
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



15

Clustered Regression Control of a 
Biped Robot Model 

Olli Haavisto and Heikki Hyötyniemi 
Helsinki University of Technology, Control Engineering Laboratory 

Finland

1. Introduction 

Controlling of a biped walking mechanism is a very challenging multivariable problem, the 
system being highly nonlinear, high-dimensional, and inherently unstable. In almost any 
realistic case the exact dynamic equations of a walking robot are too complicated to be 
utilized in the control solutions, or even impossible to write in closed form. 
Data-based modelling methods try to form a model of the system using only observation 
data collected from the system inputs and outputs. Traditionally, the data oriented methods 
are used to construct a global black-box model of the system explaining the whole sample 
data within one single function structure. Feedforward neural networks, as presented in 
(Haykin, 1999), for example, typically map the input to the output with very complicated 
and multilayered grid of neurons and the analysis of the whole net is hardly possible. Local 
learning methods (Atkeson et al., 1997), on the other hand, offer a more structured approach 
to the problem. The overall mapping is formed using several local models, which have a 
simple internal structure but are alone valid only in small regions of the input-output space. 
Typically, the local models used are linear, which ensures the scalability of the model 
structure: Simple systems can be modelled, as well as more complex ones, using the same 
structure, only the number of the local models varies. 
In robotics, local modelling has been used quite successfully to form inverse dynamics 
or kinematic mappings that have then been applied as a part of the actual controller 
(Vijayakumar et al., 2002). However, when trying to cover the whole high-dimensional 
input-output space, the number of local models increases rapidly. Additionally, 
external reference signals are needed for the controller to get the system function as 
desired.
To evaluate the assumption of simple local models, a feedback structure based on linear 
local models, clustered regression, is used here to implement the gait of a biped walking 
robot model. The local models are based on principal component analysis (see Basilevsky, 
1994) of the local data. Instead of mapping the complete inverse dynamics of the biped, 
only one gait trajectory is considered here. This means that the walking behaviour is 
stored in the model structure. Given the current state of the system, the model output 
estimate is directly used as the next control signal value and no additional control 
solutions or reference signals are needed. The walking cycle can become automated, so that 
no higher-level control is needed. 
This text summarizes and extends the presentation in (Haavisto & Hyötyniemi, 2005). 

Source: Humanoid Robots, New Developments, Book edited by: Armando Carlos de Pina Filho
ISBN 978-3-902613-02-8, pp.582, I-Tech, Vienna, Austria, June 2007
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2. Biped model 

2.1 Structure of the mechanism 

The biped model used in the simulations is a two-dimensional, five-link system which has a 
torso and two identical legs with knees. To ensure the possibility of mathematical 
simulation, the biped model was chosen to be quite simple. It can, however, describe the 
walking motion rather well and is therefore applied in slightly different forms by many 
researchers (see e.g. Chevallereau et al., 2003; Hardt et al., 1999; Juang, 2000). 
Fig. 1 shows the biped and the coordinates used. Each link of the robot is assumed to be a 
rigid body with uniformly distributed mass so that the centre of mass is located in the 
middle of the link. The interaction with the walking surface is modelled by adding external 
forces F to the leg tips. As the leg touches the ground, the corresponding forces are switched 
on to support the leg. The actual control of the biped gait is carried out using the joint 
moments M, which are applied to both thighs and knees. 

Fig. 1. The coordinates used (left) and the external forces (right). 

As such, the system has seven degrees of freedom, and seven coordinates must be chosen to 
describe the configuration of the biped. The coordinate vector now is 

0 0 L R L R

T
q x y . (1) 

Here the subindices L and R refer to the “left” and “right” leg of the biped, respectively. The 
dynamic equations of the system can be derived using Lagrangian mechanics (Wells, 1967) 
and the result has the following form: 

( ) ( , , , )A q q b q q M F , (2) 

where the “dotted variables” denote time derivatives of the coordinate vector. The exact 
formulas of the inertia matrix A(q) and the right hand side vector are quite complex and 
therefore omitted here (see Haavisto & Hyötyniemi, 2004). The minimum dimension n of 
the state vector representing the system state is 14 (the 7 coordinates and their time 
derivatives); however, because of the efficient compression carried out by the proposed 
data-based modelling technique, the dimension of the “extended state” could be higher, 
including measurements that are not necessarily of any use in modelling (redundancy 
among the measurements being utilized for elimination of noise). 
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2.2 Simulator 

To simulate the biped walking on a surface, a Matlab/Simulink (MathWorks, 1994-2007) 
block was developed. It handles internally the calculation of the support forces F using 
separate PD controllers for each force component: The force opposing the movement is 
the stronger the farther the foot tip has gone beneath the ground surface (P term), and the 
faster the foot tip is moving downward (D term). By adjusting these controller 
parameters, different kinds of ground surface properties can be simulated (very hard 
surfaces, however, resulting in high force peaks, so that short simulation step sizes have 
to be applied). Also the knee angles are automatically limited to a range defined by the 
user. To obtain this, the simulation block adds an additional moment to the knee joints if 
the angle is exceeding or going under the given limits. This limitation can be used for 
example to prevent the knee turning to the “wrong” direction, that is, to keep the angles 

L and R positive. 
The input of the simulation block is the four dimensional moment vector 

L1 R1 L2 R2

T
M M M M M , (3) 

and the output the 14-dimensional state of the system augmented with leg tip touch sensor 
values sL and sR is 

L R

T
T Tq q s s . (4) 

If the leg is touching the ground, the sensor value equals to 1, otherwise 0. 
The biped dynamics, ground support forces and knee angle limiters are simulated in 
continuous time, but the input and output of the block are discretized using zero order hold. 
This allows the use of discrete-time control methods. A more detailed description of the 
used biped model and simulation tool is presented in the documentation (Haavisto & 
Hyötyniemi, 2004). 

2.3 Data collection 

In general, the gait movement of a biped walker can be divided into two phases 
according to the number of legs touching the ground. In the double support phase (DSP) 
both legs are in contact with the ground and the weight is moving from the rear leg to 
the front leg. In the single support phase (SSP) only the stance leg is touching the ground, 
while the swing leg is swinging forward. Because the biped is symmetrical regarding the 
left and right leg, the whole gait can be described with one DSP and one SSP. In every 
other step the stance and swing leg signals are switched to model the left and right leg 
swing in turns. This means that it is necessary to model only one DSP and one SSP with, 
say, left leg acting as the rearmost or swing leg and right leg as the foremost or stance 
leg. Accordingly, the data collected during this work were transformed to cover only 
these DSP and SSP cases. 
In order to collect sample data from the gait of the walking biped, a rough PD control 
scheme was developed. It was based on predetermined reference signals and four separate 
and discrete PD controllers, which produced the moment inputs for the biped. Fig. 2 shows 
the closed loop simulation model of the controlled biped. The PD controller block includes 
the separate PD controllers, whereas the Biped model block simulates the actual walking 
system and the surface interaction. 
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Fig. 2. The sample data were produced by simulating the PD controlled biped 

The PD controller was able to control the biped so that a cyclic gait movement was attained. 
To reach more varying data, independent white noise was added to each moment signal 
component. The input and output data of the biped system were collected of a 40 seconds 
walk, during which the biped took over 40 steps. The sampling interval was equal to the 
discretization period h = 0.005 sec. 
The data were mean-zeroed and scaled to unit variance in order to make the different 
components equally significant. Also the x0 coordinate of the state vector was omitted 
because it is monotonically increasing during the walk instead of being cyclic. As a result, 
the modelling data had 8000 samples of the 15 dimensional (reduced) state vector and the 
corresponding four dimensional moment vectors. The points were located around a 
nominal trajectory in the state and moment space. 
In the following, the state vector at time kh is denoted by u(k) and the moment vector by y(k)
since these are the input and the output of the controller. Additionally, the state vector 

without the touch sensor values is denoted by ( )u k .

3. Clustered Regression 

The data-based model structure, clustered regression, that is applied here is formed purely by 
the statistical properties of the sample data. The main idea is to divide the data into clusters
and set an operating point in the centre of each cluster. Every operating point, additionally, 
has its own local linear regression model which determines the local input-output mapping 
in the cluster region. A scheme of the model structure is presented in Fig. 3. 

Fig. 3. The local models cover the whole data along the trajectory 

3.1 Local model structure 

Each local model calculates a linear principal component regression (PCR) estimate of the given 
regression input. Principal components show the orthogonal directions of the highest 
variances in the input data. It is assumed here that variance is carrying information and the 
most important principal components are therefore relevant in the data, whereas the smaller 
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ones can be omitted as noise. The idea of the PCR is first to map the input data to the lower 
dimensional principal component subspace and then use multivariable linear regression to 
get the output estimate. 
Let us denote the input signal for the local model p at the time instant kh as up(k), and the 
corresponding output as yp(k). When the input data are mapped onto the principal 
components, one gets the latent variable signal xp(k). To simplify the regression structure the 
latent variable data are locally scaled to unit variance before the regression mapping. 
Now the whole regression structure of the local model p can be stored in the following 
statistics, which are calculated using the data in the corresponding cluster: 

p

uC   Expectation value of the input vector up.

p

yC  Expectation value of the output vector yp.

p

xxP  Inverse of the latent variable data xp covariance matrix. 

p

xuR  Cross-covariance of the latent and reduced input data. 

p

yxR  Cross-covariance of the ouput and latent variable data. 

p

uuR  Covariance of the input data. 

Note that in the following the statistics are calculated using the collected data, which gives 
merely the estimates of the real quantities. It is assumed, however, that the estimates are 
accurate enough and no difference is made between them and the real values. 
The regression calculation itself is based on a Hebbian and anti-Hebbian learning structure 
(see 6.1). Assuming that the statistics correspond to the real properties of the data, the 
output estimate of the model p given an arbitrary input vector can be expressed in 
mathematical terms as 

2

ˆ ( ) ( )p p p p p p

yx xx xu u yy k R P R u k C C . (5) 

Here p

uC  is the expectation value of the reduced state vector pu . In (5) the input is first 

transformed to the operating point p centred coordinates by removing the input mean value; 
then the estimate is calculated and the result is shifted back to the original coordinates in the 
output space by adding the output mean vector. 
A cost value for the estimate made in the unit p should be evaluated to measure the error of 
the result. The cost can depend for example on the distance between the cluster centre and 
the estimation point: 

1
( ) ( ) ( )

2

T
p p p p

u uJ u k u k C H u k C , (6) 

where Hp is a constant weighting matrix. 

3.2 Combination of the local models 

The overall estimate of the clustered regression structure is calculated as a weighted average 
of all the local models. Assuming that the number of the operating points is N, one has 

1

1

ˆ( ) ( )
ˆ( )

( )

N p p

p

N p

p

K k y k
y k

K k
. (7) 
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The weights should naturally be chosen so that the currently best matching local models affect 
the final results the most, whereas the further ones are practically neglected. Let us choose 

11p p

uuH R , (8) 

that is, the weighting matrix for each local model cost calculation equals the scaled inverse 

of the input data covariance matrix,  being the scaling factor; assuming that the data in 
each local model are normally distributed, the maximum likelihood estimate for the combined 
output value is obtained when the weights in (7) are chosen as 

1

1
( ) exp ( )

2

p p

n p

K k J u k

H

, (9) 

and  = 1. The simulations, however, showed that a more robust walking behaviour is 
reached with larger scaling parameter values. This increases the effect of averaging in the 
combination of the local model estimates. 

Fig. 4. Clustered teaching data and the operating points 

4. Clustered Regression Control 

4.1 Teaching the model 

The clustered regression model was formed using the sample data collected from the PD 
controlled gait. The model input was the state vector u(k) and output the corresponding 
control signal y(k). The data were first divided into N = 15 clusters located along the 
nominal trajectory in the state and output space. Based on the data belonging to each cluster 
the estimates of the statistics listed in 3.1 were calculated with eight principal component 
directions in each model. 
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Fig. 4 shows part of the clustered teaching data projected to three input variables. The operating 
point centres are shown as large circles with the same shade as the data belonging to the 
corresponding clusters. Also the state of the system in the operating point centres is drawn. 
Clearly the start of a new DSP is located in the right part of the figure. Following the nominal 
trajectory the state of the biped then changes to a SSP after some four operating points. Finally, 
the step ends just before the beginning of a new DSP in the lower left corner of the figure, where 
the state of the system is almost identical with the original state, only the legs are transposed. 

4.2 Biped behavior 

To test the attained model, a Simulink block was developed to realize the estimation of the 
control related to the measured current state of the system. The block could now be used to 
control the biped instead of the PD controller module applied in the data collection. It appeared 
that the taught clustered regression model was able to keep the biped walking and produced a 
very similar gait as the original PD controller. Fig. 5 shows two steps of the both gaits. 

Fig. 5. The learned gait was qualitatively quite similar to the original one 

Fig. 6. The clustered regression controlled system (CRC) is functioning a bit slower than the 
PD controlled one. 
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The biggest difference between the two gaits is that the clustered regression controlled one 
is proceeding a little slower. When comparing the coordinate value changes, the lag of the 
clustered regression controlled system is clearly seen (Fig. 6). The variations in the PD 
controlled signals are due to the added noise in the teaching data generation. However, the 
clustered regression controller can reproduce the original behaviour very accurately. 

5. Optimization 

5.1 Dynamic programming 

It was shown that the clustered regression controller is able to repeat the unoptimized 
behaviour used in the teaching. It would be very beneficial, however, to reach a more 
optimal control scheme so that the biped could, e.g., walk faster with smaller energy 
consumption; this would also be a strong evidence of the validity of the selected model 
structure when explaining biological systems. It would be interesting to see if the biped 
would learn new modes of moving: For example, if the speed were emphasized, would it 
finally learn to run? 
The optimization procedure of the clustered regression structure could be compared with 
dynamic programming (Bellman, 1957) that is based on the principle of optimality. In this case 
this idea can be formulated as follows: 

An optimal control sequence has the property that whatever the initial state and initial 
control are, the remaining controls must constitute an optimal control sequence with 
regard to the state resulting from the first control. 

In general, a dynamic optimization problem can be solved calculating the control from the 
end to the beginning. Starting from the final state, the optimal control leading to that state is 
determined. Then the same procedure is performed in the previous state and so on. Finally, 
when the initial state is reached, the whole optimal control sequence is attained. 
This means that one can form the global optimized behaviour using local optimization. When 
compared with the clustered regression structure, the local optimization should now be 
done inside every cluster or operating point. When the system enters the operating point 
region, the controller is assumedly able to guide it optimally to the next region. 
Another fact from the theory of optimal control states that for a quadratic (infinite-time) 
optimization problem for a linear (affine) system, the optimal control law is also a linear 
(affine) function of the state. This all means that, assuming that the model is locally 
linearizable, a globally (sub)optimal control can be implemented in the proposed clustered 
regression framework. 

5.2 Optimization principle 

As the walking motion is cyclic, one cannot choose the “first” or “last” operating point. 
Instead, the optimization can be carried out gradually in each cluster. A trial-and-error 
based optimization scheme which was used successfully in the previous work (Hyötyniemi, 
2002) is presented in the following. 
As a starting point for the optimization an unoptimized but easily attained behaviour is 
taught to the clustered regression controller (the original PD control). Then the current cost 
of the control for one cycle is calculated. The cost criterion can be chosen rather freely so that 
in the minimum of the criterion the behaviour reaches the desired optimum – for example, 
low energy consumption and high walking speed. 
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When a stable and cyclic motion is obtained the control is slightly varied at one time instant, 
and the new data point is adapted to the clustered regression model. If the new model gives 
a better control, that is, the cost is now smaller, it is accepted. On the other hand, if the cost 
is higher, the new model is rejected. After that, a new change can be made and similarly 
evaluated. Repeating these steps the controller can hopefully learn a more optimal 
behaviour, although the process may be quite slow and nothing prevents it ending to a local 
minimum of the cost function. This random search is an example of reinforcement learning;
now, because of the mathematically simple underlying model structure, the adaptation of 
the model can still be relatively efficient. 

5.3 Adaptive learning 

In order to optimize the control, it should be possible to update the clustered regression 
structure using new data. This adaptation, however, turned out to be quite hard to realize 
because of the properties of the data clusters.
It was detected during the PD controlled gait reproduction that at least eight principal 
component directions need to be considered in each local PCR model to reach an accurate 
enough control estimate. The relative importance of each principal component can be 
described by the variance of the corresponding latent variable component. Fig. 7 shows the 
averages of the variances of the local models. 

Fig. 7. Averages of the principal component variances in the local models 

Clearly, the ratio of the first and last principal component variances is huge, which means 
that it is very hard to iteratively determine the last principal component directions. In 
practice, this means that when the training is repeated, always using the earlier model for 
construction of data for the next model, the model sooner or later degenerates. The tiny 
traces of relevant control information are outweighted by measurement noise. 

6. Discussion 

The presented scheme was just a mathematical model applying engineering intuition for 
reaching good control, and the main goal when constructing the model was simplicity. 
However, it seems that there is a connection to real neuronal systems. 
It has been observed (Haykin, 1999; Hyötyniemi, 2004) that simple Hebbian/anti-Hebbian 
learning in neuronal grids results in a principal subspace model of the input data. This 
Hebbian learning is the principle that is implemented by the simple neurons (Hebb, 1949). 
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The principal subspace captures the principal components, and it is a mathematically valid 
basis for implementations of principal component regressions. 
In (Hyötyniemi, 2006) the Hebbian learning principle is extended by applying feedback 
through environment. It turns out that when the nonideality is taken into account – exploiting 
signals also exhausts them – there is a negative feedback in the system; one can reach 
stabilization of the Hebbian adaptation without additional nonlinearities, and emergence of 
the principal subspace without complicated hierarchies among neurons. There can exist self-
regulation and self-organization in the neuronal system, meaning that the adaptation of the 
global model can be based solely on the local interactions between individual neurons. 
But as the biped structure is highly nonlinear, one needs to extend the linear model; here 
this was accomplished by introducing the clustered structure with submodels. How could 
such extension be motivated in a neuronal system, as it now seems that some kind of central 
coordination is necessary to select among the submodels and to master their adaptation? 
Again, as studied in (Hyötyniemi, 2006), there emerges sparse coding in a system with the 
Hebbian feedback learning. It can be claimed that in sparse coding the basis vectors are 
rotated to better match the physically relevant features in data – such behaviour has been 
detected, for example, in visual cortex (Földiák, 2002). In Hebbian feedback learning the 
correlating structures become separated, and they compete for activation; without any 
centralized control structures, the signals become distributed among the best matching 
substructures. As seen from outside, the net effect is to have “virtual” clusters, with smooth 
interpolation between them. 

7. Conclusions 

In this work, a clustered regression structure was used to model and control a walking 
biped robot model. It was shown that the purely data-based model is accurate enough to 
control the biped. The control structures can also be motivated from the physiological point 
of view. 
The main problem is that to successfully reproduce the walking gait, the clustered 
regression controller should learn to keep the system well near the nominal trajectory. If the 
state of the system drifts too far from the learned behaviour, the validity of the local models 
strongly weakens and the system collapses. As a result, the robustness of the controller is 
dependent on the amount of source data variation obtained by additional noise. However, 
the clustered regression structure was unable to control the biped with the required noise 
level present in the PD controlled simulations. This complicates the iterative optimization 
process.
It was also shown that the management of no less than eight principal components is 
necessary; the “visibility ratio” between these principal components, or the ratio between 
variances, is over three decades. This also dictates the necessary signal-to-noise ratio. It 
seems that such accuracy cannot be achieved in biological systems; to construct a 
biologically plausible control scheme, the model structure has to be modified. 
There are various directions to go. Principal components are always oriented towards the 
input data only, neglecting the output, or the outcome of the actions. This problem should 
somehow be attacked. One possibility would be to explicitly control the adaptation based on 
the observed outputs, so that rather than doing standard principal component analysis, 
some kind of partial least squares (PLS) (Hyötyniemi, 2001) approach would be implemented. 
Also, the data could be rescaled to emphasize the less visible PC directions. 
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It is also important to point out that the physical model of the biped robot is only a model, 
and some phenomena present in the data may be caused by the simulator. Especially the leg 
contacts with the ground may introduce some oscillations which probably would not 
appear in data collected from a real robot. This means that some of the less important 
principal component directions may as well describe these irrelevant effects thus making 
the modelling problem harder. In the future work, it would be interesting to analyze the 
principal component directions in each local model one by one and try to find out which of 
them are really connected to the actual walking motion. 
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