracedo & Pandolfi, 2008). Therefore, the contribution 
of the PTEN/PI3K-AKT pathway is of central importance to the pathobiology of T-ALL, and 
especially with regard to p53 regulation.  
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Fig. 3. Role of PTEN in p53 regulation. PTEN hydrolyses the phosphate group in the 3′ 
position from phosphatidylinositol 3,4,5-triphosphate (PIP3) to form phosphatidylinositol 
4,5-biphosphate that counteracts PI3K function. PIP3 activates AKT. AKT phosphorylates 
and activates MDM2 directly and via mTOR pathways contributes to its protein synthesis. 
PTEN directly binds p53, enhancing its stability by antagonizing the p53-MDM2 interaction 
and promoting p300/CBP-mediated acetylation of p53. On the other hand, ectopic AKT 
activation may induce ARF function, and ectopic MYC activation may induce p53 in ARF  
-dependent and -independent ways. Solid arrows indicate direct interaction, dashed arrows 
indicate functional interaction via one or more intermediaries. 

Most of the characterized downstream effectors of PTEN are AKT dependent; in T-ALL, 
they include p53, mTOR and MYC. p53 is regulated by AKT phosphorylation of MDM2 that 
leads to its nuclear translocation (Mayo & Donner, 2001). In addition, PTEN may directly 
bind p53 protein, enhance its stability by antagonizing p53-MDM2 interaction, and promote 
p300/CBP-mediated acetylation of p53 (Zhou et al., 2003; Freeman et al., 2003). Gain or loss 
of function experiments in T-ALL demonstrated that the PTEN-mTOR axis is important for 
the growth of the leukemogenic cells (Yilmaz et al., 2006). As previously mentioned, mTOR 
was also shown to enhance translation of MDM2. A recent publication addressing the 
frequency of MYC deregulation in T-ALL demonstrated that downregulation of PTEN 
function is one of the predominant features associated with enhanced MYC protein levels 
(Bonnet et al., 2011). MYC is regulated via AKT-dependent inhibition of GSK3 kinase. If it is 
not inhibited by AKT, this constitutively active kinase directly targets MYC protein for 
degradation (Gregory et al., 2003). 
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PTEN is a haploinsufficient tumor suppressor since the presence of a single copy does not 

prevent cancers (Salmena et al., 2008). On the other hand, biallelic loss of PTEN in primary 

thymocytes causes a cellular stress response resulting in the AKT-dependent induction of 

cell cycle arrest (Xue et al., 2008) via elevated expression of ARF and p53 proteins (Lee et al., 

2010).  The data are consistent with earlier work observing that loss of PTEN induces p53 

function in other cell types (Chen et al., 2005b; Kim et al., 2007a). Together, the data strongly 

demonstrate that complete loss of PTEN may activate an oncogene-induced stress response 

and explains why it usually occurs in advanced cancers with inactivated p53 genes and poor 

prognosis (Jotta et al., 2010; Gutierrez et al., 2009).  

Thus cancer intervention via modulation of PTEN function requires a precise knowledge of 

PTEN and p53 statuses. For p53 positive cases, PTEN inhibition was proposed as a 

therapeutic strategy (Mak et al., 2010). A more widely applicable approach is therapeutic 

restoration/activation of PTEN function. The activity of PTEN is directly inhibited by 

reactive oxygen species (ROS) oxidation of its catalytic center. Since leukemic cells 

frequently show increased levels of ROS, antioxidants may contribute to the restoration of 

PTEN function (Silva et al., 2008). For example, ascorbic acid or resveratrol treatment of T-

ALL cell lines was associated with activation of p53; however, PTEN function was not 

addressed (Harakeh et al., 2007; Cecchinato et al., 2007). The levels of PTEN protein 

expression are tightly regulated. In T-ALL cells, CK2 was shown to control its protein levels 

and thus CK2 inhibition was suggested as a therapeutic strategy (Silva et al., 2010). 

Inhibition of PI3K, AKT and mTOR kinases was also suggested (Chiarini et al., 2010; 

Chiarini et al., 2009; Evangelisti et al., 2011a; Evangelisti et al., 2011b). However, despite a 

significant overlap in downstream targets, PTEN loss cannot compensate for NOTCH1 

oncogenic function (Medyouf et al., 2010). Thus inhibition of both pathways was shown to 

cooperate in primary leukemic T cells and in mouse tumor models (Guo et al., 2011; Cullion 

et al., 2009). Finally, dual inhibition of PI3K and mTOR has been suggested as a therapeutic 

option for T-ALL (Chiarini et al., 2009).  

5. TP53 coexpressed genes — potential chemotherapeutic targets  

As discussed above, genetic aberrations may cause activation of a stress response. For 

example, deregulation of the NOTCH, PTEN, TAL1 or LYL1 loci causes activation of ARF in 

normal thymocytes. TP53 gene expression can also be induced in response to stress (Vilborg 

et al., 2010). Despite the secondary adaptive mutations preventing oncogene-induced 

apoptosis or senescence, cancer cells still frequently show elevated stress levels. The 

elevated stress together with enhanced growth is exploited in cancer therapies, which aim to 

selectively kill tumor cells while sparing normal cells. Knowing the transcription programs 

mediating the stress phenotype of cancer cells is important for the rational design of new 

“targeted” treatment strategies (Luo et al., 2009).  

While analyzing publicly available expression profiles of primary T-ALL cells, we noticed 

that expression levels of TP53 varied greatly between patient samples. Moreover, in the 

majority of cases, TP53 was expressed at higher levels than in normal thymocytes, 

indicating that the complexity of aberrations in T-ALL manifests in various levels of 

oncogene-induced stress. We asked what transcripts are coregulated with TP53 with the 

expectation of identifying genes that functionally interact with it. We analyzed expression 
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profiles of primary T-ALL samples and normal thymocytes (Soulier et al., 2005). Genes 

were selected for analysis that were coexpressed with TP53 (Affymetrix probe set 

211300_s_at U133A) based on similarity of their expression patterns (r>0.65) within about 

100 T-ALL patient samples. As expected, the set of TP53-profile neighbors contained a 

number of genes encoding proteins that interact with TP53 at the mRNA or protein levels, 

regulating its stability and function (Figure 4). Interestingly, among them were genes that 

counteract p53 function, possibly reflecting neoplastic adaptation to high levels of TP53 

gene expression. For example, inactivation of p53 at the level of protein stability is 

illustrated by PA2G4, PSME3 and HUWE1. Briefly, PA2G4 promotes p53 

polyubiquitination and degradation; PSME3, encoding the 26S proteasome subunit, was 

shown to be required for p53 degradation (Zhang & Zhang, 2008); and HUWE1 (or ARF-

BP1) E3 ubiqutin ligase directly binds to p53 and targets it for degradation in an MDM2-

independent manner (Chen et al., 2005a). Other examples include G3BP1, which facilitates 

redistribution of p53 from the nucleus to the cytoplasm (Kim et al., 2007b); UBE2N (or 

UBC13), which inhibits formation of transcriptionally active p53 tetramers (Topisirovic et 

al., 2009); and CHD4, which deacetylates p53 and blocks p21 induction (Polo et al., 2010). 

Finally, inhibition of p53 transcriptional outcome is exemplified by YBX1, which is a 

component of the repressor complex blocking expression of p53 target genes (Shiota et al., 

2008; Kim et al., 2008). Proteins cooperating with p53 function were also found among the 

set of p53-profile neighbors; for example, HNRNPF promotes p53 mRNA 3’-end 

formation (Decorsiere et al., 2011); DKC1 facilitates p53 translation; heat shock-induced 

stabilization of p53 occurs via direct binding to HSP90AA1; the purine biosynthesis 

enzyme GART is involved in p53- activating posttranslational modifications (Bronder & 

Moran, 2003); and SSRP1 is a component of the p53 transcriptional complex (Keller & Lu, 

2002; Keller et al., 2001). There were also examples of genetic cooperation such as NOLC1 

and SMARCC1. TP53 and NOLC1 cooperate in snoRNA-mediated ribosomal RNA 

editing, an important process for stress-induced stabilization of ribosomes (Krastev et al., 

2011). Haploinsufficiency of both SMARCC1 and p53 cooperate to induce tumorigenesis 

in a mouse model (Ahn et al., 2011). 

Because p53 is known to interact in some manner with a large portion of the genome, we 

asked if the enrichment of the p53-interacting genes in the set of TP53-profile neighbors is 

statistically significant. An empirical approach was used to determine the p-value. We 

generated 100 sets of 100 genes randomly selected from all annotated genes. For each set of 

100 genes, TP53 was added to the set. The resulting simulated gene sets were subjected to 

Ingenuity Pathway Analysis and treated the same way as the list of T-ALL TP53-profile 

neighbors. The tabulated results of the number of p53 connections identified were used to 

estimate the p-value: this statistical approach indicated that the number of p53 connections 

within the set of T-ALL TP53-profile neighbors significantly exceeded the number of those 

within the simulated randomly-selected gene sets (p-value < 0.01). Importantly, our 

statistical analysis suggests that other less-studied genes among the T-ALL TP53-profile 

neighbors may also be important regulators of p53. This idea warrants further investigation 

because novel regulators of p53 might be found that may serve as potential therapeutic 

targets (Cheok et al., 2011). In support of this notion, certain of the known p53-interacting 

proteins, such as HUWE1, have already been suggested as possibilities for therapeutic 

intervention to restore p53 function in cancer cells (Chen et al., 2006).  
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Fig. 4. TP53 profile neighbors in T-ALL regulate its function. Shown are examples of the 
TP53 profile neighbors known to target sequential steps of p53 activation. 

The enrichment of p53-interacting genes and common expression signature also indicated 

that the set of TP53-profile neighbors is deregulated as a result of leukemogenesis and 

may be targeted by common T-ALL oncogenes. To ask which oncogenes may be involved 

in regulation of the set of TP53-coexpressed genes in T-ALL, we used genome-wide 

chromatin immunoprecipitation data previously published by others (Margolin et al., 

2009; De Keersmaecker et al., 2010) to identify direct MYC or TLX1 targets. We found that 

the set of T-ALL TP53-coexpressed genes is significantly enriched for direct MYC and/or 

TLX1 targets, accounting for 70% of the set. Specifically, out of 16,697 genes represented 

on the array, 8,404 of them were bound by either MYC or TLX1. On the other hand, out of 

the 99 genes found to be coexpressed with TP53 in T-ALL, 69 of them were bound by 

either MYC or TLX1. Using the hypergeometric distribution, we determined that the p-

value for the frequency of MYC or TLX1 target genes within the set of T-ALL p53-profile 

neighbors is 7 x 10-5. Notably, NOTCH1 targets were within the subsets of MYC and/or 
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TLX1 targets. Moreover, the remaining 30% of the genes showed similar expression 

profiles and functional classification, arguing that they are regulated by one of NOTCH1, 

MYC or TLX1, but indirectly via downstream transcription factors. Promoter analysis 

revealed that the incidence of glucocorticoid receptor (GR) binding sites was 10 times 

more frequent in this set versus the genes directly targeted by MYC and TLX1, suggesting 

that these genes are potential targets of GR, and that GR may be the transcription factor 

contributing to the oncogene-induced stress response. A number of observations support 

this hypothesis. First, TLX1-positive T-ALL cases are characterized by high GR mRNA 

expression levels (Ferrando et al., 2002). In this regard, we found that shRNA-mediated 

knockdown of TLX1 in the T-ALL-derived ALL-SIL cell line was associated with increased 

resistance to glucocorticoid-induced cell death (manuscript in preparation) indicating that 

TLX1 may contribute positively to GR function. Moreover, recent clinical studies have 

demonstrated that activation of the NOTCH1 oncogene is associated with a superior 

initial therapeutic response to glucocorticoids (Kox et al., 2010) indicating that NOTCH1 

may also cooperate with GR-induced killing. Finally, we and others observed that ectopic 

activation of MYC may cause transcriptional induction of pro-apoptotic BIM (Riz et al., 

2011), which is a known mediator of GR induced apoptosis in T-ALL cells. Thus we 

hypothesize based on our analysis that an interacting network of transcription factors—

NOTCH1-MYC-TLX1—may activate the TP53-anchored transcriptional program of an 

oncogene-induced stress response, predominantly via direct binding to promoters and in 

part via activation of GR function. We hope that our hypothesis will help to stimulate 

further studies seeking novel therapeutic targets to restore p53 function and to 

understand the intricate relationships between NOTCH1 and GR, two major targets of T-

ALL therapeutic intervention.  

6. Interaction of T-ALL mutations and p53 downstream targets  

It is important to appreciate that not only p53 function but also execution of p53-governed 

transcriptional programs is often compromised by T-ALL mutations. For example, 

NOTCH1 via activation of SKP2 decreases the levels of p21 and thus counteracts one of 

the best characterized activities of p53 (Sarmento et al., 2005). As discussed above, the 

pathways downstream of NOTCH and PTEN intersect at the level of PI3K-mTOR. A set of 

p53 target genes controls this pathway as well (Feng et al., 2005). PTEN itself was shown 

to be a p53 target gene about 10 years ago (Stambolic et al., 2001). Since then, it has 

become appreciated that PTEN is activated by p53 in response to high-dose chemotherapy 

as part of a p53-governed transcriptional program committing cells to apoptosis. 

NOTCH1 was shown to inhibit PTEN via upregulation of the transcription factor HES1, 

which directly represses the PTEN promoter (Palomero et al., 2007). Among upstream 

modulators of PI3K, p53 induces IGF-BP3 (Buckbinder et al., 1995). IGF-BP3 binds to IGF1 

or IGF2 and prevents their interaction with the receptor. Mutations involving components 

of IGF signaling are frequent contributors to PI3K activation in T-ALL (Remke et al., 

2009). Other p53 targets affecting the mTOR pathway include TSC2, AMPK beta1, sestrins 

1 and 2 and REDD1, all of which contribute to negative regulation of mTOR by  

targeting the TORC1 complex (which counteracts AKT function) (Feng et al., 2007)  

(Figure 5). 
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Fig. 5. T-ALL-associated genetic lesions compromise the function of p53 downstream 
targets. Alterations of NOTCH1 and PTEN loci are complemented by less frequent 
mutations in the growth-promoting IGF-PI3K/AKT/mTOR network; mutant proteins are 
indicated by ‘m’. By inhibiting this network, the p53 target genes shown adjust metabolic 
rates in response to stress conditions and stall cell cycle progression. 

7. Conclusion  

A plethora of inactivating mutations notwithstanding there is still a possibility for 
therapeutic restoration of p53 apoptotic function because of two major features typical to 
this cellular regulator: multiplicity of activating stimuli and redundancy of the activating 
modifications. p53 is activated in response to a variety of stresses such as lack of nutrients, 
energy deprivation, DNA damage, heat shock, hypoxia or enhanced oxidation, and ER 
protein overload. Importantly, the apoptotic function of p53 may be activated only in the 
presence of persistent irreparable stress. For example, while reparable DNA damage 
activates p53 only partially via Ser-15/20 phosphorylation (which is sufficient for cell cycle 
arrest), PTEN induction by p53 is triggered by persistent DNA damage and has an 
additional checkpoint that requires phosphorylation of Ser46 in p53 (Mayo et al., 2005; 
Zhang et al., 2011). Thus chemotherapeutic agents activating p53 beyond its growth-
arresting function should be considered as an aid to p53 protein stabilizers such as blockers 
of MDM2 function (Hasegawa et al., 2009). Among these regulators, WIP1 phosphatase 
(PPM1D), a p53 target and negative loop of autoregulation of p53 was suggested as a 
possibility, however, not tested in T-ALL (Lu et al., 2008; Yoda et al., 2008). Even though the 
Ser46 phosphorylated form of p53 was shown to associate with apoptotic activity, point 
mutation substituting this amino acid to alanine did not prevent activation of p53 apoptotic 
function (Kurihara et al., 2007). This illustration, together with studies showing that the p53-
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MDM2 interaction is not affected by single point mutations, supports the idea of p53 
regulatory redundancy (Kruse & Gu, 2009).  
At the onset of neoplastic development, p53 is often activated as part of an oncogene-
induced stress response. It is noteworthy that TP53 is rarely mutated in T-ALL (De 
Keersmaecker et al., 2005). Despite adaptive genetic and epigenetic mechanisms disrupting 
its functional outcome [discussed herein and (Vilas-Zornoza et al., 2011)], the p53 pathway 
still stays partially activated in fully developed T-ALL. Thus selective reactivation of p53 
tumor suppressor function in the malignant cells is possible in principle by overcoming the 
disrupted links of the pathway. The development of personalized medicine providing 
knowledge of the patient’s cancer genome should facilitate efforts to devise the appropriate 
strategy to activate wild-type p53 function in T-ALL. We believe that combining 
conventional cytotoxic therapy with molecular targeted approaches restoring p53 activity to 
its full potential will improve current protocols and prevent relapse. In this regard, there are 
several small molecule inhibitors of the p53-MDM2 interaction that are currently being 
investigated (Cheok et al., 2011), at least one of which (RG7112) is undergoing clinical trials 
in T-ALL patients (ClinicalTrials.gov, NCT00623870). 
In spite of over 30 years of p53 research and investigation into the molecular basis of T-ALL, 
surprisingly little is known about the role and function of p53 in T-ALL. At time of writing, 
43,847 PubMed articles were found by searching for “p53 and cancer” whereas only 146 
articles could be retrieved for “p53 and T-ALL”. T-ALL represents 15% of pediatric 
hematological malignancies which are the most common cancers in children. So, we believe 
that the subject is significantly underrepresented. We hope that by summarizing the current 
state of the art, this chapter will bring more attention to this issue and pave the way for new 
therapeutic strategies for patients with this disease. 
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