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Brine Shrimp Diversity in China  
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Hangxiao Zhang, Jing Sun, Weiwei Wang and Jun Yu 
CAS Key Laboratory of Genome Sciences and Information,  

Beijing Institute of Genomics, Chinese Academy of Sciences 
China 

1. Introduction  

Taxonomy, the science that deals with the study of identifying, grouping, and naming 
organisms according to their established natural relationship, is the basis of all biological 
studies. Biological and observation-based classification is still generally the best known form 
of taxonomy since 1735 when Carl Linnaeus published the great book - Species Plantarum, 
and it is an empirical science mostly based on morphological difference. With the 
development of science and technology, scientists have discovered many methods to 
identification new species and other tools or definitions for species classification, such as 
biochemical identification (Farmer et al. 1985), cytotaxonomic identification (Le Berre et al. 
1985), chromosomal DNA fingerprinting (Owen 1989), restriction fragment length 
polymorphism (RFLP) (Sakaoka et al. 1992), and PCR-based DNA fingerprints (Matsuki et 
al. 2003). Among others, molecular or genetic approaches to identify species have been 
proposed and extensively used (Yamamoto 1992; Zhou et al. 2003).   

1.1 DNA barcoding 

The study of biodiversity lays the foundation for all biological studies, especially the 
classification of species, and the ways to do it have never stopped since Linnaeus. 
Traditional morphology-based taxonomy has its limitations, such as when facing mimetic 
polymorphism, and it mainly depends on the expertise of taxonomists, and there is little 
doubt that evidence at molecular levels should be complementary and of necessary. As the 
development of molecular biology, the idea of molecular taxonomy has been propounded 
and gradually accepted by related scientific communities. The standard molecular 
identification system was initiated during 1990s by using PCR-based and sequencing-based 
approaches (Frézal et al. 2008). Taken the advantage of the two powerful technologies in 
accuracy and convenience, DNA sequence signatures provide adequate “barcodes” for 
species identification, and “DNA barcoding” has been widely used in studies for speciation 
(Ghebremedhin et al. 2008; Sullivan et al. 1996), phylogenetics andevolution (Göker et al. 
2009;Wood et al. 2000), and molecular ecology (Govan et al. 1996; Valentini et al. 2009) as 
well as for the classification of both pathogenic microbes (Beckmann 1999) and normal 
microbiomes (Holzapfel et al. 2001). 
DNA barcoding is an ultimate and direct approach for molecular taxonomy, depending on 
the complexity of sequence signatures used, especially in distinguishing species with nearly 
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identical morphological features, thereby helping to establish legitimate phylogenetic 
relationships and to reveal evolutionary histories. The concept of DNA barcoding was first 
advocated by Arnot in 1993 (Arnot et al. 1993) and its new era began in 2003, marked by the 
establishment of the Consortium for the Barcode of Life (CBOL, http://barcoding.si.edu). 
This initiation was put forward and promoted by researchers at the University of Guelph in 
Ontario, Canada in 2004. The aim of this project is to create a universal protocol for an 
eukaryotic species inventory based on a standard molecular approach. Up to this date, the 
Consortium has more than 150 member organizations from 45 countries, including natural 
history museums, zoos, botanical gardens, university departments as well as private 
companies and governmental organizations (Frézal & Leblois 2008; Schindel et al. 2005). The 
DNA Barcode of Life Database (BOLD, http://www.boldsystems.org), an informatic 
workbench aiding the acquisition, storage, analysis, and publication of DNA barcode 
records, has been developed since 2004 and was officially established in 2007 (Ratnasingham 
et al. 2007). This database provides an integrated bioinformatic platform for the 
acquaintance, collection, and analysis of basic barcoding data and facilitates the 
development of DNA barcoding. 

1.1.1 What is DNA barcoding? 

In theory, nucleotide sequences of nuclear and organellar origins are natural ‘barcodes’ that 
are unique to each organism on earth. Therefore, a 15-bp nucleotide sequence creates 415 (1 
billion) combinations that would be sufficient for the differentiation of the estimated 10-15 
million species (Butchart et al. 2010; Perrings 1996). However, practically, species are related 
and their genome sequences are often homologous, depending on their evolutionary 
distances. In addition, the rates of molecular evolution vary dramatically across taxa and 
even at different positions in a given genome. In the latter case, the main task of DNA 
barcoding is to find a sequence fragment that is evolutionarily less selected and serves as a 
unique barcode for species identification.  
There had not been a universal barcode sequence for all species yet, especially across 
distant lineage boundaries, but several candidate genes are commonly used for 
phylogenetic analysis, such as mitochondrial 16S rRNA gene, mitochondrial cytochrome b 
gene, and the mitochondrial cytochrome c oxidase subunit 1(COI) which can serve as the 
core of global bio-identification system for animals (Hebert et al. 2003a, 2003b). A 648-bp 
segment at 58-705 from the 5’end of this gene is chosen as the barcode segment. COI gene 
is an ideal model to evaluate the evolution rate, as its third-position nucleotides show a 
high incidence of base substitutions but its amino acid sequence changes rather slowly as 
compared to other mitochondrial genes. As a result, on the one hand, the evolution of this 
gene is rapid enough for identification of not only closely related species, but also 
phylogeographic groups within a single species, and on the other hand, it is possible to 
place an unidentified species into higher taxonomic categories (from phyla to orders) 
(Hebert et al. 2003a). Although a unified opinion has not been reached on a single 
barcoding DNA segment chosen for taxological studies (Lin et al. 2009), the COI gene-
based identification system has been proven superior within taxonomic groups of Protista 
(Chantangsi et al. 2007; Evans et al. 2007) and animals, including gastropods (Hebert et al. 
2003b; Remigio et al. 2003), ants (Smith et al. 2005), butterflies (Hebert et al. 2004a), birds 
(Hebert et al. 2004b), spiders (Greenstone et al. 2005), fish (Ward et al. 2005), worms (Ferri 
et al. 2009; Jennings et al. 2010), Crustacea (Lefébure et al. 2006), and very recently 
primates (Nijman et al. 2010).  
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1.1.2 Examples of DNA barcoding applications 

DNA barcoding has been successfully used for the taxonomy of invertebrate and 

vertebrate animals as well as microbes, including bacteria (Siddall et al. 2009), fungi (Kelly 

et al. 2011; Stockinger et al. 2010), Protista (Chantangsi et al. 2007; Evans et al. 2007), and 

algae taxonomies (Saunders 2005). In the past three years, an increasing number of studies 

has been focused on DNA-barcoding of plants (He et al. 2010; Kress et al. 2007; Lahaye et 

al. 2008). Since there is not yet a universally accepted DNA barcode for plants, many 

strategies have been proposed, based either on a single chloroplast segment 

(Hollingsworth et al. 2009; Lahaye et al. 2008) or a combination of multiple segments (He 

et al. 2010; Kress & Erickson 2007). Examples of DNA barcoding studies are summarized 

in Table 1 including DNA barcodes for animals, plants, fungi, and protists. As mentioned 

previously, there are advantages and limitations among the barcodes with respect to 

specific applications. 

 

Organism 
group 

DNA barcode References 

Animals COI, 28SrRNA, cob 
( Hebert et al. 2004a; Hogg et al. 2004; Ward et al. 
2005; Zhang et al. 2011) 

Plants 
COI, trnL, matK, 
rbcL, trnH-psbA, ITS 

(Kress et al. 2005; Savolainen et al. 2008; Shaw et 
al. 2011; Specht et al. 2007) 

Fungi 
COI, ITS, LSU, 
mtSSU, beta-tubulin 

(Porter et al. 2008; Schussler et al. 2010; Seifert et 
al. 2007; Summerbell et al. 2007; Tedersoo et al. 
2008) 

Protists COI, ITS 
(Brodie et al. 2006; Keeling et al. 2010; Pawlowski 
et al. 2010; Saunders 2005; Stern et al. 2010) 

Table 1. Applications of DNA barcoding technology 

1.1.3 Advantages and drawbacks of DNA barcoding 

There are several obvious advantages in the currently used DNA barcoding system. First, it 

uses a standard procedure that can be applied universally to relevant research fields.  It is of 

great utility in conservation biology and can also be applied to samples where traditional 

morphological methods are unable to define, including species identification based on eggs 

and larval (Wang et al. 2008) and analysis of stomach contents or excreta to determine food 

webs. Another advantage of DNA barcoding comes from the rapid and cost-efficient 

acquisition of molecular data, enabling large-scale species identification (Frézal & Leblois 

2008), whereas conventional taxonomy is time consuming, and in some cases it is almost 

impossible to apply (Rusch et al. 2007). Therefore, it is important to be able to improve large 

surveys aiming at unknown species detection and identification of pathogenic species with 

medical, ecological, and agronomical significance (Ball et al. 2008; Barth et al. 2006). 

Particularly, DNA barcoding becomes necessary when morphological traits do not 

adequately discriminate species (Caron et al. 2009; Guo et al. 2010; Kauffman et al. 2003; 

Kumar et al. 2006) or if species have polymorphic life cycles and/or exhibit pronounced 

phenotypic plasticity (Pegg et al. 2006; Randrianiaina et al. 2007). 

However, controversies about DNA barcoding still remain. Although DNA barcoding was 

proposed initially as a method for species identification, to better achieve this goal, it needs 
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be validated intensively, especially in choosing the best candidate sequences that are both 

universal and highly variable among species. The first question is: what are these sequences: 

nuclear, mitochondrial, or chloroplast? An idea to use a simple sequence from mtDNA has 

been dismissed. It is not adequate to be used as a sole source for species-definition due to 

following genetic factors: reduced effective population size and introgression, maternal 

inheritance, recombination, inconsistent mutation rate, heteroplasmy, and compounding 

evolutionary processes (Meier et al. 2006; Rubinoff et al. 2006). Until now, there has not been 

an universal DNA barcode for all organisms and we have not found a single gene that is 

conserved enough and also exhibits appropriate divergence for all species regardless where 

they come from (Hickerson et al. 2006; Rubinoff et al. 2006; Song et al. 2008). The validity of 

DNA barcoding therefore lies on establishing reference sequences from taxonomically 

confirmed specimens, which will acquire an integration of morphological and molecular 

based taxonomy data, as well as decent cooperation among sample collection, such as 

museums, zoos, and research institutes (De Hoog et al. 2008). This approach is closest to 

what has been termed “integrative taxonomy” (Dayrat 2005; Will et al. 2005). DNA 

sequences in combination with traditional character sets are used in a complementary 

fashion to define and describe species (Heethoff et al. 2011; Padial et al. 2010; Pereira et al. 

2010). 

1.1.4 Recent progresses in DNA barcoding 

Recently, the approach of DNA barcoding has been greatly revived to increase accuracy and 
sensitivity, and the major improvements are focused on using more than one barcoding 
strategies for a better identification of specific species (Aliabadian et al. 2009; Ferri et al. 
2009; Lin et al. 2009; Nassonova et al. 2010). Shatters et al improved DNA barcoding by 
using different regions of COI gene to do biotype-specific barcoding (Shatters et al. 2009). As 
the sequencing technology developed rapidly in the past few years, sequence-based DNA 
barcoding also advanced rapidly, such as cap analysis of gene expression ( CAGE) using an 
ultra high-throughput sequencer (Maeda et al. 2008), to show biodiversity (Creer 2010; 
Fonseca et al. 2010; Mitsui et al. 2010), and the ArkChip strategy for highly-resolved patterns 
of intraspecific evolution and a multi-species (Carr et al. 2008). Several new techniques have 
been implemented, and all based on the sequencing of individual DNA molecules (with or 
without an amplification step) in massive and parallel ways (Table 2, Figure 1). The high 
accuracy, throughput, and efficiency make the identification of genome sequences unique to 
different species and life forms easy.  
The processes that apply next-generation sequencers to DNA barcoding are expected to be 
more complex than what has been anticipated. For instance, the classical DNA barcode is 
defined to be a fragment around 650bp but the effective read lengths of the next-G 
sequencers are actually shorter than it at present time. Progress has been made in recent 
studies, where smaller DNA fragments, called mini-barcode, of COI gene or rDNA were 
used for accurate species identification (Hajibabaei et al. 2006; Pawlowski & Lecroq 2010). 
Researches show that more than 90% and 95% success rates were achieved by using 100-bp 
and 250-bp barcodes, respectively (Meusnier et al. 2008). Although  biodiversity studies 
based on next-G sequencing technologies were emerged in 2006, (Ley et al. 2006; Sogin et al. 
2006), most of the studies have been done with the Roche/454 system ( Hajibabaei et al. 
2011; Meyer et al. 2007; Porazinska et al. 2009) and mainly for environmental samples 
(Deagle et al. 2010;Fire et al. 2007; Hajibabaei et al. 2011). More recently, the upgrading 
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speed of different sequencing platforms, such as those of Illumina and Life Technologies, 
has been very impressive and the read lengths of these new versions of sequencers are 
getting longer (Table 2). They may also one day be used for biodiversity study when their 
read length is increased to ~100bp and more. 
 

Sequencer Company Read length Reads per run Total output Time per run 

Solexa Illumina 75 bases 60 million 4 Gb 6.5 days 

SOLiD 
Life 

Technologies 
50 bases 85 million 4 Gb 6 days 

454 GS FLX 
Roche 

Diagnostics 
500 bases 1 million 0.5 Gb 8 h 

Note: The recent machine and software upgrades from Illumina (such as HiSeq2000) and Life 
Technologies (such as 5500XL) promise ~100-fold increases in the total outputs of raw data. 

Table 2. Comparison of next-generation sequencing platforms. 

 

 

Fig. 1. Methodology for analyzing biodiversity based on high-throughtput DNA 
sequencing. 

1.2 A case study on Artemia (Crustacea, Anostraca) in China 

Brine shrimp or Artemia (Crustacea, Anostraca) is a worldwide living species well-adapted 

to survive in very harsh hypersaline environments, such as salty lakes and lagoons (Clegg et 
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al. 2009), it typically shows enormous diversity at the genus level in terms of their ability to 

survive under different ionic compositions, climatic conditions, and altitudes. In this case 

study, Artemia species are served as ideal model organisms for biodiversity study in inland 

hypersaline lakes (Camargo et al. 2005; Castro et al. 2006; Hand SC 1982; Maniatsi et al. 

2009). In addition, the morphological variations displayed among Artemia populations also 

provide excellent materials for studying adaptive genetic polymorphisms at molecular 

levels. During the past two decades phylogenetic relationships among Artemia species have 

been established by combined studies based on cross-breeding, morphological 

differentiation, cytogenetics, nuclear (including allozymes and other nuclear DNA 

sequences) (Badaracco G 1995; Baxevanis et al. 2006; Sun Y 2000) and mitochondrial 

(mtDNA) DNA markers (Badaracco G 1995). 

Seven sexual species have been described thus far, as well as numerous parthenogenetic 

populations. Five species are found in Eurasia: A. salina (Mediterranean area), A. urmiana 

(Iran), A. tibetiana (Tibet), A. sinica (van Wely et al.), and A. spp (Old World). The New 

World species are A. franciscana and A. Persimilis; the former are widely distributed in 

most part of America, while A. persimilis is restricted to certain locations in Chile and 

Argentina (Clegg et al. 2009). A.franciscana, A.tibetiana, and A.sinica are the main Artemia 

species that inhabit in China (Figure. 2). A.tibetiana dwells in the Tibetan Plateau, with the 

altitude of ~ 4,500m above the sea level. Living under the harsh condition of hypoxia, low 

temperature, high solar radiation, and lack of biological production, it requires a modified 

and adapted energy metabolism for survival. In 1980s, a large quantity of A.franciscana 

was released in the most part of salt field in the Bohai Bay. As a dominant species, 

A.franciscana replaced the local species, A.sinica, rapidly and has become the primary 

species in the Bohai Bay since. As a result, A.sinica is almost disappeared completely in 

sea shores of Eastern China. 
 

 
 

Fig. 2. The distribution of Artemia in the world. 
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2. Biodiversity of Artemia populations in China 

The phylogeny of various Artemia samples from different habitats around the world was 
reported previously, and our focus now is on the biodiversity of Artemia species in China, 
especially that of the Tibetan Plateau. All strains used in this study are also kept as cysts at 
the Laboratory of Aquaculture & Artemia Reference Center (ARC) with ARC code numbers 
(Wang et al. 2008), including six populations represented five salt lakes from Nima (ARC 
1609), Yangnapeng Co (ARC 1610), Lagkor Co (ARC 1348), Jingyu lake (ARC 1524), and Co 
Qen Lakes (ARC 1526 and ARC 1612) of the Tibetan Plateau (Table 3).  
 

ARC # Location Year of harvesting  

1348 Lagkor Co, Tibet, China 1996 

1524 Jingyu Lake, Xinjiang, china 2001 

1526 Co Qen,Tibet, China 2001 

1612 Co Qen, Tibet, China 2001 

1609 Nima, Tibet, China 1999 

1610 Yangnapengco, Tibet, China 2002 

Table 3. List of Artemia species in China and their locality and ARC codes. 

2.1 Phylogenetic analysis of Artemia species in China based on COI gene barcoding 

A 648-bp segment of the mitochondrial COI gene was selected as the standard barcode to 
establish phylogenetic relationships among Artemia species from major habitats, including 
species from the Tibetan Plateau  (Figure 3, Wang et al. 2008). We built a phylogenetic tree 
based on COI gene, which separates the populations into five stable clades. Three of them 
are composed of species from China, and the first clade contains genotypes from 
populations collected in the Bohai Bay areas of Eastern China and also one sample from 
Vinh Chau, Vietnam, which shows a high sequence similarity to A. franciscana. It is evident 
for a large-scale invasion of A. franciscana in the Bohai Bay (Van Stappen 2007). The second 
clade is made of A.tibetiana genotypes from populations in Tibet and Southwestern China, 
with high sequence similarity to A. urmiana. The third clade belongs to A. sinica, which 
mainly contains populations from Inner Mongolia in the Central North of China. The fourth 
and fifth clades correspond to A. persimilis and A. Salina, respectively, and they are not 
found in this study as major populations in China.  
Investigating the amino acid variations, we found two consistent amino acid changes in COI 
between high and low altitude species we collected in China: 153A/V and 183L/F. These 
sequence alterations may provide clues for further functional studies such as to determine if 
the adaptation to high altitude had resulted in the fixation of such mutations. We also used 
Ka/Ks calculator to estimate Ka/Ks  (Zhang et al. 2006) with the aim to reveal sequence 
signatures of natural selection in COI gene. When using A. franciscana as a reference, A. 
tibetiana has significantly higher Ka/Ks ratios, which imply relatively stronger selective 
pressure on this species. Two variations that alter amino-acid sequences between the high 
and low altitude populations shared by the high altitude group were also detected. The 
sequence from sample 1612 has the highest Ka/Ks ratio, and its mutation spectra suggests a 
relatively stronger selection posed on this population and its synonymous mutations 
provide clues that the population is rapidly diverging, which is most likely due to 
environmental changes during last three million years rather than genetic drift. 
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Fig. 3. A phylogenetic tree based on neighbor-joining method. The tree is constructed based 
on a sequence fragment of COI gene (Adapted from Wang et al.). 

We further obtained high-quality sequences from individual adults of the six Tibetan 
populations and calculated the Kimura-2-Parameter distances (Table 4). For phylogentic tree 
construction, we used the consensus sequences when sequence heterogeneities are 
encountered among a minor set of samples.  
 

 1348 1524 1526 1609 1610 1612 

N 20 18 9 20 20 8 

Min 0 0 0.38 0 0 2.55 

Max 7.76 1.31 11.07 4.92 9.56 12.01 

Mean 2.3 0.51 4.17 2.49 3.42 7.07 

S.D. 0.34 0.17 0.52 0.45 0.5 0.79 

Table 4. Kimura-2-Parameter distances of samples from Tibet (Adapted from Wang et al 
2008). 
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2.2 Sequencing and comparative analysis of Artemia mitochondrial genomes  

Based on the obvious divergence of COI gene, we speculated that environmental selection 
may bring more variations to other mitochondrial encoding genes involved in energy 
metabolism during the long-term selection that may affect structures and activities of the 
ATPase subunits or even other components of the mitochondrial respiratory chain 
complexes. Therefore, we decided to take Artemia species in Asia as our model and acquired 
whole mitochondrial genome sequences of Artemia tibetiana collected from the Tibetan 
Plateau and carried out comparative analysis involving other lower altitude Artemia species, 
A. franciscana, A. urmiana, and A.sinica, and aim to observe specific characteristics of the mt 
genome sequences of A. tibetiana. 
We indeed acquired and annotated five mitochondrial genomes, including two ecotypes of 
A. tibetiana, one each from A. urmiana, A.franciscana, and A.sinica. The A. tibetiana samples 
were collected from Nima (ARC 1609) and Yangnapeng Counties (ARC 1610) of the Tibetan 
Plateau with the altitude higher than 4,000m. A. urmiana, which had a very close 
phylogenetic relationship with A. tibetiana based on previous DNA barcoding study, were 
collected from Urmia Lake of Iran (ARC 1227) at an altitude of 1275m above the sea level. 
A.sinica, another native species in China which is collected from Yimeng of Inner Mongolia 
(ARC 1188), where it has an altitude of ~1000m above the sea level and a climate of dry, 
windy, and sandy. We also have one ecotype of A.franciscana is collected from Huangnigou, 
Shangdong in China (ARC 1590). The length variations are mainly found in the non-coding 
region (known as the D-loop region).All Artemia mitochondrial genomes encode 37 genes 
including 2 rRNAs, 22 tRNAs, and 13 polypeptides that are subunits of the respiratory chain 
complexes residing on the inner mitochondrial membrane.  
Comparative analysis of mitochondrial DNA (mtDNA) of these Artemia species shows that 
the nucleotide variation ratio is higher between A. tibetiana and A. franciscana and much 
lower between A. tibetiana and A. urmiana or A.sinica. Among the 13 protein-coding genes, 
ND gene family has more nucleotide variations than other genes. ND6 varies the most both 
between A. tibetiana and A. franciscana (T-F) and between A. tibetiana and A. urmiana (T-U), 
and the same situation is observed between A. tibetiana and A.sinica (T-S). When analyzing 
the amino-acid changes, ATP8 gene has higher variation rates, second only to the ND gene 
family. In addition, COI is the most conservative protein in amino-acid sequence among the 
13 polypeptides. The complexes IV and V contain more variations than other complexes. 
With Ka/Ks Calculator, ATP8 has a high Ka/Ks ratio, just lower than that of ND4 when A. 
tibetiana and A. urmiana are separated from A. franciscana, while ATP6 possesses higher 
evolutionary rate between A. tibetiana and A. Urmiana (data not shown)  

3. Conclusion  

Consequently, our results on DNA barcoding and comparative analysis reveal the current 
distribution of Artemia species in China and phylogenetic relationship among them, 
providing insights into the adaptive evolution of DNA sequences of Artemia. Based on 
phylogenetic and divergence analyses of the selected samples from different regions of the 
world, it is possible that the high altitude group of Artemia are descendents of a local 
ancestral species in the Himalayas which diverged genetically as the Tibetan Plateau arose 
stepwise over approximately the last three million years (Tapponnier et al. 2001). 
The comparative studies among different Artemia species reveal complex sequence diversities 
that are expected to have functional relevance, such as energy metabolism and environmental  
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adaptation. The highest number of adaptive variations in ATP8 implies that it is under 
selective pressure during long-term geographical isolation when A. tibetiana separated from 
their common ancestor together with the rise of Himalaya Mountains. It was reported that the 
ATP8 gene encodes a core subunit of F0 in ATPase that synthesizes ATP based on a proton-
gradient that results from H+ pumping into the intermembrane space (da Fonseca, Johnson et 
al. 2008). It was also suggested that ATP8 may play regulatory roles in ATP synthesis among 
different species since it has highly variable sites in the protein-coding sequence (da Fonseca, 
Johnson et al. 2008). Moreover, the Ka/Ks ratio in ATP6 is also relatively high when we 
compared the 13 protein-coding mitochondrial genes of A. tibetiana to those of A. urmiana and 
A.sinica. It is known that ATP6 plays an important role in the assembly of F0 (Hadikusumo, 
Meltzer et al. 1988) and the highly variable sites are found in the predicted loop regions where 
the sequences are less selected in terms of its overall function. The high variation rates found 
among the ATPase subunits imply a strong selective pressure on the Artemia energy 
metabolism system from the high plateau environment.  
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