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1. Introduction 

Decay of oversaturated solid solutions with forming a new phase includes three stages, viz. 
nucleation of centers (clusters, nucleation centers, extractions), independent growth of them 
and, at last, development of these centers interconnecting to each other. This last stage, so-
called late stage of decay of oversaturated solid solution has been firstly revealed by 
Ostwald (Ostwald, 1900). Its peculiarity consists in the following. Diffusion mass transfer of 
a matter from clusters with larger magnitudes of surface curvature to ones with smaller 
magnitudes of surface curvature (owing to the Gibbs-Thomson effect) results in dissolving 
and disappearing small clusters that causes permanent growth of the mean size of 
extractions. In accordance with papers (Sagalovich, Slyozov, 1987; Kukushkin, Osipov, 
1998), interaction between clusters is realized through the ‘generalized self-consistent 
diffusion field’. This process, when large clusters grow for account of small ones is referred 
to as the Ostwald’s ripening. Investigation of the Ostwald’s ripening resulted in 
determination of the form of the size distribution function in respect of the mass transfer 
mechanisms. The first detailed theory of the Ostwald’s ripening for the diffusion mass 
transfer mechanism has been developed by Lifshitz and Slyozov (Lifshitz and Slyozov, 1958, 
1961). Under diffusion mass transfer mechanism, atoms of a solved matter reaching clusters 
by diffusion are then entirely absorbed by them, so that cluster growth is controlled by 
matrix diffusion and, in part, by the volume diffusion coefficient, vD . In paper (Wagner, 
1961), Wagner has firstly showed that it is possible, if the atoms crossing the interface 
‘cluster-matrix’ and falling at a cluster surface in unit of time have a time to form chemical 
connections necessary for reproduction of cluster matter structure. If it is not so, solved 
atoms are accumulated near the interface ‘cluster-matrix’ with concentration C  that is equal 
to the mean concentration of a solution, C . For that, growing process is not controlled by 
the volume diffusion coefficient, vD , but rather by kinetic coefficient, β . Thus, in his paper 
published three years later than the papers by Lifshitz and Slyozov, Wagner considered 
other mechanism of cluster growth controlled by the rate of formation of chemical 
connection at cluster surface. The quoted papers (Lifshitz, Slyozov, 1958, 1961; Wagner, 
1961) form the base of the theory of the Ostwald’s ripening that is conventionally referred to 
as the Lifshitz-Slyozov-Wagner (LSW) theory. Within the framework of this theory, several 
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other problems connected with the Ostwald’s ripening for diffusion at grain boundaries 
(Slyozov, 1967; Kirchner, 1971), for surface diffusion (Chakraverty, 1967; Vengrenovich, 
1977), for diffusion along dislocation pipes (Ardell, 1972; Kreye, 1970; Vengrenovich, 1975, 
1982; Vengrenovich et al., 2001a, 2002) etc. have been solved later. A new phase extracted 
during decay of oversaturated solid solution as specific matrices of particles (clusters) is the 
strengthening phase. Its extractions act as a stopper for traveling dislocations. Elastic 
strength fields arising around clusters and interacting with matrix dislocations, depending 
on their energy, can be fixed at cluster surfaces or cut of them. Cutting the extracted 
particles (clusters) by dislocations or fixing of them at particle surfaces leads to the pipe 
mechanism of diffusion along dislocations with diffusion coefficient dD  (Vengrenovich, 
1980a, 1980b, 1983; Vengrenovich et al., 1998). 
For some time past, the LSW theory is successfully used for analysis of evolution of island 
structure resulting from self-organization in semiconductor heterosystems (Bartelt et al., 
1992, 1996; Goldfarb et al., 1997a, 1997b; Joyce et al., 1998; Kamins et al., 1999; Vengrenovich 
et al., 2001b, 2005, 2010; Pchelyakov et al., 2000; Ledentsov et al., 1998; Xiaosheng Fang et al., 
2011). It is also used for dscription of dissipative structures in non-equilibrium semiconductor 
systems (Gudyma, Vengrenovich, 2001c; Vengrenovich et al., 2001d). 
Mass transfer between clusters under the Ostwald’s ripening depends on the kind of 
diffusion than, in its turn, determines the rate of growth of clusters and the size distribution 
function of them. As it has been noted above, the size distribution function of clusters for 
matrix diffusion mechanism has been for the first time obtained by Lifshitz and Slyozov 
within the framework of hydrodynamic approximation. So, this distribution is referred to as 
the Lifshitz-Slyozov distribution.  
This chapter is devoted to the computing of the size distribution function of clusters under 
mass transfer corresponding to simultaneous (combined) action of various diffusion 
mechanisms. Topicality of this study follows from the fact that often in practice (due to 
various reasons) mass transfer between clusters is controlled in parallel, to say, by the 
kinetic diffusion coefficient, β , and by the matrix diffusion coefficient vD , or, alternatively, 
by the coefficients vD  and dD , simultaneously, ect. All following computations are carried 
out within the Lifshitz-Slyozov hydrodynamic approximation using the approach developed 
earlier by one of the authors of this chapter (Vengrenovich, 1982). 

2. Cluster growth under diffusion and Wagner mechanisms of mass transfer. 
Generalized Lifshitz-Slyozov-Wagner distribution  

Following to Wagner, the number of atoms crossing the interface ‘cluster-matrix’ and 
getting to the cluster surface in unite of time, 1j , is 

 2
1 4j r Cπ β= , (1) 

and the number of atoms leaving it in unite of time is 

 2
2 4 rj r Cπ β= , (2) 

so that the resulting flux of atoms involving into formation of chemical connections is  

 ( )2
1 2 4i rj j j r C Cπ β= − = − , (3) 
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where 
2 2

exp 1m m
rC C C

kTr rkT

συ συ
∞ ∞

⎛ ⎞ ⎛ ⎞= ≈ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 – concentration of atoms of solved matter at the 

boundary of a cluster of radius r , C∞  – equilibrium concentration for specified temperature 
T , σ  – interface surface energy, mυ  – volume of an atom of solved matter, and k  – the 
Boltzmann constant. 
The flows 1j  (Eq. 1) (to the cluster) and 2j  (Eq. 2) (from the cluster) are caused by thermal 
motion of atoms. 1j  in Eq. 1 is proportional to the mean concentration of the solution, С . 

2j  in Eq. 2 is proportional to concentration rС , that is set at the cluster boundary in 

accordance with the Gibbs-Thomson formula: (
2

exp m
rС C

kTr

συ
∞

⎛ ⎞= ⎜ ⎟
⎝ ⎠

). 

Both in 1j  (Eq. 1) and in 2j  (Eq. 2), the kinetic diffusion coefficient equals the flow density 
for the unit concentration. Thus, taking into account the nature of flows, the kinetic diffusion 
coefficients are regarded to be equal to each other in 1j  and in 2j . 
Introducing the kinetic coefficient, β , determining the flow ij  is caused by non-equilibrium 
character of the processes occurring both at the cluster surfaces and at their interfaces with a 
matrix. On this reason, one can not write the flow ij  through the concentration gradient at 
the interface. Formally, it can be represented through concentration gradient: 
 

 ( )2 24 4 r
i r

C C
j r C C r r

r
π β π β

−
= − = , (4) 

 

where rβ ⋅  has a dimension of the diffusion coefficient; however, such diffusion coefficient, 
*D rβ= , has no physical sense. That is why, one proceeds to the kinetics. 

In equilibrium state one has: 
 

 i vj j j= = , (5) 
 

that is why the flow j  of atoms to (from) a cluster can be determined as  
 

 ( )1

2 i vj j j= + , (6) 

 

where vj  – the number of atoms reaching a cluster surface in unite of time through 
diffusion. 
In general case, the flow j  of atoms to (from) a cluster will be  
 

 i vj j j= + . (7) 
 

The flow j  in Eq. (7) provides determination of the rate of cluster growth. 

2.1 The rate of cluster growth  

For determining the size distribution function of particles, ( ),f r t , one must know the rate 

of particle’s growth, 
dr

r
dt

=$ , that is connected with the size distribution function of the 

continuity equation: 
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( ) ( )( ),

, 0
f r t

f r t r
t r

∂ ∂
+ =

∂ ∂
$ .  (8) 

The rate of cluster growth is determined from a condition: 

 34

3 m

d
r j

dt
π υ⎛ ⎞ =⎜ ⎟

⎝ ⎠
,  (9) 

where j  is determined by Eq. (7). There is the diffusion part of a flow: 

 2 24 4 r
v v v

R r

C CdC
j r D r D

dr r
π π

=

−⎛ ⎞= =⎜ ⎟
⎝ ⎠

. (10) 

Taking into account Eqs. (3) and (10), one finds from Eq. (9): 

 
( ) 2 2

2

1
4 4

4
r m

v

C Cdr
r r D

dt rr

υ
π β π

π

− ⎛ ⎞= +⎜ ⎟
⎝ ⎠

. (11) 

Let us denote the shares vj  and ij  in general flow j  as x  and (1 )x− , respectively: 

 vjx
j

= , 1 ijx
j

− = , 
1

v

i

j x

j x
=

−
 (12) 

To represent the rate of growth (11) through the share flows ij  and vj , let us take out of the 

brackets the second term, 2 1
4 vr D

r
π , and multiply nominator and denominator of the firs 

term by ( ) 2
gr gC C r− , where 

gr
C  is the concentration at the boundary with a cluster of 

maximal size gr : 

 ( ) ( )
( )

2

2

4
1

4

g

g

g r
v m

r
gr

g v
g

r C CDdr r
C C

dt r rC C
r D

r

π βυ

π

⎛ ⎞
⎜ ⎟
⎜ ⎟−
⎜ ⎟= − +
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (13) 

The ratio 
( )
( )

2

2

4

4

g

g

g r

r

g v
g

r C C

C C
r D

r

π β

π

−

−
 equals the ratio of the flows i

v

j

j
 for a particle of the maximal 

size, and, in accordance with Eq. (12), it can be replaced by 
1 x

x

−⎛ ⎞
⎜ ⎟
⎝ ⎠

, while there are not any 

limitations on particle size in Eq. (12). Besides, taking into account that 
2 1 1m

r
k

C
C C

kT r r

συ∞ ⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
, the rate of growth (13) can be rewritten in the following form: 
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2

2

1 1
1 1m v

g k

C Ddr x r r

dt kT x r rr

σ υ∞ ⎛ ⎞⎛ ⎞−
⎜ ⎟= + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, (14) 

 
 

where kr  is the critical radius. Within the LSW theory, kr  coincides with a mean size of 
particles, kr r= . 
Eq. (14) corresponds to the rate of cluster growth through matrix diffusion with the share 
contribution (1 )x−  of the part of flow controlled by the kinetic coefficient β . For 1x = , Eq. 
 

(14) coincides with the rate of growth Eq. (2.15) from the review paper (Sagalovich, Slyozov, 
 

1987), viz. 1 1
1

1n n
n

k

D adR R

dt RR
− −

−

⎛ ⎛ ⎞
= −⎜ ⎜ ⎟⎜ ⎝ ⎠⎝

, where 
kR

α ⎞
Δ = ⎟

⎠
 for 3n = , where 2 vD D= , 

2

2
mC

a
kT

συ∞= . 

Repeating this procedure and taking out of the brackets 24 rπ β , one obtains: 
 

 
2 1

1 1
1

gm

k

rCdr x r

dt kT r x r r

συ β∞ ⎛ ⎞⎛ ⎞
= + −⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

. (15) 

 
 

Eq. (15) determines the rate of cluster growth under conditions controlled by the kinetic 
coefficient β  with the share contribution x  of matrix diffusion. If 0x = , then growth  
is fully determined by the kinetic coefficient, and our Eq. (15) coincides with Eq. (2.15) form 
 

(Sagalovich, Slyozov, 1987) for 2n = , where, 1D β= , 
2

1
mC

a
kT

συ∞= . In Eqs. (14) or (15) for 
 

the rate of growth that are the combinations of the Wagner and conventional diffusion 
mechanisms of cluster’s enlargement, one assumes that no any term in the general flow j , 
Eq. (7), can be neglected. It means that the flows vj  and ij  must be commensurable. 
However, the intrigue consists in that formation of chemical connections is electron process, 
while the classical diffusion is the atomic activation process with considerably different 
temporal scale. Thus, the question arises: what are the conditions for two qualitatively 
different relaxation times, . .chem conτ  and .diffusτ , become comparable to each other? Thus the 
question on the ratio of flows vj  and ij  is reduced, in fact, to the ratio of the relaxation 
times . .chem conτ  and .diffusτ , and, as a result, to the question on the possibility to implement 
the proposed mechanism of cluster growth. To obtain answer on this question is, in general, 
too hardly. 
To all appearance, the relaxation times . .chem conτ  and .diffusτ  are commensurable, if the 
electron process of formation of chemical connections is activation one, and if the activation 
energies for both processes (electron and diffusion) are comparable. 
In paper (Wagner, 1961), the solution is obtained for the limiting cases: 0x = , .diffusτ  
<< . .chem conτ , (the Wagner mechanism of growth), and, 1x = , . .chem conτ << .difusτ , (the 
diffusion mechanism of growth). Note, Wagner (Wagner, 1961) does not discuss the 
relaxation times.  
In the case under consideration here, when the solution is found for arbitrary magnitude of 
x  within the interval 0 1x< < , relaxation times must be comparable to each other at least 
for the systems whose histograms are represented by the computed curves. We provide this 
comparison below. 
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2.2 Temporal dependences of gr  and kr  

One of the main parameters of the LSW theory is the ratio g kr r  (in terms of the papers 
(Lifshitz and Slyozov, 1958, 1961), locking point 0u ), whose magnitude together with the 
equation for the rate of growth (14) or (15) provides integration of Eq. (8) after separation of 
variables and determination of the analytical form of the size distribution function. This 
ratio can be determined from the dependence of the specific rate of growth r r$  on r , that is 
schematically shown in Fig. 1, where r$  is determined by Eq. (14) or (15) (Vengrenovich, 
1982). 
 

r

r

ɺ

r  

0 
rk 

0
g

d r

r rdr r

  =  = 

ɺ
 

Fig. 1. Schematic dependence of the specific rate of growth 
r

r

$
 on r  

At the point where the rate of growth on the unite length of cluster radius reaches its 
maximal magnitude, derivation equals zero: 

 0
gr r

d r

dr r =

⎛ ⎞ =⎜ ⎟
⎝ ⎠

$
.  (16) 

From the physical point of view, it means that the maximal size of gr  is reached for the 

particle, for which the rate of growth of the unit of length of its radius is maximal. Thus, one 
obtains from Eq. (16): 

 
2

1
g

k

r x

r x

+
=

+
. (17) 

Assuming in Eq. (14) gr r=  and replacing the ratio g

k

r

r
 by its magnitude from Eq. (17), one 

obtains by integration: 

 
( )

3 *

1g

t
r A

x x
=

+
, (18) 
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where, 
2

* 3 m vC D
A

kT

συ ∞= , or: 

 ( )
( )

2
3 *

3

1

2
k

x
r A t

x x

+
=

+
.  (19) 

For 1x =  particle growth is full controlled by the volume diffusion coefficient: 

 3 *1

2gr A t= , 3 *4

27kr A t= , 
3

2
g

k

r

r
= . (20) 

By analogy, one obtains from Eq. (15): 

 2 *
21

g

t
r B

x
=

−
, (21) 

where 
2

* 2 mC
B

kT

συ β∞= , or: 

 
( )( )

2 *
2

1

1 2
k

x
r B t

x x

+
=

− +
. (22) 

Eqs. (21) and (22) describe changing in time cluster sizes, when growth of them is controlled 
by the kinetic coefficient β , with the share contribution x  of matrix diffusion. If 0x = , then 
the process of growth is fully controlled by kinetics of transition through the interface 
‘cluster-matrix’: 

 2 *
gr B t= , 2 *1

4kr B t= , 2
g

k

r

r
= . (23) 

2.3 Size distribution function  

The size distribution function, ( ),f r t , and the rate of growth, r$ , are connected by the 
continuity equation (8). Knowing r$  (Eqs. (14) or (15)), one can find ( ),f r t  from Eq. (8). 
Following to paper (Vengrenovich, 1982), ( ),f r t  is found as the product: 

 ( ) ( ) ( ), gf r t r g uϕ ′= , (24) 

where ( )g u′  is the relative size distribution function of clusters, 
g

r
u

r
= . 

To determine the function ( )grϕ , let us apply the conservation law for mass of disperse 
phase:  

 ( )3

0

4
,

3

gr

M r f r t drπρ= ∫ , (25) 

by substituting in it ( ),f r t  from Eq. (24): 
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 ( ) 4g
g

Q
r

r
ϕ = , (26) 

where 

( )
1

3

0

4
3

M
Q

u g u duπρ
=

′∫
. 

Substituting Eq. (26) in Eq. (24), one obtains:  

 ( ) ( ) ( )
3 3

,
g g

g uQ
f r t g u

r r
′= = ,  (27) 

where: 

 ( ) ( )g u Q g u′= ⋅ .  (28) 

The relative size distribution function ( )g u′  is determined from the continuity equation. For 
that, one substitutes in Eq. (8) the magnitude ( ),f r t  from Eq. (24) and takes into account 
Eq. (26), as well as the magnitude of r$  from Eqs. (14) or (15). After the mentioned 
substitution and transition in  Eq. (8) from differentiation on r  and t  to differentiation on  
 

g

r
u

r
=  ( ,

du

r u dr

∂ ∂
=

∂ ∂
where 1

; ,
g

g g

drdu du

dr r t u dr dt

∂ ∂
= =

∂ ∂
 where ),

g g

u u

r r

∂
= −

∂
 the variables are 

separated, and Eq. (8) takes the form: 

 ( )
( )

2 3

2

1
4 2g

g

d
dg u duu u du
g u u

u

υ υυ

υυ

− +′
= −

′ −
, (29) 

where it is taken into account that: 

 
2

*

1 2
1 1

1

r r x x
u u

x xB
υ − +⎛ ⎞⎛ ⎞= = + −⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

$
, 

( )

2

*

1
1 1

g g
g

r dr

udt x xB
υ υ= = =

= +
. (30) 

Substituting the magnitudes υ , gυ  and 
d

du

υ
 into Eq. (29), after straightforward 

transformations one obtains: 

 ( )
( )

( ) ( )
( ) ( )

3 2

2 2

4 2 2 1 2 1

1

u u x x x xdg u
du

g u u u u x x

+ + − − +′
= −

′ − + +
. (31) 

Integration of Eq. (31) provides obtaining the analytical form of the generalized LSW 
distribution, which has been for the first time obtained by us (Vengrenovich et al., 2007b) : 

 ( ) ( )2 21 ( ) exp
1

B D C
g u u u u x x

u

− ⎡ ⎤′ = − + + ⎢ ⎥−⎣ ⎦
, (32) 

where 
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4 3 2 2

4 3 2
4 3 2

2 4 12 10 5 3 3 3
, ,

4 8 6 2 1
, 2 3 2 1.

x x x x x x
B C

A A

x x x x
D A x x x x

A

⎧ + + + + + +
= = −⎪⎪

⎨
+ + + +⎪ = − = + + + +⎪⎩

 (33) 

For 1x = , 11 3B = , 1C = − , 7 3D = −  Eq. (32) corresponds to the Lifshitz-Slyozov 
distribution: 

 ( ) ( ) ( )
11 72 3 3

1
1 2 exp

1
g u u u u

u

− − ⎛ ⎞′ = − + −⎜ ⎟−⎝ ⎠
.  (34) 

For 0x = , 5B = , 3C = − , 1D = −  Eq. (32) corresponds to the Wagner distribution: 

 ( ) ( ) 5 3
1 exp

1
g u u u

u

− ⎛ ⎞′ = − −⎜ ⎟−⎝ ⎠
. (35) 

Within the interval 0 1x≤ ≤ , the size distribution function is represented by the generalized 
LSW function. However, for graphic representation of the size distribution function one 
must compute following Eq. (28), where the conservation law for mass (volume) of a film is 
taken into account. 
To obtain the distributions represented by Eqs. (34) and (35) in the form derived by Lifshitz 
and Slyozov (Lifshitz and Slyozov, 1958, 1961) and by Wagner (Wagner, 1961), one must go 

from the variable 
g

r
u

r
=  to the variable 

k

r

r
ρ = : 

0

k

g k g

rr r
u

r r r u

ρ
= = = , where 0u  − the locking 

point (
0

g

k

r
u

r
= ), and kr  − the critical radius.  

2.4 Discussion  
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Fig. 2. The curves computed following Eq. (28): а – depending on x; b – normalized by 
maximal magnitudes 

Fig. 2,a illustrates the curves corresponding to the distribution Eq. (28) computed for various 
magnitudes of the parameter x  with interval 0.1xΔ = . Inset shows the Wagner function 
( )0x = , which is hardly to be shown in the main graph in its scale. One can see gradual 
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transition from the Lifshitz-Slyozov distribution, Eq. (34) ( 1)x = , to the Wagner distribution, 
Eq. (35). The same curves normalized by their maxima are shown in Fig. 2, b. In this form, 
these curves are suitable for comparison with the corresponding normalized experimentally 
obtained histograms. 
Note, that computation of the theoretical curve under simultaneous (combined) action of 
two mass transfer mechanisms, viz. volume diffusion and chemical reaction at the interface 
‘extraction-matrix’ has been performed earlier by using numerical techniques (Sagalovich, 
Slyozov, 1987). 
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Fig. 3. Comparison of the dependence (28) with the experimentally obtained histograms of 
nano-scale particles 3Al Sc  in alloys Al Sc−  (Marquis and Seidman, 2001) for various 
temperatures and exposure times shown in fragments a, b, c, d, and e 
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However, the distribution Eq. (28) computed for two mechanisms of mass transfer 
controlled by the volume diffusion coefficient and kinetics of transition of solved atoms 
through the interface ‘cluster-martix’, i.e. by the kinetic coefficient β, has been firstly 
obtained in analytic form by us. As the rate of forming the chemical connection is higher, as 
more simply solved atoms overcome potential barrier at the interface ‘cluster-martix’. In this 
case, the rate of cluster growth is in less degree controlled by kinetics at the interface and in 
more degree by the diffusion processes of mass transfer. For that, the contribution of diffusion 
flow jv in general flow of matter j to (from) a particle increases, and the size distribution 
function becomes more and more close to the Lifshitz-Slyozov distribution, Eq. (34). 
Fig. 3 illustrates the results of comparison of the theoretical dependence, Eq. (28), with the 
experimentally obtained histograms of nano-scale particles 3Al Sc  in alloys Al Sc−  
(Marquis and Seidman, 2001) corresponding to temperature 300ºС and exposure times а – 6, 
в – 72, с – 350 hours; to temperature 400ºС and exposure times d – 1, е – 5 hours. Using the 
magnitudes of x  from the results of comparison, one can determine percentage ratio 
between the flows ( )100%x ⋅  and find, in this way, what mechanism is predominant. 

Besides, knowing x , one can find the ratio g

k

r

r
 that then may be used as the evaluation 

parameter for the choice of theoretical curve and comparison with desired histogram. 
It follows from Fig. 3 that increasing of the exposure time for temperature 300ºС up to 350 
hours results in changing the mechanism of particle growth from one limited predominantly 
by diffusion processes of mass transfer, cf. fragments a – 0.8x = ; b – 0.9x = , to one 
controlled predominantly by kinetics at the interface ‘cluster-matrix’, cf. fragment с – 

0.2x = . Increasing the exposure temperature to 400ºС leads to particle growth under 
conditions controlled predominantly by kinetics at the interface, cf. fragments d – 0.3x = ; е 
– 0.2x = . 
The possibility for implementation of the considered mechanism of particle growth 
controlled simultaneously both by the volume diffusion coefficient, vD , and by the kinetic 
coefficient, β , is also proved by the experimentally obtained histograms for nano-crystals of 
aluminium obtained under crystallization of amorphous alloy 85 8 5 2Al Ni Y Co  (Nitsche et al., 
2005). 
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Fig. 4. Comparison with experimental histograms for nano-crystals Al , obtained under 
annealing of amorphous alloy 85 8 5 2Al Ni Y Co  (508°К) during: а – 1 min; b – 2.5 min (Nitsche 
et al., 2005) 
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Fig. 4 shows comparison of the experimental histograms obtained under crystallization of 
amorphous alloy for temperature 508°K during 1 min and 2.5 min (fragments a and b, 
respectively) with the theoretical dependence, Eq. (28). One can see that theoretical 
dependences well fit the experimental histograms for 0.2x =  (fragment а) and 0.1x =  
(fragment b). 
Thus, the considered examples of comparison with the experimental data prove the 
conclusion that the distribution Eq. (28) is quite eligible for description of experimentally 
obtained histograms, if particle growth in the process of the Ostwald ripening is controlled 
simultaneously by two mechanisms of mass transfer, which earlier were considered 
separately by Lifshitz and Slyozov, and Wagner. 

3. Cluster growth under dislocation-matrix diffusion. Size distribution 
function  

The Ostwald’s ripening of disperse phases in metallic alloys at the final stage of forming 
their structure reflecting the late stage of the development of nucleation centers of a new 
phase in time, when oversaturation between them decreases and their diffusion fields 
overlap. 
In respect to metallic alloys strengthened by disperse extractions of the second phase, the 
Ostwald ripening is one of the causes of loss of strength of them. As large particles grow 
and small particles disappear (due to dissolution), distance between particles increases 
resulting in decreasing of tension necessary for pushing the dislocations between particles 
and, correspondingly, to decreasing of the creep strength. 
For the dislocation mechanism of growth of particles that are coherent with a matrix, the 
flow along dislocations, dj , much exceeds the flow of matrix diffusion, vj : 

 24d v
R r R r

dC dC
D Zq D r

dR dR
π

= =

⎛ ⎞ ⎛ ⎞>>⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (36) 

where ,dD vD  – the coefficients of dislocation and matrix diffusion, respectively, Z  – the 
number of dislocation lines that are fixed or crossing a particle of radius r, q – the square 

of dislocation pipe cross-section, 
R r

dC

dR =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 – gradient of concentration at the boundary of a 

particle. Taking into account that for disturbed coherence (as a consequence of relaxation of 
elastic tensions (Kondratyev & Utyugow, 1987)) Z  is not constant ( )Z const≠  being 
changed in inverse proportion to the particle radius, inequality (36) determines limitations 
on particle sizes for which the pipe mechanism of diffusion is yet possible (Vengrenovich et 
al., 2002): 
 

 
3/2

03
2

,
4
d

v

D Z q
r

Dπ
<<  (37) 

 

where 0Z  is the initial number of dislocations fixed at particle surface. If the condition (37) 
is violated, it means that one can not neglect the component vj  caused by matrix diffusion 
in full flow of matter j  to (from) a particle. In this case, particle growth takes place under 
diffusion of mixed type (dislocation-matrix one), when one can not neglect any of two 
components, dj  or vj , in the resulting flow 
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 d vj j j= + . (38) 

Below we represent the results of investigation of peculiarities of the Ostwald ripening of 
clusters under dislocation-matrix diffusion and, in part, computation of the size distribution 
function and temporal dependences for mean (critical) and maximal particle sizes as a 
function of the ratio of flows dj  and vj  . 

3.1 The rate of growth and temporal dependences for the mean (critical) and maximal 
sizes of clusters  
As in previous case, the rate of growth is determined from Eq. (9): 

 
2

1

4
m

dr
jv

dt rπ
= , (39) 

where j  is given by Eq. (38), and dj  and vj  take the magnitudes of left and right parts of 
inequality (36), respectively: 

 
1/2

202 4 ,
2d v

R r R r

Z q dC dC
j D q D r

r dR dR
π

π = =

⎛ ⎞ ⎛ ⎞= ⋅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (40) 

where we take into account that, in a flow dj , there is 
1/2

0

2

Z q
Z

rπ
=  (Vengrenovich et al., 

2002). 

Substituting Eq. (40) in Eq. (39) and taking into account that 
R r

dC

dR =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

* 2

2 1
1mv rС

rR r κ

σ
∞

⎛ ⎞
= ⋅ −⎜ ⎟

Τ ⎝ ⎠
, where σ  is the surface energy, C∞  is the equilibrium concentration 

of solid solution, *R  is the gas constant, and Τ  is a temperature, one obtains: 

 
1/22

20
4 *

21
2 4 1

24
m

d v

Z qv Cdr r
D q D r

dt r rr R κ

σ π
ππ

∞ ⎛ ⎞⎛ ⎞
= ⋅ ⋅ + −⎜ ⎟⎜ ⎟⎜ ⎟Τ ⎝ ⎠⎝ ⎠

.  (41) 

Designating, as previously, the shares vj  and dj  in the general flow j  as x  and ( )1 x− , 
respectrively, one can represent the rate of growth, Eq. (41), in the form 

 
2 3/2 3

0
5 2 3

1
1 1

12 *
m d

g

v C Z q Ddr x r r

dt x rr R r κ

σ
π
∞

⎛ ⎞⎛ ⎞
⎜ ⎟= + −⎜ ⎟⎜ ⎟−Τ ⎝ ⎠⎝ ⎠

, (42) 

or: 

 
32

2 3

1 1
1 1

*
gm

rv C Dvdr x r

dt R x rr r κ

σ ∞
⎛ ⎞⎛ ⎞−⎜ ⎟= + −⎜ ⎟⎜ ⎟Τ ⎝ ⎠⎝ ⎠

.  (43) 

Eq. (42) describes the rate of particle growth for predominant contribution in the general 
flow of the diffusion matter along dislocations, with the share contribution x  of matrix 
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diffusion; and Eq. (43) describes the rate of growth under matrix diffusion, with the share 
contribution ( )1 x−  along dislocations. 

Eqs. (42) or (43) provide determining the locking point 0
g

k

r
u

r
= , and one finds out from the 

continuity equation (8), after separation of variables, the specific size distribution function, 

( )f u , where 
g

r
u

r
= . The ratio gr

rκ
, in accordance with (Vengrenovich, 1982), equals: 

 6 3
.

5 3
gr x

r xκ

−
=

−
 (44) 

If we let gr r=  in Eq. (42), and the ratio gr

rκ
 is replaced by its magnitude from Eq. (44), then 

after integration one obtains the temporal dependence for maximal 

 
( )( )

1/6*6
,

5 3 1g

A
r t

x x

⎛ ⎞
= ⎜ ⎟⎜ ⎟− −⎝ ⎠

 (45) 

and critical 

 ( )
( ) ( )

1/65*

6

6 5 3
,

6 3 1

A x
r t

x x
κ

⎛ ⎞−
⎜ ⎟=
⎜ ⎟− −⎝ ⎠

 (46) 

 particle sizes, where 
3 22

* 0
*2

m dv C Z q D
A

R T

σ ∞= . 

Eqs. (45) and (46) describe changing in time the sizes of particles under dislocation-matrix 
diffusion for predominant contribution of matter diffusion along dislocations. For 0x = , 
that corresponds to the first limiting case, particle growth is limited by diffusion along 
dislocation: 

 
5

6 * 6 *6 5 6
,   ,   

5 6 5
g

g
k

r
r A t r A t

r
κ

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

. (47) 

For that ( 0x = ), the specific size distribution function has a form (Vengrenovich et al., 2002):  

 
( )

( ) ( ) ( )

5 1 1

2 2

2 2

0.2 2 2
exp exp 0.0287 tan ( ) exp 0.1127 tan ( )

1 4 4( )
1

u a u c
u

u b a d c
g u

u u au b u cu d
β γα

− −⎛ ⎞ ⎛ ⎞⎛ ⎞ + +
− − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠′ =

− + + + +
, (48) 

where 2.576,a ≅  2.394,b ≅  0.576,c ≅ −  0.088,d ≅  41 /15,α ≅  1.562,β ≅  1.572.γ ≅  
Integrating for the same conditions Eq. (43), one obtains: 

 
( )

1/3*6
,

5 3g

B
r t

x x

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 (49) 
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( )
( )

1/32*

3

6 5 3
,

6 3

B x
r t

x x
κ

⎛ ⎞−
⎜ ⎟=
⎜ ⎟−⎝ ⎠

 (50) 

where * 2

*
m vv C D

B
R

σ ∞=
Τ

. 

Another limiting case corresponds to 1x = : 

 3 *3
,

2gr B t=  3 *4
,

9
r В tκ =  

3
,

2
gr

rκ
=  (51) 

 

and the size distribution function is described by the Lifshitz-Slyozov function, Eq. (34): 

( ) ( )11/3 7/32 1
( ) 1 2 exp .

1
g u u u u

u

− − ⎛ ⎞′ = − + ⎜ ⎟−⎝ ⎠
 

3.2 Size distribution function of clusters 

The size distribution function of clusters within the interval 0 1x≤ ≤  is represented, as 
previously, in the form Eq. (24) (Vengrenovich, 1982), where ( )g u′  - relative size distribution 

function, and .
g

r
u

r
=  From the mass conservation law and disperse phase, Eq. (25), one 

finds ( )grϕ , Eq. (26), and, correspondingly, 

 ( ) ( )g u Q g u′= ⋅ , (52) 
 

where 
1

3

0

,
4

( )
3

Q

u g u duπρ

Μ
=

′∫
 and ρ  – particle density. 

If one replaces in the continuity equation (8) ( , )f r t  and r$  by their magnitudes from Eqs. 
(24) and (42) (or Eq. (43)) and differentiates u  instead of on r  and t , then variables in Eq. 
(8) are separated: 

 
3 2

2

1
4 2

( )
,

( )

g

g

d
dg u duu u du
g u u

u

υ υυ

υυ

+ −′
= −

′ −
 (53) 

 

where we take into account that 
3

*
,

rr

B
υ =

$
 

3

*
,

g g
g

r r

B
υ =

$
 

1
,

g

du

dr r
=  and 

g g

du u

dr r
= − . 

Substituting in Eq. (53) the magnitudes 
3

1 1 6 3
1 1

5 3

x x
u

x xu
υ − −⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

 and 
( )

1

5 3g
x x

υ =
−

 

and decomposing in denominator the second-order polynomial into prime factors, one gets 
the following form of Eq. (53): 
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( ) ( ) ( ) ( )
( ) ( )( )

6 4 2 3 2 2 2

2 2 2

2 2 2

4 6 3 2 5 3 4 3 9 6 5 3 8 5( )

( ) 1

( ) ( ) ,
1 (1 )

u u x x u x x u x x x xdg u
du

g u u u u au d u bu p

du du du du du
A B C Du E Fu G

u u u u au d u bu p

+ − − − + − + − − +′
= − =

′ − + + + +

= + + + + + +
− − + + + +

 (54) 

where 2.575a = ; 0.575b = − ; 2.398d = ; 2.089p = . 
Integrating Eq. (54), one obtains the analytical form of the relative size distribution function 
for arbitrary 0 1x≤ ≤ : 

 

( ) ( )
( )

2 22 2
1

2 2

1

2 2

2 2( ) exp exp tan ( )
11

4 4

2 2exp tan ( )

4 4

D F
A

B

Da a
E uu u au d u bu p C

g u
uu a a

d d

Fb b
G u

b b
p p

−

−

⎛ ⎞
⎜ ⎟− ++ + + + ⎛ ⎞ ⎜ ⎟′ = ×⎜ ⎟ ⎜ ⎟−⎝ ⎠− ⎜ ⎟− −⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟− +
⎜ ⎟× ⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎝ ⎠

, (55) 

where the coefficients , , , , , ,A B C D E F G  are found out by matrix solving (Gauss method) 
the system of seven equations obtained by integrating Eq. (54) ( 5; 2.731;A B= =  0.2;C = −  

3.117; 4.037; 3.142;D E F= − = − = −  0.747)G = . 

3.3 Discussion  

Fig. 5 a shows the dependences corresponding to the size distribution function, Eq. (52), 
computed for various magnitudes of x . It is hardly to represent such dependence for 1x =  
(the Lifshitz-Slyozov distribution) at the same scale; that is why this case is illustrated in 
other scale at inset.  
It is clearly seen that the maxima of curves reached at point u′  diminish, as x  grows, taking 
the maximal magnitude for the curve 1x = . Magnitude u′  itself is determined for the 
specified x  from the following equation: 

 ( ) ( ) ( ) ( )6 4 2 3 2 2 24 6 3 2 5 3 4 3 9 6 5 3 8 5 0u uu u x x u x x u x x x x ′=+ − − − + − + − − + = . (56) 

One can see from Fig. 5 b, showing the same dependences normalized by their maxima, that 
as x  grows, as magnitudes u′  are shifted to the left (diminish), cf. the inset. 
Fig. 6 shows the results of comparison of experimentally obtained histogram with the 
Liwfitz-Slyozov distribution – (а), and the distribution (52) for 0.7x = – (b). It is regularly a 

priory assumed (Gaponenko, 1996) that the experimentally obtained histogram shown in Fig. 
6 and taken from the paper (Katsikas et al., 1990) that corresponds to the size distribution of 
nanoclusters of C Sd  is described by the Lifshitz-Slyozov distribution. However, as one can 
see from Fig. 6,b, the dependence computed by us is narrower, being better fitting a  
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histogram than the curve in Fig. 6,а. It means that formation of quantum dots of C Sd  in 
process of the Ostwald’s ripening obtained by chemical evaporation is realized through 
mixed diffusion, with 70% share of matrix ( 0.7x = ) and 30% dislocation ( 0.3x = ) diffusion. 
For that, it is of importance that temporal growth of nanocrystals of C Sd  obeys the cubic 
law, 

3
r ~ t , cf. Eq. (50). It shows that, in first, that the size distribution is formed in process 

of the Ostwald’s ripening, and, secondly, that growth of C Sd  nanocrystals is limited, 
mainly, by matrix diffusion with the mentioned above share contribution of dislocation 
diffusion. 
 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
b

 

 

g(
u)

/g
m

ax

u

x=1 x=0

0.8 0.9 1.0
0.0
0.2
0.4
0.6
0.8
1.0

  

 

x=1

x=0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 a

 
 

x=0.9
x=0.8

x=0.7
x=0.6

x=0.5
x=0.4

x=0.3
x=0.2

x=0.1

x=0

g(
u)

u

0.0 0.2 0.4 0.6 0.8 1.0

2,5  10
-10

2,0  10
-10

1,5  10
-10

1,0  10
-10

5,0  10
-11

 

 

x=1

 

Fig. 5. Size distribution functions, Eq. (52), for various magnitudes of x  - а; the same 
distributions normalized by their maxima - b  
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Fig. 6. Comparison with experimentally obtained histogram for nanocrystals of C Sd  
(Katsikas et. al., 1990) with the theoretical dependence: а – the Lifshitz-Slyozov distribution, 
Eq. (34), b – distribution corresponding to Eq. (55) for 0.7x =   

Let us note that there is the set of quantum dots in semiconductor compounds II-IV obtained 
by chemical evaporation techniques and having sizes from 1 to 5 nm (Gaponenko, 1996), for 
which the size distribution function occurs be narrower than one for the Lifshitz-Slyozov 
distribution. 
Similarly to as crystalline gratings of numerous matters are controlled by simultaneous 
(combined) action of various connection types, the cluster growth goes on under mixed 
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diffusion, where only one of the types of diffusion can be predominant (matrix, surface, 
dislocation at the grain boundaries, etc.).  
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Fig. 7. Example of accidental concurrence of experimentally obtained histogram with the 
theoretical dependence, Eq. (55), for heterogeneous nucleation of aluminum nanoclusters 
(Aronin et al., 2001), much earlier than the stage of the Ostwald’s ripening comes: а – 0x = ; 

b – 0.4x =   

Note, the idea of combined action of several mechanisms of diffusion mass transfer has been 
formulated in several earlier papers (Slyzzov et al., 1978; Sagalovich and Slyozov, 1987). 
However, the size distribution function for particles coherently connected with the matrix 
Eq. (55) for combined action of two mechanisms of mass transfer, i.e. diffusion along 
dislocations and matrix diffusion, has been firstly found by us (Vengrenovich et al., 2007a). 
Let us emphasize once more point connected with the study of particle growth under the 
Ostwald’s ripening. It occurs that comparison of the experimentally obtained histograms 
with the theoretically found dependences does not provide an unambiguous answer the 
question: What is the mechanism of particle growth? and: is the stage of the Ostwald’s 
ripening occurred? To elucidate these questions, the temporal dependences for a mean 
particle size, r , are needed. 
For example, Fig. 7 shows comparison of experimental histograms for nanoclusters of 
aluminum obtained by annealing of amorphous alloy 86 11 3Al Ni Yb  (Aronin et al., 2001) with 
theoretical dependence, Eq. (55), for (а) – 0x = , and (b) – 0.4x = . Satisfactory concurrence, 
however, is accidental. As it is shown in paper (Aronin et al., 2001), the LWS theory is not 
applicable to this case. Growth of aluminum nanocrystals obeys parabolic dependence 

r ~ 1 2t , rather than to the dependence r ~ 1 6t . Histograms in Fig. 7 correspond to 
heterogeneous nucleation of aluminium clusters that precedes the Ostwald’s ripening, 
which follows much later. 
Thus, for estimation of a share (percentage) of the each component, dj  and vj , in the 
diffusion flow, one must compare both experimentally obtained histograms with the 
theoretical dependences and temporal dependences for mean (critical) particle sizes. In the 
case of metallic alloys strengthened by disperse particles, it enables establishing the 
mechanism of particle’s enlargement, while for quasi-zero-dimension semiconductor 
structures it makes possible to study, under the Ostwald’s ripening, nanoclusters (quantum 
dots) obtaining by chemical evaporation techniques. 

www.intechopen.com



 
Mass Transfer Between Clusters Under Ostwald’s Ripening 

 

125 

4. Mass transfer between clusters in heterostructures. The generalized 
Chakraverty-Wagner distribution  

The structure and phase dispersion (the particle size distribution function) at the late stages 
of decay of oversaturated solid solution, i.e. under the stage of the Ostwald’s ripening, are 
determined by the mechanisms of mass transfer between the structure components. 
If the particle growth is limited by the coefficient of volume or matrix diffusion Dυ , then a 

mean cluster size, r , changes in time as 
1

3t , and the particle size distribution is governed 

by the Lifshitz-Slyozov distribution function (Lifshits, Slyozov, 1958, 1961). But if the cluster 
growth is controlled by the processes at the boundary ‘particle-matrix’, being governed by 

the kinetic coefficient β , then r  changes as 
1

2t , and the size distribution function 

corresponds to the Wagner distribution (Wagner, 1961). In the case of simultaneous action of 
two mechanisms of growth, dispersion of extractions is described by the generalized LSW 
distribution (Vengrenovich et al., 2007b). 
Generalization of the LSW theory for surface disperse systems, in part, for island films, is of 
especial interest. This generalization becomes urgent now in connection with development 
of nanotechnologies and forming nanostructures (Alekhin, 2004; Alfimov et al., 2004; 
Andrievskii, 2002; Dunaevskii et al., 2003; Dmitriev, Reutov, 2002; Roko, 2002; Gerasimenko, 
2002). In part, semiconductor heterostructures with quantum dots obtained under the 
Stranskii-Kastranov self-organizing process find out numerous practical applications 
(Bartelt, Evans, 1992; Bartelt et al., 1996; Goldfarb et al., 1997a, 1997b; Joyce et al., 1998; 
Kamins et al., 1999; Pchelyakov et al., 2000; Ledentsov et al., 1998; Vengrenovich et al., 2001b, 
2005, 2006a, 2006b, 2007a). 
Chakraverty (Chakraverty, 1967) for the first time applied the LSW theory to describe 
evolution of structure of discrete films containing of separate islands (clusters) of the form of 
spherical segments, cf. Fig. 8. Within the Chakraverty model, a film consists of separate 
cupola-like islands, which are homogeneously (in statistics sense) distributed into 
oversaturated ‘sea’ (solution) of atoms absorbed by a substrate, so-called adatoms. 
One can see from Fig. 8 that cupola-like clusters are the part of a sphere of radius CR , with 
the boundary angle θ . That is why, the radius of base of island, r , length of its perimeter, 
l , its surface, S , and volume, V , can be expressed through CR : sinCr R θ= , 2 sinCl Rπ θ= , 

( )2
24 CS Rπ α θ= , ( )3

1
4

3 CV Rπ α θ= , where ( )
2

1
2 3cos cos

4

θ θα θ − +
= , ( )2

1 cos

2

θα θ −
=  

(Hirth, Pound, 1963). 
Concentration of adatoms at the cluster base, rC , is given by the Gibbs-Thomson formula:  

 exp 1m m
rC C P C P

kT kT

υ υ
∞ ∞

⎛ ⎞ ⎛ ⎞= Δ ≈ + Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (57)  

where C∞ - equilibrium concentration at temperature T , mυ - volume of adatoms, k  - the 
Boltzmann’s constant, PΔ  - the Laplasian pressure caused by island surface’s curvature. It 
can be determined by equaling the work necessary for diminishing of an island volume by 

Vd  to the caused by it free energy of island surface:  

  ( )
( )

2

1

V   or  2
V C

dS
Pd dS P

d R

α θσσ σ
α θ

Δ = Δ = = , (58) 
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where σ - specific magnitude of surface energy.  
Taking into account Eq. (58), Eq. (57) can be rewritten in the form:  

 
( )
( )

22 2

1 1 1

sin sin2 ( ) 2 ( ) 2
exp exp 1

( ) ( )
m m m

r
C

C C C C
R kT r kT r kT

α θυ υ θ υ θσ α θ σ α θ σ
α θ α θ α θ∞ ∞ ∞

⎛ ⎞⎛ ⎞ ⎛ ⎞
= = ≈ +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

. (59)  

Note, the Gibbs-Thomson formula in the form Eq. (59) has been written for the first time in 
paper (Vengrenovich et. al., 2008а).  
 

h r=RCsinθ 
θ

RC 

Fig. 8. An island (cluster) in the form of spherical segment as a part of the sphere of radius CR  

Thus, the concentration of adatroms at the boundary ‘cluter-substarte’ along the line of 
separation (along the cluster diameter) is determined by the curvature radius of cluster base, 
r , as it is expected for a plane problem. As the cluster radius diminishes, as the 
concentration of adatoms at the interface with the cluster must grow. And vice versa, as 
cluster size grows as rC  diminishes. For that, some mean concentration, C , is set in at a 
substrate that is determined by the critical radius kr :  

 
( )
( )

22

1 1

sin sin2 ( ) 2
exp 1

( )
m m

k k

C C C
r kT r kT

α θυ θ υ θσ α θ σ
α θ α θ∞ ∞

⎛ ⎞⎛ ⎞
= ≈ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (60)  

The clusters for which rC C>  will dissolve. The clusters for which rC C<  will grow. So, 
the clusters of critical size kr  are in equilibrium with a solution of adatoms and radius of 
such adatoms is determined by Eq. (60):  

 
kr

α
=
Δ

, (61)  

where oversaturation is C C∞Δ = − , and 
( )
( )

1

22
sinmC

kT

α θσ υα θ
α θ

∞= .  

For the diffusion mechanism of growth of cupola-like clusters, the mass transfer between 
them is realized through surface diffusion under conditions of self-consistent diffusion field 
(Sagalovich, Slyozov, 1987; Kukushkin, Osipov, 1998) that is characterized by the surface 
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diffusion coefficient, SD . Adatoms reaching island perimeters through surface diffusion and 
overcoming the potential barrier at the interface ‘island-substrate’, occur at their surfaces. 
Redistribution of adatoms at cluster surface is made by capillary forces, viz. surface tension 
forces. 
In accordance with Wagner, the diffusion growth mechanism with maintenance of island 
form, i.e. with maintenance of the boundary angle θ  is possible, if atoms crossing the 
interface ‘island-substrate’ and occurring at their surface in unite time have the time to form 
chemical connections necessary for reproduction of island matter structure. If it is not so, 
then adatoms are accumulated near the interface ‘island-substrate’ with concentration C , 
that is equal to mean concentration of a solution, C . For that, the process of growth is no 
more controlled by the surface diffusion coefficient, SD , but rather by the kinetic coefficient 
β .  
Following to Wagner (Wagner, 1961), the number of adatoms crossing the boundary ‘island-
substrate’ and occurring at the island surface at unite of time is determined as:  

 ( ) ( )22 2
1 2 2

4 4
sin

Cj R C r C
α θ

π α θ β π β
θ

= = ,  (62)  

and the number of atoms leaving it at unite of time equals:  

 ( )22
2 2

4 ,
sin

rj r C
α θ

π β
θ

=   (63)  

so that the total flow of atoms involved into formation of chemical connection is:  

 
( ) ( )22

1 2 2
4

sin
i rj j j r C C

α θ
π β

θ
= − = − ,  (64)  

where rC  is determined by Eq. (59).  
At the same time, the diffusion flow of adatoms, Sj , to (from) an island is determined by the 

concentration gradient, 
R r

dC

dR =

⎛ ⎞
⎜ ⎟
⎝ ⎠

, at the boundary ‘island-substrate’: 

 2S S
R r

dC
j rD

dR
π

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (65)  

It can be determined by solving the Fick equation that describes concentration of adatoms in 
the vicinity of isolated island. This equation, within the conditions of stationarity and radial 
symmetry, takes the form:  

 
1

0S

d dC
RD

R dR dR

⎛ ⎞ =⎜ ⎟
⎝ ⎠

, (66)  

where R  is changed within the interval r R lr≤ ≤ , 2; 3l =  (screening distance 
(Chakraverty, 1967)) . 
Solution of Eq. (66) can be represented in the form:  

 ( ) 1 2ln
R

C R C C
r

= + , (67)  
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where the constants 1C  and 2C  are determined form the boundary conditions:  

 ( ) rC R C= , if R r= ,  (68)  

 ( )C R C= , if R lr= , (69) 

from which one obtains:  

 1 ln
rC C

C
l

−
= , 2 rC C= . (70)  

Thus, the solution of Eq. (67) takes the form:  

 ( ) ln
ln

r
r

C C R
C R C

l r

−
= + . (71)  

Knowing ( )C R , one can determine Sj :  

 ( )2

ln
S

S r

D
j C C

l

π
= − . (72)  

At the equilibrium state:  

  i Sj j j= = . (73)  

Thus, the flow j  to (from) a cluster can be written as:  

 ( )1

2 i Sj j j= + . (74)  

In general case, the flow j  equals:  

 i Sj j j= + . (75)  

Thus, the problem of determination of the cluster size distribution function is reduced to 
accounting the ratio between the flows ij  and Sj  in the equation of cluster growth rate. 

4.1 Island growth rate  
The rate of growth of isolated island (cluster) is determined form the following condition:  

 ( ) ( )
3

3
1 13

4 4

3 3 sin
C m

d d r
R j

dt dt
π α θ π α θ υ

θ

⎛ ⎞⎛ ⎞ = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
, (76)  

where j  is given by Eq. (75). Taking into account Eqs. (64) and (72), one finds from Eq. (76) 
the rate of cluster growth:  

 
( )

( )
( )

( ) ( )
3

22
2 2

1

21 sin
4

ln4 sin
S

m r r

Ddr
r C C C C

dt lr

α θ πθ υ π β
α θπ θ

⎡ ⎤
= − + −⎢ ⎥

⎢ ⎥⎣ ⎦
. (77)  

Designating the ratio of flows as:  
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1

S

i

j x

j x
=

−
, (78) 

where Sx j j=  is the contribution of the flow Sj  in the total flow j  and, correspondingly, 
( )1 ix j j− = , the rate of growth of islands, Eq. (77), under surface diffusion with the share 
contribution ( )1 ix j j− =  of the part of flow controlled by the kinetic coefficient β , is 
rewritten in the form: 

 ( )
( )

42 2 * 2
2

2 3 2 3 2
1

sin 1 1 1
1 1 1 1

2 ln
m S

k kg g

C Ddr x r r A x r r

dt kT x r x rl r r r r

θα θσ υ
α θ

∞
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟= + − = + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

, (79) 

where ( )
( )

42
2*

2
1

sin

2 ln
m SC D

A
kT l

θα θσ υ
α θ

∞= . 

For 1x = , Eq. (79) takes the following simplified form:  

 
*

3
1

k

dr A r

dt rr

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, (80)  

coinciding with the diffusion rate of growth of islands (Chakraverty, 1967; Eq. (17)).  
If the rate of island growth is controlled by the kinetic coefficient β  with the share 
contribution of a flow due to surface diffusion, ( Sx j j= ), then the rate of growth, Eq. (79), 
takes the form: 

 
( )

( )

2 22 22 *
2

2 2
1

sin 1
1 1 1 1

1 1
g gm

k k

r rCdr x r B x r

dt kT r x r r x rr r

θα θσ υ β
α θ

∞
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= ⋅ + − = ⋅ + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

, (81) 

where ( )
( )

2 22
2*

1

sinmC
B

kT

θα θσ υ β
α θ

∞= . 

For 0x = , Eq. (81) is rewritten as:  

 
*

1
k

dr B r

dt r r

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, (82)  

that coincides with the equation for the rate of island growth controlled by the kinetic 
coefficient β  (Chakraverty, 1967; Eq. (31)).  

4.2 Temporal dependences for critical ( kr ) and maximal ( gr ) sizes of islands (clusters) 

For integrating Eqs. (79) and (81) to determine the temporal dependences of kr  and gr , it is 
necessary to determine the magnitudes of the locking point, 0 g ku r r= . Its magnitude, in 
accordance with paper (Vengrenovich, 1982), is found from the condition: 

 0
gr r

d r

dr r =

⎛ ⎞ =⎜ ⎟
⎝ ⎠

$
, (83) 

where, for example: 
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* 2

4 2

1
1 1

kg

r A x r r

r x rr r

⎛ ⎞⎛ ⎞−⎜ ⎟= + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

$ . (84) 

By differentiation, one finds: 

 
0

2 2

2 1
g

k

r x
u

r x

+
= =

+
. (85) 

For 0x =  (the Wagner mechanism of growth), 2g kr r = , and for 1x =  (the diffusion 
mechanism of growth), 4 3g kr r = .  
Using the magnitude ou  of the locking point, Eq. (85), one can express the specific rate of 
growth r r$ , Eq. (84), through dimensionless variable, 

g
u r r= , that enables its 

representation not schematically, but in the form of a graph for various magnitudes of the 
parameter x :  

 
4

2
* 4

1 1 2 2
1 1

2 1
gr dr x x

u u
dt x xA u

υ − +⎛ ⎞⎛ ⎞′ = = + −⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
, (86)  

where the dimensionless specific rate of growth is 
4

*
gr dr

dtA
υ′ = .  

Fig. 9 shows the dependence of υ′  on u  as a function of x . The role of the locking point 
consists in that within the LSW theory all solutions, including the size distribution function, 
are determined for magnitudes ou  alone. It means physically that under the Ostwald’s 
ripening process, the relation between critical and maximal sizes of clusters is always the 
same, i.e. being constant one. 
 

0 1 2 3 4

-2

0

2

4

6

8

x=1

x=0.1

υ'

u

Fig. 9. Dependence of the dimensionless growth rate, υ′ , on u  for various magnitudes of x  

For determining gr  and kr , we use Eqs. (79) and (81). Substituting in Eq. (79) gr r=  and 
replacing the ratio g kr r  by its magnitude (85), one obtains after integrating:  

 
( )

*
4 4

2 1g

A
r t

x x
=

+
, (87)  
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or: 

 ( )
( )

3
4 *

4

2 1
4

2 2
k

x
r A t

x x

+
=

+
. (88)  

For 1x = , growth of islands is fully controlled by the surface diffusion coefficient 
(Chakraverty, 1967):  

 4 *4

3gr A t= ,  4 *27

64kr A t= ,  
4

3
g

k

r

r
= . (89)  

In the same way, one obtains from Eq. (81):  

 
( )( )

*
2 2

1 2 1g

B
r t

x x
=

− +
, 

( )
( )( )

*
2

2

2 1
2

1 2 2
k

B x
r t

x x

+
=

− +
. (90)  

Eq. (90) describes of island growth under conditions controlled by the kinetic coefficient β , 
with the contribution x  of surface diffusion. If 0x = , then the growth process is fully 
controlled by kinetics of crossing the interface ‘island-substrate’ (Wagner, 1961):  

 2 *2gr B t= , 2 *1

2kr B t= , 2
g

k

r

r
= . (91)  

4.3 Generalized Chakraverty-Wagner distribution for the case of cupola-like islands 
(clusters)  

As previously, the size distribution function of clusters (islands) within the interval 0 1x≤ ≤  
is represented as the product ( ) ( ) ( ), gf r t r g uϕ ′= , where ( )g u′  is the relative size 
distribution of clusters, 

g
u r r= . The function ( )grϕ  is determined from the conservation 

law of disperse phase volume:  

 ( ) ( )3
1 3

0

4 1
,

3 sin

gr

r f r t drπα θ
θ

Φ = ∫ . (92)  

Using Eq. (92), one finds:  

 ( ) 4g
g

Q
r

r
ϕ = , (93)  

where:  

 

( ) ( )
1

3
1 3

0

4 1
3 sin

Q

u g u duπα θ
θ

Φ
=

′∫
. (94) 

Taking into account Eq. (93), the function ( , )f r t  is rewritten as:  

 ( ) ( ) ( )4 4

1 1
,

g g

f r t Q g u g u
r r

′= ⋅ = , (95)  
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where the relative size distribution function is: 

 ( ) ( )g u Q g u′= ⋅ . (96)  

To determine ( )g u′ , we use the continuity equation (8), substituting in it, instead of ( ),f r t  
and r$ , their magnitudes from Eqs. (95) and (81) (or 79)). Under preceding from 
differentiation on r  and t  to differentiation on u , the variables are separated, and Eq. (8) 
takes the form:  

 ( )
( )

2

1
4 g

g

d
dg u u du u du
g u u

u

υ υυ

υυ

− +′
= −

′ −
, (97)  

where 
* 2

1 2 2
1 1

1 2 1

r r x x
u

x xB u
υ ⋅ +⎛ ⎞⎛ ⎞= = + −⎜ ⎟⎜ ⎟− +⎝ ⎠⎝ ⎠

$
, 

( )( )*1

1

1 2 1
g g

g u

r dr

dt x xB
υ υ == = =

− +
, 

1

g

du

dr r
= , 

g g

du u

dr r
= − . 

Substituting υ , gυ and d duυ  in Eq. в (97), one obtains the expression:  

 ( )
( )

( ) ( ) ( )
( ) ( )

4 2 2 2

2 2 2 2

4 1 2 4 3 2 1

1 2 2

u u x x u x x x xdg u
du

g u u u u ux x x

− + − + + − +′
= −

′ − + + +
, (98)  

after integration of which we find ( )g u′ , i.e. the generalized Chakraverty-Wagner 
distribution for islands of cupola-like form:  

 

( )
( )

( )

3 2 2 2 2 2 2
1

2 4 2 4

2 2
exp tan ( )

1 2 2

exp
1

D

B

u u ux x x F Dx u x
g u

u x x x x x x

C

u

−
+ + + ⎛ ⎞− +′ = ×⎜ ⎟⎜ ⎟− + − + −⎝ ⎠

⎛ ⎞× ⎜ ⎟−⎝ ⎠

,  (99)  

where:  

 

4 3 2

2

4 3 2

6 5 4 3 2

4 3 2

32 16 48 13 5
,

12 3 3
,

80 40 15 2
,

32 16 54 34 8
,

16 8 9 2 1.

x x x x
B

A

x x
C

A

x x x x
D

A

x x x x x
F

A

A x x x x

⎧ + + + +
=⎪

⎪
⎪ + +

= −⎪
⎪
⎪ + + + +⎪ = −⎨
⎪
⎪ + + + +

= −⎪
⎪
⎪ = + + + +
⎪
⎪⎩

 (100) 
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For 0x = : 5B = , 3C = − , 2D = − , 0F = , 1A = , and Eq. (99) is transformed into the Wagner 
distribution (Wagner, 1961): 

 ( ) ( ) 5 3
1 exp

1
g u u u

u

− ⎛ ⎞′ = − −⎜ ⎟−⎝ ⎠
. (101)  

For 1x = : 36A = , 19
6B = , 1

2C = − , 23
6D = − , 4F = − , and Eq. (99) corresponds to the 

Chakraverty distribution (Chakraverty, 1967):  

 ( ) ( )

( ) ( )

3 1

2319 2 126

1 1 1
exp exp tan ( )

2 1 6 2 2

1 2 3

u
u

u
g u

u u u

−⎛ ⎞ +⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠′ =
− + +

. (102) 

Taking into account the volume (mass) conservation law for island condensate, one can find 
the cluster’s relative size distribution function g(u) from Eq. (96).  

4.4 Discussion  
The dependences shown in Fig. 10 а correspond to the size distribution function computed 
using Eq. (96) for various magnitudes of x. The extreme curves for x = 0 and x = 1 determine 
the Chakraverty distribution and the Wagner distributions, respectively (Wagner, 1961; 
Chakraverty, 1967). All other curves, within interval 0 < x < 1, describe the size distribution 
of islands for simultaneous action of the Wagner and diffusion mechanisms of cluster 
growth (the generalized Chakraverty-Wagner distribution.).  
The same dependences normalized by their maxima are shown in Fig. 10 b. In such form, 
being normalized by unity along the coordinate axes, such dependences are easy-to-use for 
comparison with experimentally obtained histograms. 
For the computed family of distributions, see Eq. (96), the magnitude of the locking point 
changes in accordance with Eq. (85) within the interval 4/3 ≤ u0 ≤ 2. For x = 0.5, one obtains 
u0 = 3/2, what coincides with similar magnitude for the Lifshitz-Slyozov distribution. At the 
same time, the curve Eq. (96) for x = 0.5 is not the Lifshitz-Slyozov distribution: 

 ( )
( )

( ) ( )

3 1

422
2 35

1.2
exp 1.084435tan 1.032795 0.258199 exp

1

1 0,5 1

u u
u

g u

u u u

− ⎛ ⎞⎡ ⎤− + ⋅ −⎜ ⎟⎣ ⎦ −⎝ ⎠=

− + +

. (103)  

It means that one can not judge on the type of distribution proceeding from the locking 
point magnitude u0. It must be considered only as evaluating parameter for choice of the 
theoretical curve from the family Eq. (96), for comparison with specific experimentally 
obtained histogram.  
Once more important property of the found distribution, Eq. (96), consists in that it can be 
used not only for comparison with experimentally obtained histograms in the form of 
distribution of particles of radii r (or diameters d), but also for description of the particle 
height distribution, h. One can see in Fig. 8 that island height is equal to:  

 ( ) 1 cos
1 cos

sinCh R r
θθ

θ
−

= − = , (104) 

so that g gr r h h u= = . 
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Fig. 10. The generalized Chakraverty-Wagner distribution: а – dependences computed for 
various magnitudes of x following Eq. (96); b – the same dependences normalized by their 
maxima 
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Fig. 11. Comparison of the dependence represented by Eq. (96) with experimentally obtained 
histograms on diameter, d , and height, h , of nanodots of Mn  at various temperatures and 
thickness of monolayer of Mn : а - room temperature, 0.21Mn ML , 1.555g kr r = ;  
b - temperature 180°С, 1.5g kr r = ; c - room temperature, 0.21Mn ML , 1.384g kh h = ;  
d - temperature 180°С, 1.357g kh h =  
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Fig. 11 shows comparison of experimental histograms of nanodots Mn  at substrate Si  on 
diameters, d , (а and b) and on heights, h , (c and d), obtained by the molecular beam 
epitaxy technique at various temperatures, viz. at room temperature (fragments а and с) and 
at 180˚С (fragments b and d), as well as for various thickness of molecular layers of Mn  
(ML) (De-yong Wang et. al., 2006), with theoretical dependence Eq. (96). It is seen from 
comparison that for experimental distributions on diameters, the contributions of the each of 
two mechanisms of growth, i.e. Wagner and diffusion ones, are approximately the same, cf. 
Fig. 11 а, 0.4x = , and Fig. 11 b, 0.5x = .  
At the same time, the diffusion mechanism occurs to be predominant for the height 
distribution functions, cf. Fig. 11 c, 0.8x = , and Fig. 11 d, 0.9x = . It means that as nanodots 
of Mn  grow, increasing of height leaves behind increasing lateral size d , so that 1h d > . 
Probably, this circumstance just explains of the form of nanodots of Mn  obtained by the 
authors of paper (De-yong Wang et al., 2006). 
Fig. 12 shows the results of comparison of the theoretical dependence, cf. Eq. (96), with 
experimentally obtained histograms of particles of gold obtained at temperature 525°С at 
silicon substrate ( )( )/ 111Au Si  - (Fig. 12 а), and later, after 180-min isothermal exposure - 
(Fig. 12 b) (Werner et al., 2006). Judging by the magnitude of x , particle growth is initially 
controlled by the kinetic coefficient β  (Fig. 12 а). But later, the mechanism of growth 
changes, and after three-hour exposure it becomes predominantly diffusion one (Fig. 12 b). 
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Fig. 12. Comparison of the dependence Eq. (96) with experimentally obtained histograms for 
particles of Au obtained by the molecular beam epitaxy technique for temperature 525°С (а) 
and 180 min later, after isothermal exposure (b)  

The results of comparison of the theoretical dependence computed for 0.3x =  with the 
experimental histogram for nanoclusters of Ag  obtained by the molecular beam epitaxy 
technique at room temperature at substrate ( )2 110TiO  (Xiaofeng Lai et al., 1999), cf. Fig. 13, 
also argue in favour of the proposed mechanism of growth. 
Thus, the considered examples of comparison of computed and experimentally obtained 
data leads to the conclusion on the possibility to implement simultaneous action of both 
mechanisms of growth, i.e. Wagner and diffusion ones. What is more, the situation when 
both mechanisms of growth co-exist and act in parallel is, to all appearance, more general 
than separate manifestations of one of two mechanisms considered early by Wagner and 
Chakraverty. 
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Fig. 13. Comparison of the dependence Eq. (96) with experimental histogram of nanoclusters 
Ag  obtained by the molecular beam epitaxy technique at substrate ( )2 110TiO  at room 

temperature 

5. Influence of form of nanoclusters in heterostructures on the size 
distribution function  

Obtaining the heterostructures containing quantum dots of specified concentration, form, 
sizes and homogeneity is connected with considerable experimental difficulties. However, if 
even such structure has been obtained, its properties can change under the Ostwald’s 
ripening. For that, as it has been shown above, the character of the size distribution function 
of clusters changes not only as a result of transition from one growth mechanism to another 
one, but also due to simultaneous action of such mechanisms (Sagalovich & Slyozov, 1987; 
Vengrenovich et al., 2006а, 2007a, 2008а, 2008b). Below we represent the results of 
investigation of the influence of cluster form on the size distribution function in 
semiconductor heterosystems with quantum dots. A heterosystem is considered as island 
film consisting of disk-like islands of cylindrical form, with height h (Fig. 14).  
 

substrate 

r h

 

Fig. 14. Disc-like cluster of radius r and constant height h 

5.1 Generalized Chakraverty-Wagner distribution for islands (clusters) of cylindrical 

form ( h const= ) 

The problem of determination of the size distribution function is analogous to the above 
considered problem for clusters of cupola-like form. Modeling the island film by disk-like 
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islands corresponds to heterostructure with more stable form of hut-clusters (Safonov & 
Trushin, 2007). 
The rate of change of volume of cluster with constant height h (Fig. 14) is determined by the 
flow j  of adatoms to (from) a cluster: 

 2( ) m

d
r h j

dt
π υ= ,  (105) 

where mυ  – adatom volume. From Eq. (105) one obtains: 

 
1

2 m

dr
j

dt rh
υ

π
= . (106) 

Following to (Vengrenovich et al., 2008а), the flow j  consists of two parts: 

 S ij j j= + , (107) 

where Sj  – the part of flow caused by surface diffusion, and ij  – the part of flow of 
adatoms, which due to overcoming the potential barrier at the interface ‘cluster-substrate’ 
fall at cluster surface and, then, take part in formation of chemical connections (the Wagner 
mechanism of growth). 
By definition, the diffusion part of a flow equals: 

 2 ( )S S R r

dC
j rD

dR
π == , (108) 

where SD  – the surface diffusion coefficient, ( )R r

dC

dR
= – concentration gradient at the 

interface ‘cluster-substrate’, which can be represented in the form (Chakraverty, 1967; 
Vengrenovich 1980a, 1980b; Vengrenovich et al., 2008а): 

 
1

( )
ln

r
R r

C CdC

dR l r
=

−
= ⋅ , (109) 

where l determines the distance from an island, ( )R lr= , at which a mean concentration of 
adatoms at a substrate, C , is set around separate cluster of radius r  ( 2, 3l = ). Taking into 
account Eq. (109), one can rewrite Eq. (108) in the form: 

 
2

( )
ln

S
S r

D
j C C

l

π
= − .  (110) 

Concentration of adatoms at the cluster base, rC , is determined by the Gibbs-Thomson 
equation: 

 exp (1 )m m
rC C P C P

kT kT

υ υ
∞ ∞

⎛ ⎞= Δ ≈ + Δ⎜ ⎟
⎝ ⎠

, (111) 

where C∞  – the equilibrium concentration at temperature T, PΔ  – the Laplacian pressure 
caused by island surface curvature, k  – the Boltzmann constant. Pressure PΔ , in 
accordance with (Vengrenovich et al., 2008а), equals: 
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2

2

dS hdr
P

dV rhdr r

π σσ σ
π

Δ = = = . (112) 

Taking into account Eq. (112), rC  can be represented in the form: 

 
1

(1 )m
rC C

kT r

συ
∞≈ + ⋅ , (113) 

where σ  – the specific magnitude of surface energy. 
A mean concentration of adatoms at surface, C , is determined, by analogy with Eq. (113), 
by the mean (or critical) cluster size kr : 

 
1

(1 )m

k

C C
kT r

συ
∞≈ + ⋅ . (114) 

Thus: 

 2 21 1 1
( ) ( 1)

ln ln
S m S m

S
k k

D C D C r
j

kT l r r kT l r r

π συ π συ∞ ∞= − = − . (115) 

In accordance with Wagner, the number of adatoms occurring in the unite of time at side 
surface of a cluster ( )h const=  is determined as: 

 1 2j rh Cπ β= , (116) 

and the number of adatoms leaving a cluster in the unite of time is: 

 2 2 rj rh Cπ β= , (117) 

so that the resulting flow of atoms involved into forming chemical connections equals: 

 
1 2

2
2 ( ) ( 1)m

i r
k

h C r
j j j rh C C

kT r

π β συπ β ∞= − = − = − . (118) 

Substituting Sj  and ij  in Eq. (107), one obtains: 

 
22 21

( 1) ( 1)
ln

S m m

k k

D C h Cr r
j

kT l r r kT r

π συ π β συ∞ ∞= ⋅ − + − . (119) 

Substituting Eq. (119) in Eq. (106), one finds out the rate of growth: 

 
22 21 1

( ( 1) ( 1))
2 ln

S m m

k k

D C h Cdr r r

dt rh kT l r r kT r

π συ π β συ
π

∞ ∞= ⋅ − + −  (120) 

For the combined action of two mechanisms of growth, i.e. the diffusion and the Wagner 
ones, the rate of growth, r$ , will be dependent on the ratio of the flows Sj  and ij . 
Designating, as previously, the shares of flows Sj  and ij  in general flow j , as Sx j j=  and 
1 ix j j− = , respectively, so that the ratio of them equals: 

 
1

S

i

j x

j x
=

−
, (121) 
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one obtains the formula for the rate of cluster growth under surface diffusion, with the share 
contribution ( )1 x−  of the flow ij :  

 
*

2

1
[1 ( ) ]( 1)

g k

dr A x r r

dt x r rr

−
= + − , (122) 

or: 

 
*

[1 ( ) ]( 1)
1

g

k

rdr B x r

dt r x r r
= + −

−
, (123) 

that corresponds to the Wagner mechanism of cluster growth with the share contribution x 

of the diffusion flow Sj , where 
2

*

ln
S mD C

A
hkT l

συ∞= , 
2

* mC
B

kT

β συ∞= . 

Solving jointly Eq. (122) (or Eq. (123)) and Eq.(8) and applying the method derived in paper 
(Vengrenovich, 1982), one finds out the generalized relative size distribution function, ( )g u′ , 
for disk-like clusters corresponding to the combined action of two mechanisms of growth, 
i.e. the Wagner and the diffusion ones (Vengrenovich et al., 2010): 

 ( ) ( ) ( )2 21 exp( )
1

DB C
g u u u u x x

u

−′ = − + +
−

, (124) 

where:  

 

4 3 2

2

4 3 2

4 3 2

2 4 10 8 4
,

2 2 2
,

3 6 5 2 1
,

2 3 2 1.

x x x x
B

A

x x
C

A

x x x x
D

A

A x x x x

⎧ + + + +
=⎪

⎪
⎪ + +

= −⎪
⎨
⎪ + + + +⎪ = −
⎪
⎪ = + + + +⎩

,  (125) 

For 1x = , 28 9B = , 17 9D = − , 2 3C = − , and Eq. (124) corresponds to the distribution 
obtained in paper (Vengrenovich, 1980):  

 ( ) ( ) ( )
28 172 9 9

2 3
1 2 exp( )

1
g u u u u

u

− −′ = − + −
−

. (126) 

For 0x = , 4B = , 1D = − , 2C = − , and Eq. (124) turns into the Wagner distribution 
(Chakraverty, 1967; Vengrenovich, 1980a, 1980b): 

 ( ) ( ) 4 2
1 exp( )

1
g u u u

u

−′ = − −
−

. (127) 

However, for graphic representation of the size distribution function one must carry out 
computations following equation that is analogous to Eq. (28): 

 ( ) ( )g u Q g u′= ⋅ , (128) 
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where 

( )
1

2

0

Q

h u g u duπ

Φ
=

′∫
, Φ  − the volume (mass) of disperse phase in the form of clusters. 

5.2 Discussion  
The dependences shown in Fig. 15,а correspond to the size distribution function Eq. (128) 
computed for various magnitudes of x. The limiting curves, for x = 0 and x = 1, correspond 
to the Wagner distribution (Wagner, 1961) and to the distribution obtained in papers 
(Vengrenovich, 1980a, 1980b), respectively. All other distributions within the interval 
0 ≤ x < 1 describe the size distribution functions of clusters for the combined action of the 
Wagner and the diffusion mechanisms of growth. The same dependences normalized by 
their maxima are shown in Fig.15,b.  
 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
b

x=1x=0

 

g(
u)

/g
m

ax

u0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.4

0.8

1.2

1.6

2.0
a

 

 

x=1
x=0.9

x=0.8
x=0.7

x=0.6
x=0.5

x=0.4
x=0.3

x=0.2
x=0.1x=0

g(
u)

u  

Fig. 15. Functions ( )g u  (a) and ( )( )maxg u g  (b) computed following Eq. (128) 

Fig. 16 illustrates comparison of experimental histogram of nanodots Ge/SiO2 (Kan et al., 
2005), obtained by evaporating technique with following thermal annealing, with the 
theoretical dependence, Eq. (128), for 0.7x = . A mean size of clusters is 5.6 nm. One can see 
satisfactory agreement of the theory and experimental data. 
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Fig. 16. Comparison of the dependence Eq. (128) with experimental histogram of nanodots Ge 
at substrate SiO2 obtained by evaporating with following thermal annealing (Kan et al., 2005) 
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Fig. 17. Comparison of dependence (128) with experimental histograms Ge at substrate Si 
obtained by molecular beam epitaxy with one (a) and two (b) layers of nano-clusters Ge 
(Yakimov et al., 2007) 
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Fig. 18. Comparison of dependence (128) with experimental histograms Co at Si3N4 obtained 
by evaporating at room temperature: (a) 0.1 ML Co, (b) 0.17 ML Co, (c) 0.36 ML Co (Shangjr 
Gwo et al., 2003) 

In other case that is illustrated in Fig. 17, the theoretical dependence Eq. (128) is compared 
with experimental histograms Ge/Si(001) obtained by the molecular-beam epitaxy 
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technique at temperature 500ºС (Yakimov et al., 2007). The experimentally obtained 
histogram in Fig. 17,а corresponds to one layer of nanoclusters of Ge of a main size ~10.4 
nm. One can see that for 0.6x =  theoretical results are well fitting the experimental data. For 
two layers of nanoclusters (with a mean size ~10.7 nm), cf. Fig. 17,b, ripening of nanoclusters 
is almost entirely determined by surface diffusion. The diffusion flow Sj  constitutes about 
90% of the total flow j  ( )0.9Sj j= . 
It is of especial interest from the theoretical point of view to compare the computed 
dependences and experimentally obtained histograms illustrated in Fig. 18 (Shangjr Gwo et 
al., 2003). Nanoclusters of Со at Si3N4 substrate were obtained by applying the evaporation 
technique at room temperature with rate (0.3-1.2) ML/min. Histograms shown in Fig. 18 
correspond to the following conditions: а) 0.1 ML Co; b) 0.17 ML Co; c) 0.36 ML Co. 
As opposed to heterostructures Ge/Si (001) and Ge/ SiO2 on the base of quantum dots of 
Ge, which are widely used in optoelectronics and microelectronics, Со is not semiconductor, 
and the system Со/Si3N4 is the model one for investigation of regularities of forming defect-
free nanoclusters. 
However, one can see from Figs. 16, 17, and 18 that the regularities of the Ostwald’s 
ripening are the same both for the clusters of semiconductor, Ge, and for metallic clusters of 
Со. In both cases, irrespectively of metallic or semiconductor nature of clusters, ripening of 
them is governed by the combined mechanism of growth, i.e. the diffusion and the 
Wagner’s ones, with predomination, in the resulting flow, of the flow Sj  due to surface 
diffusion. It proves generality of the considered by us mechanism of cluster ripening, when 
the rate of growth of them is determined by the ratio of the diffusion flow, Sj , to the flow ij  
through the interface ‘cluster-substrate’. 

6. Mass transfer between clusters under dislocation-surface diffusion. Size 
distribution function  

Obtaining nanocrystals meeting the requirements raised to quantum dots by applying the 
conventional techniques, such as selective etching, growth at profiled substrate, chemical 
evaporation, condensation in glass matrices, crystallization under ultrahigh rate of cooling 
or annealing of amorphous matrices has not led to desirable results (Ledentsov et al., 1998; 
Pchelyakov et al., 2000). And only under the process of self-organization in semiconductor 
heteroepitaxial systems it occurs possible to form ideal heterostructures with quantum dots. 
The technique of heteroepitaxial growing in the Stranski-Kastranov regime (Krastanow & 
Stranski, 1937) is the most widely used for obtaining quantum dots. In this case, layer-wise 
growth of a film is replaced, due to self-organization phenomena, by nucleation and 
following development of nanostructures in form of volume (3D) islands (Bimberg & 
Shchukin, 1999; Kern & Müller, 1998; Mo et al., 1990). Islands with spatial limitation of 
charge carriers in all three directions are referred to as quantum dots. Quantum dots 
obtained in such a way have perfect crystalline structure, high quantum efficiency of 
radiation recombination and are characterized by enough high homogeneity in size 
(Aleksandrov et al., 1974; Leonard et al., 1993; Moison et al., 1994; Ledentsov et al., 1996a, 
1996b). Sizes of quantum dots can vary from several nanometers to several hundred 
nanometers. For example, size of quantum dots in heteroystems Ge-Si and InAs-GaAs lies 
within the interval from 10 nm to 100 nm, with concentration 1010÷1011 cm -2.  
Much prominence is given in the literature to the size distribution function of islands, while 
this parameter of a system of quantum dots is of high importance in practical applications 
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(Bartelt et al., 1996; Goldfarb et al., 1997a, 1997b; Joyce et al., 1998; Kamins et al., 1999; Ivanov-
Omski et al., 2004; Antonov et al., 2005). In part, changing the form and sizes of islands, one 
can control their energy spectrum that is of great importance for practical applications of 
them. As the size distribution function becomes more homogeneous, as (for other equivalent 
conditions) the system of quantum dots becomes more attractive from the practical point of 
view. 
Homogeneity of the size distribution function can be conveniently characterized by root-
mean-square (rms) deviation, Dσ ′ = , where D – dispersion. As the size distribution 
function becomes narrower, as σ ′  decreases. In this respect, the best size distribution 
functions have been obtained for island of germanium into heterosystem Ge/Si(001), where 

10%σ ′ <  (Jian-hong Zhu et al., 1998). 
Theoretical distributions corresponding to such magnitudes of dispersion D (or associated 
magnitudes of rms) have been obtained in papers (Vengrenovich et al., 2001b, 2005) in 
assumption that the main factor determining the form of the size distribution function of 
island film at later stages is the Ostwald’s ripening. Computations have been carried out 
within the LSW theory, in assumption that dislocation diffusion is the limiting factor of the 
Ostwald’s ripening. For that, the dislocation mechanism of growth of islands under the 
Ostwald’s ripening is possible, if the flow of matter due to dislocation diffusion much 
exceeds the flow due to surface diffusion, i.e. 

 ( ) 2d
s s

R r R r

dC dC
D Zd D r

dR dR
π

= =

⎛ ⎞ ⎛ ⎞>>⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (129) 

where ( )d
sD  – the diffusion coefficient along dislocation grooves, sD  – the surface diffusion 

coefficient, 
R r

dC

dR =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 – the concentration gradient at island surface, d – the width of 

dislocation groove, 2 2d q π= , 2 260b q b≤ ≤ , where b – the Burgers vector, Z – the number 

of dislocation lines ending at the island base of radius r ( )Z const≡ . For simplifying the 

computations, islands are considered as disk-like ones, with constant height h 
(Vengrenovich et al., 2001b). General case, when both h and r are changed, is considered in 
paper (Vengrenovich et al., 2005).  
Eq. (129) sets limitations on island sizes, which grow due to dislocation diffusion: 

 
( )

2

d
s

s

DZd
r

Dπ
<< . (130) 

If the condition Eq. (130) is violated, one must take into account in the resulting flow of 
matter, beside of the flow due to dislocation diffusion, the flow component caused by 
surface diffusion. 
Under dislocation-surface diffusion one has: 

 d sj j j= + ,  (131) 

where dj  – the flow to a particle due to diffusion along dislocations, sj – the flow due to 
surface diffusion, dj  and sj  are determined by the left and the right sides of Eq. (129), 
respectively. 
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The rate of growth of isolated island under condition h const=  is determined from equation: 

 ( )2
m

d
r h jv

dt
π = . (132) 

Substitution Eq. (131) in Eq. (132) and taking into account the magnitudes of dj  and sj , as 
well as of the concentration gradient at the island boundary, one obtains:  

 
2

( )
2

1 1
2 1

2 ln
dm

s s
k

v Cdr r
D Zd D

dt hkT l r rr

σ
π

π
∞ ⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. (133) 

Taking into account the ratio of flows, 

 sjx
j

= , 1 djx
j

− = , 1d

s

j x

j x

−
= , (134) 

one can write Eq. (133) in the form: 

 
( )2

3

1
1 1

ln 1

d
m s

g k

v C D Zddr x r r

dt hkT l х r rr

σ
π

∞
⎛ ⎞⎛ ⎞
⎜ ⎟= + −⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

,  (135) 

or: 

 
2

2

1 1
1 1

ln
gm s

k

rv C Ddr х r

dt hkT l х r rr

σ ∞ ⎛ ⎞⎛ ⎞−
= + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. (136) 

Eqs. (135) and (136) describe the rate of growth of clusters under dislocation and surface 
diffusion with contributions ( x ) and ( 1 x− ) corresponding to the flows of them.  
Taking into account Eqs. (135) and (136) for the rate of growth and performing 
computations following the algorithm introduced in paper (Vengrenovich, 1982), one can 
represent the relative size distribution function of clusters, under assumption that mass 
transfer between clusters is realized due to dislocation-surface diffusion, in the form: 

 
3 2 2

1

2 2

2( ) 2( ) exp exp tan ( )
1( 1) 4

4

D

K

E Db
u bu u bu c F

g u
uu b c b

c

−

⎛ ⎞−⎜ ⎟
++ + ⎛ ⎞ ⎜ ⎟′ = ×⎜ ⎟ ⎜ ⎟−− ⎝ ⎠ −⎜ ⎟−⎜ ⎟

⎝ ⎠

, (137) 

Where 
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( ) ( ) ( )
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2 2 2 2 2

2 2
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1 2 2 1
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c b c b b

D c D b b D x x
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K D
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(138)
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6.1 Comparison with experimental data  

Fig. 19 а illustrates the family of distributions computed following Eq. (137) with the step 
0.1xΔ =  for magnitudes of x  between zero and unity. One can see that as magnitude of x  

increases, as the maxima of the distributions decreases, and the magnitudes of u′  where 
( )g u′  reaches maximum are shifted to the left, in direction of decreasing u . This shift is 

clearly observable in Fig. 19 b, where the same distributions normalized by their maxima are 
shown, so that ( )maxg g u′≡ . For that, the magnitudes of u′  are determined from the 
following equation: 

 4 2 2 2 2 23 ( 4 ) ( 4 2)4 3 12 9 0
u u

u x x u x x u x x
′=

− − + − + − + − = . (139) 
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Fig. 19. Size distribution functions computed with the step 0.1xΔ =  (а); the same 
distributions, normalized by their maxima (enlarged version is in the inset), where 

( )maxg g u′≡  (b). 
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Fig. 20. Comparison with experiment (Neizvestnii et al., 2001) 0.8x =  (а), 0.9x =  (b). 

It must be noted that in the most cases experimental histograms are obtained as the 
dependences of the number of islands (share of islands) at the unit area on island’s height, 
h . Theoretically, the choice of variable is arbitrary. For constant rate of change of island 
volume, it is of no importance, either r  or h  variable is constant. That is why, the 
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distributions shown in Fig. 19 can be used also for comparison with experimentally obtained 
histograms, when the island height, h , is constant. 
One of such comparisons is illustrated in Fig. 20 (а – 0.8x = , b – 0.9x = ). Experimentally 
obtained histogram normalized by unity on axes ( )gu h h  and ( ) maxg u g  corresponds to 
the height (on h ) distribution function in (Ge/ZnSe) (Neizvestnii et al., 2001). 
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Fig. 21. Comparison of the experimentally obtained histograms with theoretically computed 
dependences (Vostokov et al., 2000) 0.2x = (а), 0.4x = (b)  

In Fig. 21, the experimentally obtained histogram normalized in the same manner as in 
previous case, corresponds to the height distribution of islands of germanium (Ge/Si (001)) 
for the quantity of fall out of germanium 5.5 monolayers ( 5.5Ged ML= ) (Vostokov et al., 
2000). Theoretical curves have been computed for а – 0.2x = , and b – 0.4x = . One can see 
that as x  increases, as discrepancy between the experimentally obtained histogram and 
theoretically computed dependences increases also. 

7. Conclusions  

We have developed the theory of the Ostwald’s ripening, taking into account not only mass 
transfer between clusters due to diffusion (volume, surface, dislocation), but also the 
kinetics of mass transfer through the interface ’cluster-matrix’ (‘cluster-substrate’) 
determining the formation of chemical connections at cluster surface (the Wagner 
mechanism of cluster growth).  
Within the developed by us theory, diffusion and kinetics of mass transfer through the 
interface ‘cluster-matrix’ are taken into account as the corresponding flows, ( )V Sj j  and ij , 

in the resulting flow to (from) a cluster: ( )V S ij j j j= + . The contribution of the each 

mechanism of mass transfer in the resulting flow, j , is represented as the ratio of the partial 

flows: V Sj j
x

j j

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 and 1 ijx

j
− = . Taking into account both diffusion and kinetics of mass 

transfer through interface of two structural components means that one can not neglect any 
of the components of flow j , both ( )V Sj j  and ij . It corresponds to the model of cluster 

ripening, in accordance with which growth of them is governed by two mechanisms, i.e. by 
the Wagner and by the diffusion ones. Within the framework of this model, the size 
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distribution function of clusters is described by the generalized Lifshitz-Slyozov-Wagner 
distribution (alloys, nanocomposites as nc CdS /polimer (Savchuk et al., 2010a, 2010b, 2010c) 
or the generalized Chakraverty-Wagner distribution (island films, heterostructures with 
quantum dots, etc.)  
If in the resulting flow j  the component i Vj j<< , it can lead to new mechanism of cluster 
growth under dislocation-matrix or dislocation-surface diffusion, for the each of which the 
specific size distribution function and the corresponding temporal dependences of r  and 

gr  are intrinsic. 
Comparison of the theoretically computed size distribution functions with experimentally 
obtained histograms leads to the following two main conclusions. 
1. The introduced model of cluster ripening under simultaneous (combined) action of both 
the diffuse mechanism and the Wagner one is proved experimentally. Other of the 
considered models is also finds out experimental proof, viz. the case when one neglects the 
Wagner mechanism of growth and cluster ripening results from mixed dislocation-matrix 
and dislocation-surface diffusion. Thus, it is the most likelihood that, in practice, cluster 
growth follows to not only one isolated of the considered early mechanisms of growth, i.e. 
the diffusion mechanism or the Wagner one, but rather to the mixed (combined) 
mechanism, when two mentioned limiting mechanisms act together. 
It also follows from the results of comparison of the computed and experimental data, that 
cluster growth under mixed (combined) dislocation-matrix or dislocation-surface diffusion 
is most probable than cluster growth under any of two mentioned mechanisms, if isolated. 
2. In connection with intense development of nanotechnologies and related techniques for 
generating of nanostructures, the problem arises: in what framework is the LSW theory 
applied to analysis of nanosystems containing nanoclusters. The final answer on this 
question is now absent. Also, the main question concerning stability of nanosystems in 
respect to the Ostwald’s ripening leaves opened. Nevertheless, it follows from the 
represented by us results of comparison of theoretical and experimental data, that in many 
cases the experimentally obtained histograms built for nanoparticles (nanoclusters) by many 
authors for various nanosystems are quite satisfactory fitted by the computed by us 
theoretical distributions (the generalized Lifshitz-Slyozov-Wagner distribution, the 
generalized Chakraverty-Wagner distribution etc.). In means that the developed by us LSW 
theory can be, in principle, be used for analysis of phase and structural transformations in 
nanosystems with nanophases. Of course, derived by us approach requires further 
investigations, both theoretical and experimental. 
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transfer. This book brings valuable references for researchers and engineers working in the variety of mass

transfer sciences and related fields. Since the constitutive topics cover the advances in broad research areas,

the topics will be mutually stimulus and informative to the researchers and engineers in different areas.
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