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1. Introduction 

While the earth’s biodiversity has been studied in detail, to date, microbes have been 
completely omitted from meta-analytical studies of biodiversity data sets (Balmford & Bond, 
2005; Díaz et al., 2006). In fact, biodiversity data sets are far from being considered a 
comprehensive global resource (Collen et al., 2008). Since the origin of prokaryotes on Earth 
over 3.5 billion years ago, the extent of evolutionary diversification within this group has 
been truly immense (DeLong & Pace, 2001; Payne et al., 2009). Microbial communities play 
important biological roles, such as the global cyclical change of materials in various 
environments (Díaz et al., 2006). As a result, existing biodiversity includes a vast and largely 
undiscovered diversity of microbes, which are probably very important for the 
sustainability of ecosystems (Swift et al., 2004). Hence, detailed investigation to characterize 
the global biodiversity of microbes is a very important task.  
Microbes have always formed a major component of global biodiversity, either as producers 
(e.g., phototrophic blue-green algae) or decomposers (e.g., heterotrophic bacteria) (Naeem et 
al., 2000). Furthermore, in the future, they may serve as producers of useful alternative 
energy sources (Ohnishi et al., 2010). For example, phototrophic microorganisms use the 
energy from light for the production of biomass, which is an energy source stored in all 
living organisms. In fact, microbial decomposers are used in industry to convert microbial 
biomass and organic waste materials, such as domestic garbage, into biofuels, such as 
methane, ethanol, and hydrogen (Swift et al., 2004; Kayhanian et al., 2007). Microbes are also 
used for bioremediation, which is the cleanup of pollution caused by human activities 
(Jørgensen et al., 2000). In this process, various microbes have been isolated from nature, 
which are capable of degrading spilled oil, solvents, and other environmentally toxic 
pollutants. Furthermore, the breadth of microbial diversity on Earth provides genetic 
resources that offer solutions for environmental and energy issues, and research in this area 
is currently expanding. Considering the serious environmental and energy issues that 
humans face today, a better understanding of the ecophysiology of environmental microbes 
is warranted to address problems such as resource depletion and environmental pollution. 
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These problems could be resolved by converting anthropogenic waste into renewable 
resources, such as clean biofuels or fertilizers (Pimentel et al., 1994). As microbial ecologists, 
we are interested in understanding the mechanisms underlying the existence of an 
individual microbe, its involvement in a microbial community, and its special abilities. 
Because microbes are invisible to the naked eyes, morphological analysis is difficult (Gest, 

2003). Therefore, it is necessary to study microbial diversity from a variety of perspectives, 

including the physiological, genetic, and phylogenetic characteristics of species, as well as 

other taxonomic levels. One of the primary tasks for studying the naturally occurring 

microbial diversity is to perform accurate macroscopic analysis of the variety, population, 

and/or activity of microorganisms present in a specific habitat. In the past, the lack of 

appropriate methodologies has hindered this task, and thereby affected the progress in 

studying microbial diversity (Torsvik et al., 1998). Traditionally, microbiologists have used 

culture-dependent approaches for the detection and isolation of environmental microbes, 

and the methods currently in use are based on those developed in the late 19th century 

(Okabe et al., 2009). These culture-dependent approaches present one of the most serious 

limitations to studying microbes, as they are essentially very effort intensive and slow down 

data assimilation (Moter & G bel, 2000). Therefore, concerted efforts are required to develop 

novel techniques for elucidating the taxonomic positions and activities of as-yet unknown 

microbes, which might contribute towards enhancing our understanding of the microbial 

world.  

Recently, problems related to culture-dependent approaches have been resolved through 

the application of methods from the discipline of molecular biology, such as culture-

independent approaches (Amann et al., 1990; Muyzer, 1999). Compared to culture-

dependent approaches, culture-independent approaches provide a broader view of the 

microbial population and/or its activity, without the necessity of isolating and culturing 

individual organisms (Hugenholtz et al., 1998; Ranjard et al., 2000). Thus, these approaches, 

such as fluorescence in situ hybridization (FISH) and polymerase chain reaction-denaturing 

gradient gel electrophoresis (PCR-DGGE), generate accurate results in a short time. As a 

result, the molecular method has been used to analyze the microbial diversity of a wide 

range of environments, which has generated many beneficial findings. Examples include 

solid waste composters (Nakasaki et al., 2009), wastewater treatment plants (Wagner et al., 

2002), agricultural soils (Ranjard et al., 2000), and natural rivers (Brummer et al., 2000). 

Furthermore, culture-independent approaches have been used to identify many novel 

bacterial and archaeal lineages from different environments (Oren, 2004). As a consequence, 

studies using these approaches have shown that the microbial world is genetically and 

functionally more complex and diverse than previously predicted from culture-dependent 

studies. 

However, culture-independent approaches also have certain disadvantages, as the strains in 

a sample cannot be distinguished and the unique properties of a particular strain cannot be 

identified (Rapp & Giovannoni, 2003). While correct data about the microbial ecology is 

generated using a culture-independent approach, the characteristics and activities of 

microbial strains cannot be studied without isolation. Therefore, it would be very difficult to 

use these culture-independent approaches to conduct a detailed study of an individual 

strain for the development of an applied technology. In other words, despite the widespread 

use of culture-independent approaches, cultural isolation will continue to be an important 

but necessary method to generate new technologies.  
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Our research group previously used the culture-dependent approach to provide important 
information about unknown microbial diversity and potential available resources in a field-
scale model of a sewage sludge composter that was set up in Sapporo, Japan (Ohnishi et al., 
2011). During composting, microorganisms decompose solid wastes, such as urban wastes, 
sewage sludge, and food garbage. This process is the first step by which organic matter is 
recycled and absorbed into plants or other autotrophs. However, the mechanisms underlying 
these activities remain unclear. In this study, we investigated the microbial diversity of 
culturable bacteria obtained from a field-scale sewage sludge composter that was set up in 
Tendo, Japan. PCR amplification of 16S rRNA gene from 32 isolates was performed using 
universal primers, followed by gene sequencing. The gene sequences were compared with 
the sequences available in the GenBank databases to identify closely related sequences. The 
closely related sequences were aligned to construct a phylogenetic tree for these bacteria. 
Then, these sequences were deposited in GenBank under different accession numbers. In 
addition, the detailed data sets, including ribo-patterns and carbon source utilization, were 
compared with those obtained in a previous study by the same research group. 

2. Materials and methods 

2.1 Sample collection 

Samples were obtained from a field scale composter (Tendo Compost Plant; 38° 21’ N, 140° 
37’ E) that was used for the treatment of sewage sludge (10 t/d) from Tendo City. This 
composter, which had aeration holes at the bottom, was operated as a silo-type. The 
composted material was sewage sludge mixed with return compost and sawdust, with a 
final water concentration of approximately 60%. Primary decomposition was completed 
after 14 d (the highest temperature was 75 °C), and secondary decomposition was 
completed after 60 d (at a temperature of approximately 40 °C). The sample (approximately 
5 kg) was taken from the surface of the compost (at a depth of 30 cm) after the completion of 
primary decomposition. The sample was packed in ice for transportation to the laboratory, 
and maintained at 4 °C until the initiation of the experiment.  

2.2 Plate counts and strain isolation  

Mesophilic and thermophilic bacterial counts were performed following aerobic bacterial 
culture on nutrient agar plates (1.0% meat extract, 1.0% polypeptone, 0.5% NaCl, and 1.5% 
agar (pH 7.0)). In brief, 10 g of compost sample and 90 ml distilled water were placed in a 
shaking flask (volume, 500 ml). The solution was homogenized by shaking at 230 rpm for 20 
min. The homogenate was then serially diluted, and 100-μl aliquots of 101 to 109 sample 
dilutions were plated. Incubation was performed at 37 °C or 50 °C for mesophilic bacteria 
and at 60 °C for thermophilic bacteria. After 7 d incubation at these temperatures, colonies 
on plates containing 30–300 colonies were counted. A number of colonies were randomly 
selected from plates that had been inoculated with the highest dilution, and in which the 
colonies were well separated. These colonies were then purified by repeated dilution 
plating. The isolates were stored at 4 °C with continuous subculturing, and stocks were deep 
frozen at -80 °C.  

2.3 16S rRNA gene sequence determination 

DNA extraction from each isolate was performed using the bead beating method (Ohnishi et 

al., 2010). After cells were grown for 24 h, they were suspended in 1 ml sterile distilled water 
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by using a sterile swab, and centrifuged for 5 min (12,000 g, 4 °C). The cell pellet (1–3 mg) 

was then resuspended with 1 ml of extraction reagent (0.1 M NaCl, 0.5 M Tris-HCl, and 0.5% 

SDS (pH 8.0)). After vortexing, the suspension was transferred into a 2-ml screw-capped 

tube containing 0.3 g of zirconium beads (diameter, 0.1 mm), and the cells were crushed by 

10 cycles (3000 rpm, 30 s) of bead beating at 30-s intervals by using an MB-200 Multi-beads 

shocker (Yasui Kikai). The beads and cell debris were removed by centrifugation at 20,000 g 

for 5 min. The crude DNA was purified by phenol-chloroform extraction followed by 

ethanol precipitation, and dissolved in TE buffer (pH 8.0). The DNA extract was then 

subjected to PCR amplification.  

Gene fragments that were specific to the 16S rRNA-coding regions of the isolates were 

amplified by PCR using the 2 primers, 20F (5′-AGTTTGATCATGGCTCA-3′, positions 

10–26) and 1540R (5′-AAGGAGGTGATCCAACCGCA-3′, positions 1521–1541) 

(Escherichia coli numbering system (Brosius et al., 1978)), following the method of Yanagi 

and Yamasato (1993). PCR amplification was carried out in a PTC200 thermal cycler (MJ 

Research) using reagents from a Taq PCR kit (Takara). The amplified 16S rRNA gene was 

directly sequenced using an ABI PRISM BigDye Terminator Cycle Sequencing Ready 

Reaction kit and an ABI PRISM model 310 Genetic Analyzer (Applied Biosystems). The 

following 5 primers were used: 20F, 1540R, 350F (5′-CCTACGGGAGGCAGCAGT-3′, 

positions 341–358), 800F (5′-GTAGTCCACGCCGTAAACGA-3′, positions 803–819), and 

900R (5′-CGGCCGTACTCCCCAGGCGG-3′, positions 879–898) (Ohnishi et al., 2011). 

2.4 Phylogenetic analysis 

Multiple alignment was performed using Clustal X (version 1.8 (Thompson et al., 1997)). 

Phylogenetic distances (Knuc) for the aligned sequences were calculated using the 2-

parameter method of Brummer (Kimura, 1980). The neighbor-joining method (Saitou and 

Nei, 1987) was used for the construction of a phylogenetic tree. The topology of the 

phylogenetic tree was evaluated by bootstrapping with 1000 replications (Felsenstein, 1989). 

2.5 Nucleotide sequence accession numbers 

The nucleotide sequences reported in this paper have been submitted to the DDBJ, 

GenBank, and EMBL databases under the following accession numbers: AB210952–

AB210984 (see Table 1). 

2.6 Riboprinting 

Ribotyping was performed using the DuPont (Wilmington, DE) Qualicon RiboPrinter 

(Bruce, 1996). Some single colonies from a 24-h culture on agar plates were suspended in 

sample buffer, and heated at 80 °C for 15 min. After the addition of a lytic enzyme, the 

samples were transferred to the RiboPrinter. Further analysis, including the use of the EcoRI 

enzyme, was carried out automatically. The ribotypes were aligned according to the 

position of a molecular size standard, and compared with patterns stored in the library. The 

ribotyping profiles were transferred and analyzed with the FPQuest software (Bio-Rad 

Laboratories), using the Pearson correlation and default settings for optimization (2.0%) and 

position tolerance (1.00%) for genetic similarity. The dendrogram was generated by the 

unweighted pair-group method, using arithmetic averages (UPGMA) to determine profile 

relatedness.  
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2.7 Carbon source utilization 

The carbon source utilizing-ability of the isolates was investigated with a Biolog GP2 
microplate (Biolog Inc.). This standard 96-well microplate contained a dried film of 95 
different sole carbon sources, which are mainly carbohydrates, but also other carbons such 
as amino and carboxylic acids, and 1 negative control. Each well contained a redox dye 
(tetrazolium violet) for the colorimetric determination of respiration, due to oxidization of 
the carbon source by cells. This system is generally used to test the ability for sole carbon 
source utilization of microorganisms. Basically, when a cell metabolizes a carbon source (by 
chemical oxidation), a redox dye (such as a tetrazolium salt) is irreversibly reduced to a 
purple formazan, which is then assayed colorimetrically (Bochner & Savageau, 1977).  
One colony was selected from the pre-culture by using a sterile cotton swab, subcultured on 
BUG medium (Biolog universal growth medium), and then incubated overnight. Cells were 
harvested using sterile cotton swabs, and then suspended in 20 ml of GN/GP-IF inoculating 
fluid. 
The cell density was adjusted to 20% of transmittance with a 2% range, which was assessed 
using a photometer model according to the range specified by the manufacturer. 
Thioglycolate was added to the suspension at a final concentration of 5 mM, to inhibit the 
production of a bacterial capsule. An aliquot of 150 μl of the suspension was immediately 
dispensed into each well of the GP2 microplate by using a multichannel pipette. The 
microplate was then incubated for 16–24 h and analyzed using an automated Biolog 
microplate reader at 2 different wavelengths (590 nm and 750 nm). Reactions were 
interpreted as positive or negative by the Biolog MicroLog 3 software, version 4.20 (Biolog 
Inc.). 

3. Results 

3.1 Culturable count 

Bacteria that were grown on media under mesophilic (37 or 50 °C) or thermophilic 
conditions (60 °C) in Tendo Compost were counted. The number of mesophilic bacteria that 
grew at 37 and 50 °C was 7.0 and 5.3 × 109 CFU g-1 dry matter, respectively, while that of 
thermophilic bacteria was 9.1 × 108 CFU g-1 dry matter. 

3.2 Phylogenetic analysis 

Thirty-two isolates from Tendo Compost, comprising 15, 9, and 8 isolates grown at 37, 50, 
and 60 °C, respectively, were randomly selected and purified. Comparative 16S rRNA gene 
sequencing analysis of the isolates was completed based on gene fragments approximately 
1,500 bp in size. Table 1 and Fig. 1 show the results of phylogenetic analysis of the 16S rRNA 
gene sequencing for the isolates from Tendo Compost, along with 18 related prokaryote 
species. 
Using 97% 16S rRNA gene-sequence similarity as the definition of a species (Stackebrandt & 
Goebel, 1994), the remaining isolates appeared to represent new species. Among the isolates, 
4 could be identified only to the genus level due to their low sequence similarity. Of the 
unknown species, 3 groups (designated as NoID D, E, and F) belonged to the phylum 
Firmicutes, and 1 group (designated as NoID G) to the phylum Actinobacteria. “NoID” 
indicates that a taxon could not be identified to the species level based on 16S rRNA gene 
sequence similarity. From the isolates of the NoID groups, the 16S rRNA gene sequence 
similarity values for known species ranged between 93.0 and 96.7%. 
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A phylogenetic relationship of isolates from Tendo Compost and Sapporo Compost was 

evaluated. The phylogenetic trees of every phylum are shown in Fig. 1. Of the 32 isolates 

from Tendo Compost, 14 were classified to the genus level and 18 to the species level, 

including 4 unknown taxa. Of the 49 isolates from Sapporo Compost, 13 were classified to 

the genus level and 16 to the species level, including 5 unknown taxa. In addition, from the 

strains isolated from Tendo Compost and Sapporo Compost, a very high correlation was 

shown for the 5 common phylogenetic groups, A. aneurinilyticus, B. subtilis, T. fusca, No ID D 

group, and No ID E group. 

3.3 Characterization by automated ribotyping  

Isolated strains from Tendo Compost and Sapporo Compost were analyzed using 

ribotyping. EcoRI digestion was incomplete for some groups, mainly the Actinobacteria and 

No ID groups (without No ID C and D group). As the riboprint identification database 

provided by the manufacturer was not complete enough to affiliate patterns to taxon names, 

clustering was executed based on the similarity in band profile by FPQuest. The riboprint 

patterns and a dendrogram of 62 isolates are shown in Fig. 2. Clustering analysis of the 

ribotype patterns led to the separation of strains isolated from Tendo Compost and Sapporo 

Compost into clusters that corresponded with the phylogenetic group obtained from the 16S 

rRNA gene analysis, in most cases.  

3.4 Carbon source utilization of common phylogenetic groups 

Twenty isolates belonging to 5 common phylogenetic groups that were extracted from 

Tendo Compost and Sapporo Compost were tested for 95 carbon sources. Based on the 

Biolog GP2 microplate results, all strains of the same common phylogenetic group showed 

high similarity in their carbon sources utilization pattern; specifically, A. aneurinilyticus, B. 

subtilis, T. fusca, No ID D group, and No ID E group (Table 2).  

 Seven of the ten utilized sole carbon sources from isolates belonging to A. aneurinilyticus 

were correlated for Tendo Compost versus Sapporo Compost (Table 2). Likewise, 23 of the 

29 isolates of B. subtilis were correlated between the 2 compost types. For T. fusca, 15 of the 

26 isolates were correlated. For the “No ID D” group, 17 of the 25 isolates were correlated, 

and for the “No ID E” group, 1 of the 7 isolates was correlated. 

4. Discussion 

In this study, the bacteria obtained from Tendo Compost were analyzed using the 
cultivation method at various temperatures, the results of which clearly showed the 
diversity of bacteria that could potentially be cultivated. The results indicate that various 
types of mesophilic and thermophilic bacteria were present in the compost at a density of 
around 109 CFU g-1 dry matter. Since this population size of the isolates is higher than that 
recorded in standard commercial composts (103 to 107 CFU g-1 matter), the detected isolates 
seem to comprise a very active group in the Tendo composting process (Pedro et al., 1999; 
Vaz-Moreira et al., 2008). In addition, the phylogenetic diversity of culturable bacteria was 
also very high. Of the 32 isolates obtained from Tendo Compost, a total of 19 species 
(including 4 unknown taxa) belonging to 16 genera were detected (Table 1). Hence, there 
was a very high diversity of bacteria at the phylogenetic level that actively contributed to 
the primary role of organic matter decomposition in the field-scale composting process.  
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Table 1. Sequence similarities of the isolated strains. 
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Fig. 1. Continued 
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Fig. 1. Phylogenetic relationship between the isolates and other related bacteria based on 16S 
rRNA gene sequences. (A) Phylum Proteobacteria. (B) Phylum Actinobacteria. (C) Phylum 
Firmicutes. The phylogenetic tree, which was constructed using the neighbor-joining method, 
is based on the comparison of approximately 1,400 nucleotides of the 16S rRNA gene. Symbols 

are isolated: ▲, from Tendo Compost; ●, from Sapporo Compost in previous study. 

www.intechopen.com



 
Changing Diversity in Changing Environment 

 

10

 

Fig. 2. Riboprint pattern obtained from isolates that were derived from Tendo Compost and 
Sapporo Compost. Cluster analysis was performed by the unweighted pair-group method 
using arithmetic averages (UPGMA) based on the Pearson correlation coefficient.  
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Table 2. Percentile positive results of the isolated strains using traditional biochemical tests 
and in BiOLOG. 

㼜 㼓

㻿㼜㼑㼏㼕㼑㼟 㼕㼐㼑㼚㼠㼕㼒㼕㼏㼍㼠㼕㼛㼚

㻿㻿㻯㼀 㻿㻿㻯㻿 㻿㻿㻯㼀 㻿㻿㻯㻿 㻿㻿㻯㼀 㻿㻿㻯㻿 㻿㻿㻯㼀 㻿㻿㻯㻿 㻿㻿㻯㼀 㻿㻿㻯㻿

Dextrin 㻗 㻗 㻗 㻗 㻗
Glycogen 㻗
Mannan 㻗
Tween 40 㻗 㻗 㻡㻜 㻟㻟 㻗
Tween 80 㻗 㻗 㻗
N-Acetyl-D-Glucosamine 㻡㻜
N-Acetyl-β-D-Mannosamine 㻗 㻟㻟
L-Arabinose 㻗 㻗
D-Cellobiose 㻡㻜 㻢㻣
D-Fructose 㻗 㻟㻟 㻗 㻗 㻗
D-Galactose 㻡㻜 㻢㻣
Gentiobiose 㻟㻟
α-D-Glucose 㻗 㻗 㻗 㻗
Maltose 㻗 㻢㻣 㻗 㻗
Maltotriose 㻗 㻢㻣 㻗 㻗
D-Mannitol 㻗
D-Mannose 㻗 㻟㻟
3-Methyl Glucose 㻗 㻢㻣
α-Methyl-D-Glucoside 㻗 㻟㻟
β-Methyl-D-Glucoside 㻗 㻢㻣
Palatinose 㻗 㻢㻣
D-Psicose 㻗 㻗 㻗
D-Ribose 㻗 㻗 㻗 㻗 㻗 㻗 㻗
Sedoheptulosan 㻗 㻟㻟
D-Sorbitol 㻗 㻢㻣
Sucrose 㻗 㻗
D-Trehalose 㻗 㻗
Turanose 㻗 㻗
D-Xylose 㻗
Acetic Acid 㻗 㻗
α- Hydroxybutyric Acid 㻗
β- Hydroxybutyric Acid 㻗 㻤㻤
α- Ketoglutaric Acid 㻗 㻗 㻗
α- Ketovaleric Acid 㻗 㻗 㻗 㻗 㻗 㻢㻟 㻗 㻗
L-Malic Acid 㻗
Pyruvatic Acid Methyl Ester 㻗 㻗 㻗 㻗 㻗 㻗 㻗
Succinic Acid Mono-methyl

Ester
㻗 㻗 㻢㻟 㻗

Pyruvic Acid 㻗 㻗 㻗 㻗 㻗 㻗 㻣㻡 㻗
Succinamic Acid 㻗
Succinic Acid 㻣㻡
L-Alaninamide 㻗 㻗
D-Alanine 㻗 㻗
L-Alanine 㻗 㻗 㻟㻤
L-Alanyl-Glycine 㻗 㻣㻡
L-Glutamic Acid 㻗 㻣㻡
Glycyl- L-Glutamic Acid 㻗 㻣㻡
L-Serine 㻗 㻣㻡
2,3-Butanediol 㻗 㻗 㻗
Glycerol 㻗 㻗 㻗 㻗 㻣㻡
Adenosine 㻗 㻗 㻗 㻣㻡
2'-Deoxy Adenosine 㻗 㻗 㻗 㻣㻡
Inosine 㻗 㻗 㻗 㻗 㻣㻡
Thymidine 㻗 㻗 㻗 㻣㻡
Uridine 㻡㻜 㻗 㻗 㻗 㻣㻡
Thymidine-5'-

Monophosphate
㻗

㻮㼍㼏㼕㼘㼘㼡㼟
㼟㼡㼎㼠㼕㼘㼕㼟

㻺㼛 㻵㻰 㻱 㼓㼞㼛㼡㼜

 㻗㻘 㼜㼛㼟㼕㼠㼕㼢㼑 㼞㼑㼍㼏㼠㼕㼛㼚 㻔㻝㻜㻜%㻕; 㻝–㻥㻥㻘 㼜㼑㼞㼏㼑㼚㼠 㼜㼛㼟㼕㼠㼕㼢㼑 㼞㼑㼍㼏㼠㼕㼛㼚㻚 㻿㻿㻯㼀㻘 㻵㼟㼛㼘㼍㼠㼑㼟 㼒㼞㼛㼙 㼀㼑㼚㼐㼛 㻯㼛㼙㼜㼛㼟㼠; 㻿㻿㻯㻿㻘 㻵㼟㼛㼘㼍㼠㼑㼟

㼒㼞㼛㼙 㻿㼍㼜㼜㼛㼞㼛 㻯㼛㼙㼜㼛㼟㼠㻚 㻵㼚 㼍㼐㼐㼕㼠㼕㼛㼚 㼠㼛 㼠㼔㼑 㼍㼎㼛㼢㼑 㼐㼍㼠㼍㻘 㼚㼛㼚㼑 㼛㼒 㼠㼔㼑㼟㼑 㼕㼟㼛㼘㼍㼠㼑㼟 㼣㼑㼞㼑 㼍㼎㼘㼑 㼠㼛 㼡㼟㼑 䃐㻙㻯㼥㼏㼘㼛㼐㼑㼤㼠㼞㼕㼚㻘 䃑㻙

㻯㼥㼏㼘㼛㼐㼑㼤㼠㼞㼕㼚㻘 㻵㼚㼡㼘㼕㼚㻘 㻭㼙㼥㼓㼐㼍㼘㼕㼚㻘 㻰㻙㻭㼞㼍㼎㼕㼠㼛㼘㻘 㻭㼞㼎㼡㼠㼕㼚㻘 㻸㻙㻲㼡㼏㼛㼟㼑㻘  㻰㻙㻳㼍㼘㼍㼏㼠㼡㼞㼛㼚㼕㼏 㻭㼏㼕㼐㻘 㻰㻙㻳㼘㼡㼏㼛㼚㼕㼏 㻭㼏㼕㼐㻘 㼙㻙㻵㼚㼛㼟㼕㼠㼛㼘㻘 䃐

㻙㻰㻙㻸㼍㼏㼠㼛㼟㼑㻘 㻸㼍㼏㼠㼡㼘㼛㼟㼑 㻘 㻰㻙㻹㼑㼘㼑㼦㼕㼠㼛㼟㼑㻘 䃐㻙㻹㼑㼠㼔㼥㼘㻙㻰㻙 㻳㼍㼘㼍㼏㼠㼛㼟㼕㼐㼑㻘 䃑㻙㻹㼑㼠㼔㼥㼘㻙㻰㻙㻳㼘㼡㼏㼛㼟㼕㼐㼑㻘 䃐㻙㻹㼑㼠㼔㼥㼘㻙㻰㻙㻹㼍㼚㼚㼛㼟㼕㼐㼑㻘

㻰㻙㻾㼍㼒㼒㼕㼚㼛㼟㼑㻘 㻸㻙㻾㼔㼍㼙㼚㼛㼟㼑㻘 㻿㼍㼘㼕㼏㼕㼚㻘 㻿㼠㼍㼏㼔㼥㼛㼟㼑㻘 㻰㻙㼀㼍㼓㼍㼠㼛㼟㼑㻘 X㼥㼘㼕㼠㼛㼘㻘 䃒㻙 㻴㼥㼐㼞㼛㼤㼥㼎㼡㼠㼥㼞㼕㼏 㻭㼏㼕㼐㻘 㼜㻙㻴㼥㼐㼞㼛㼤㼥㻙

㻼㼔㼑㼚㼥㼘㼍㼏㼑㼠㼕㼏 㻭㼏㼕㼐㻘 㻸㼍㼏㼠㼍㼙㼕㼐㼑㻘 㻰㻙㻸㼍㼏㼠㼕㼏 㻭㼏㼕㼐 㻹㼑㼠㼔㼥㼘 㻱㼟㼠㼑㼞㻘 㻸㻙㻸㼍㼏㼠㼕㼏 㻭㼏㼕㼐㻘 㻰㻙㻹㼍㼘㼕㼏 㻭㼏㼕㼐㻘 㻼㼞㼛㼜㼕㼛㼚㼕㼏 㻭㼏㼕㼐㻘 㻺㻙㻭㼏㼑㼠㼥㼘㻙㻸㻙
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㼍㼚㼑㼡㼞㼕㼚㼕㼘㼥㼠㼕㼏㼡㼟

㼀㼔㼑㼞㼙㼛㼙㼛㼚㼛㼟㼜㼛㼞
㼍 㼒㼡㼟㼏㼍
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However, differences in the diversity of culturable bacteria at each growth temperature 

were clearly demonstrated by 16S rRNA gene sequence determination. The temperature 

(from below 40 °C to over 60 °C) and nutritional status during the composting process was 

usually subject to dynamic changes. For example, the 9 isolates belonging to the 

Proteobacteria phylum were isolated only from mesophilic conditions at 37 °C; the 9 isolates 

belonging to the Actinobacteria phylum were isolated from mesophilic conditions at 37 and 

50 °C; the 14 isolates belonging to the Firmicutes phylum were isolated from mesophilic and 

thermophilic conditions at 60 °C. Based on these observations, it appeared that in Tendo 

Compost, Proteobacteria and Actinobacteria are mesophiles that actively participate at 

temperatures below 37 °C and 50 °C, respectively. In addition, since all isolates under the 

thermophilic condition (60 °C) belonged to the Geobacillus and Bacillus genera, thermophiles 

that actively contribute at temperatures over 60 °C appear to belong to Firmicutes. Hence, 

the main phylogenetic groups of bacteria that actively contribute to the composting process 

under each temperature condition vary according to the phylum level. The same tendency 

was observed for Sapporo Compost (Ohnishi et al., 2011). 
The commonality in culturable bacteria between Tendo Compost and Sapporo Compost was 
demonstrated by 16S rRNA gene sequence determination, Ribotyping, and the Biolog 
system (Figs. 1 and 2, and Table 2). For example, 32 isolates from Tendo Compost were 
classified into 16 genera comprising 19 species, including 4 unknown taxa. In comparison, 
49 isolates from Sapporo Compost were classified into 13 genera comprising 16 species, 
including 5 unknown taxa. Five common phylogenetic groups based on 16S rRNA gene 
sequence were determined as A. aneurinilyticus, B. subtilis, T. fusca, “No ID D” group, and 
“No ID E” group (Fig. 1). These results show that approximately 17% of phylogenetic 
groups that were detected were common. Furthermore, Ribotyping showed that there was 
high similarity at the species level of isolates belonging to the 3 common phylogenetic 
groups (A. aneurinilyticus, T. fusca and “No ID D“group). In addition, carbon source 
utilization analysis showed that common phylogenetic groups had similar carbon source 
utilization abilities. Of additional significance, it was found that common phylogenetic 
groups existed between the 2 sewage sludge composters, despite their being located 
approximately 500 km apart.  
The similarity in the role of isolated common phylogenetic groups between Tendo Compost 

and Sapporo Compost can be evaluated on the basis of carbon source utilization, in parallel 

to the results of past studies. For example, A. aneurinilyticus mainly utilized carbohydrates, 

polymers, and carboxylic acids, while T. fusca utilized a wide range of carbon sources, such 

as carbohydrates, polymers, carboxylic acids, and nucleosides. Furthermore, A. 

aneurinilyticus and T. fusca may be involved in the degradation of lignin when conditions are 

mesophilic during the composting process, since the bacteria of these taxa are known to 

degrade lignin (Chandra et al., 2007; Crawford & Crawford, 1976). Most strains of B. subtilis 

were able to utilize 23 sole carbon sources, which were mainly carbohydrates, polymers, 

carboxylic acids, and alcohols. The hydrolysis of starch and casein has also been observed 

for members of this group (Ohnishi et al., 2011). In addition, B. subtilis may inhibit fungal 

growth when compost is applied to agricultural land (Phae et al., 1990). The “NoID D” 

group can also hydrolyze casein (Ohnishi et al., 2011), and utilize 17 sole carbon sources, 

which primarily include carboxylic acid, amino acid, and nucleoside. However, this group 

shows weak ability to utilize carbohydrate. In addition, the “NoID D” group may be 

involved in the degradation of proteins when conditions are mesophilic during the 
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composting process (Ohnishi et al., 2011). While there is noticeable bias for carbon source 

utilization in 1 common phylogenetic group, this role seems to compensate for the 

decomposition of complicated organic matter, which occurs during the process of 

composting. The bias of characteristics within common phylogenetic groups seems to lead 

to the complementary decomposition of complex organic matter in the composting process. 

The “No ID E” group utilizes only a few sole carbon sources. The ability of this group to 

utilize a variety of sole carbon sources is very limited during the composting process. 

Hence, it would be of interest to identify the role of the “NoID E” group in the composting 

process.  

5. Conclusions 

The current study clarified that the diversity of cultivable bacteria is extremely high, 
including undiscovered phylogenetic groups that were found in Tendo Compost and their 
commonality to Sapporo Compost. This study found differences in the temperature 
required for growth in the phylogenetic groups of bacteria that were isolated. In other 
words, because the environmental conditions (i.e., temperature and nutritional status) of the 
composting process are subject to dynamic changes, the microflora that actively participates 
in the composting process is very protean. The growth temperature was different for the 
phylogenetic groups of bacteria of each phylum that were isolated from Tendo Compost. 
For isolates grown at 37 °C, the primary phylum was Proteobacteria; Actinobacteria also 
formed a large proportion of the phyla, and Firmicutes to some extent. In comparison, 
isolates grown at 50 °C primarily comprised Actinobacteria and Firmicutes, while those at 
60 °C comprised only Firmicutes. In general, the nutritional requirement of each phylum 
was different, (Fierer et al. 2007), and a wide range of temperatures were recorded during 
the composting process (i.e., from below 40 °C to over 60 °C) within a 1-day period. 
Therefore, because each phylum plays different roles in decomposting, in parallel to 
regularly fluctuating temperatures, the early decomposition of complex organic matter may 
be achieved. This may be the factor that composting goes very early. Furthermore, we 
identified several phylogenetic groups that showed a strong correlation to a composting 
system that was constructed over 500 km away. These similarities may indicate that specific 
phylogenetic groups play a very important role in the field-scale composting process of 
sewage sludge. 
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