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1. Introduction 

The change from vegetative to reproductive growth is a critical developmental transition in 
the life of plants. Various external cues, such as photoperiod and temperature, are known to 
initiate plant flowering under the appropriate seasonal conditions. Endogenous cues include 
a system of juvenile to adult transition that affects competence to flower. To understand the 
molecular mechanism of flowering, extensive studies have been performed using model 
plants, Arabidopsis thaliana and rice (Oryza sativa), and these have revealed the numerous 
regulatory network components associated with flowering (Jung & Muller, 2009; Amasino, 
2010). The general concept of the photoperiodic induction of flowering (photoperiodism) 
and the range of response types among plant species was established by Garner and Allard 
(1920). Among the external cues, light is the most important, being received by several 
photoreceptors including phytochromes, cryptochromes and phototropins. The role of 
phytochromes, that is the R-light- and FR-light- absorbing photoreceptors, in flowering has 
been investigated in several plant species. In Arabidopsis, a quantitative long-day (LD) plant, 
a phyA mutant flowered later in either long-day or short-day (SD) conditions with a night 
break (Johnson et al., 1994; Reed et al., 1994). In rice, a SD plant, the phyA monogenic 
mutant exhibited the same flowering time as the wild type under LD conditions, while, in 
the phyB and phyC mutant backgrounds, the flowering was greatly accelerated relative to 
phyB and phyC monogenic mutants (Takano et al., 2005). In pea, a LD plant, loss- or gain-
of-function phyA mutants displayed late or early flowering phenotypes, respectively 
(Weller et al., 1997, 2001). Day length is found to be perceived by leaves by Knott (1934). 
Because flowering occurs in the shoot apical meristem (SAM), the leaves must transmit a 
signal to the SAM and this signal is referred to as florigen (Chailakhyan, 1936). In 
Arabidopsis, three genes, CONSTANS (CO), GIGANTEA (GI) and FLOWERING LOCUS T 
(FT) were found to be involved in the production of a flowering promoter in LD conditions 
(Koornneef et al., 1991; Kardailsky et al., 1999). FT protein is now known to be florigen, and 
CO and GI are key players in the activation of FT expression. CO is a zinc-finger protein that 
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functions as a transcription factor (Putterill et al., 1995), and GI is a large protein involved in 
circadian clock function (Fowler et al., 1999; Park et al., 1999). FT is a small protein with 
some resemblance to RAF kinase inhibitors (Kardailsky et al., 1999; Kobayashi et al., 1999) 
that is produced in leaves and moves to the SAM (Corbesier et al., 2007; Jaeger & Wigge, 
2007; Mathieu et al., 2007; Tamaki et al., 2007; Notaguchi et al., 2008). The rice orthologs of 
Arabidopsis CO and FT genes, Heading date 1 (HD1) and Heading date 3a (Hd3a), respectively, 
have been identified (Yano et al., 2000; Kojima et al., 2002; Hayama et al., 2003). The 
promotion of flowering in Arabidopsis in LD conditions results from activation of FT by CO, 
while the delay in flowering in rice in LD conditions results from repression of Hd3a by Hd1 
(Izawa et al., 2000; Kojima et al., 2002; Roden et al., 2002; Hayama et al., 2003). A CO/FT 
module is likely to be conserved throughout the plant kingdom. CYCLING DOF FACTORS 
(CDFs) exhibit circadian cycling and bind to CO promoter and repress CO expression. The 
abundance of CDFs is controlled by FLAVIN-BINDING, KELCH REPEAT, F-BOX 
PROTEIN1 (FKF1) that appears to be involved in the ubiquitin-mediated degradation of 
CDFs. GI protein physically interacts with FKF1 and stabilizes it promoting CDF 
degradation and subsequent CO expression (Imaizumi et al., 2005.; Sawa et al., 2007; 
Fornara and Coupland, 2009; Imaizumi, 2009). Despite the conserved functions of FT 
orthologs, their expression may be controlled by different systems in different species. Non-
CO/FT pathways have been proposed for several plants, such as morning glory (Pharbitis 
nil) (Hayama et al., 2007) and tomato (Ben-Naim et al., 2006; Lifschitz et al., 2006). In rice, 
Early heading date 1 (Ehd1) has been found to promote flowering by inducing FT-like gene 
expression only under SD conditions independently of Hd1 (Doi et al., 2004). There is no 
Ehd1 ortholog in Arabidopsis. 
Soybean is a typical SD plant whose photoperiodic sensitivity was discovered by Garner 

and Allard in 1920. Compared to the model plants, photoperiodic control of flowering in 

soybean is far less understood. The eight loci, E1 to E8, conditioning flowering has been 

genetically identified (Bernard, 1971; Buzzel, 1971; Buzzel and Voldeng, 1980; McBlain and 

Bernard, 1987; Bonato and Vello, 1999; Cober and Voldeng, 2001; Cober et al., 2010). At each 

of these loci, two alleles have been identified, and except for E6, the recessive alleles at the E 

loci condition early flowering under both LD and SD conditions. The partially dominant 

alleles at the E loci delay flowering under LD conditions. Near-isogenic lines (NILs) for E 

loci have been developed and used for studies to elucidate the flowering in soybean (Saidon 

et al., 1989a,b; Upadhyay et al., 1994a,b; Cober et al., 1996a). Among these E loci, E1, E3, E4 

and E7 are known to be involved in the response to the phtoperiod (Buzzell, 1971; Buzzell 

and Voldeng, 1980; McBlain et al., 1987; Cober et al., 1996b; Cober and Voldeng, 2001; Abe et 

al., 2003). The E3 locus was first identified with the use of fluorescent lamps to extend day 

length. The e3e3 recessive homozygote can initiate flowering under LD conditions where the 

day length was extended to 20 hr using fluorescent lamps (FLD) with a high red to far-red 

(R: FR) ratio (Buzzell, 1971). The E4 locus was identified by extending the natural day length 

to 20 hr with incandescent lamps with a low R: FR ratio (Buzzell and Voldeng, 1980). The 

insensitivity of e4e4 genotype to LD conditions with a low R: FR ratio is necessary of e3e3 

background (Buzzell and Voldeng, 1980; Saindon et al., 1989b; Cober et al. 1996b). The E1 

and E7 loci are involved in the control of insensitivity to artificially induced LD conditions 

in the e3 and e4 backgrounds (Cober et al., 1996b; Cober and Voldeng 2001). Of the known E 

loci, the E1 locus is considered to have the largest effect on time to flowering under field 

conditions (Stewart et al., 2003).  
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Flowering time is a very important trait which is related to productivity, adaptability and 
domestication. Soybean breeders have attempted to modify flowering and maturity to 
expand growing areas for soybean. Molecular identification of E loci and flowering network 
of soybean is useful for efficient breeding to control adaptability and increase yield of 
soybean. We have identified flowering-time quantitative loci (QTL), FT1, FT2 and FT3, and 
found to correspond to E1, E2 and E3, respectively (Yamanaka et al., 2001). We successfully 
identified the responsible genes for the E1 (Xia et al., unpublished), E2 (Watanabe et al., 
2009) and E3 (Watanabe et al., in press) by positional cloning strategy. In this chapter, we 
will describe the process of identification of responsible genes for the E1, E2 and E3 loci with 
variation of alleles and propose a tentative major flowering time pathway in soybean. 

2. Strategy for fine mapping and positional cloning 

As flowering time is a quantitative trait, we employed QTL analysis (Tanksley, 1993) to 
dissect the genetic factors for flowering time into individual components by using 
recombinant inbred lines (RIL) derived from Misuzudaizu, a Japanese variety, and 
Moshidou Gong 503, a weedy line from China. To identify the underlying molecular basis 
for each QTL, map-based cloning method was performed because molecular or biochemical 
information for soybean flowering was very few or totally not available. Although NILs are 
usually used for fine mapping of each QTL, developing NILs is time-consuming and 
laborious process especially in soybean. Alternatively, we have proposed fine mapping 
using residual heterozygous lines (RHLs) (Yamanaka et al., 2005). An RHL selected from an 
RIL population harbors a heterozygous region where the target QTL is located but contains 
a homozygous background for most other regions of the genome. The progenies of the RHL 
are expected to show a simple phenotypic segregation based on the effects of the target QTL 
at the heterozygous region (Fig. 1). A similar term, heterogeneous inbred family (HIF), was 
used by Tuinstra et al. (1997) to identify the QTL associated with seed weight in sorghum. 
The RHL strategy has already been used to identify loci underlying pathogen resistance in 
soybean (Njiti et al., 1998; Meksem et al., 1999; Triwitayakorn et al., 2005). Genotypes of a 
trait in recombinants identified in the progenies of RHL, could be determined in the next 
generation. 
The probability of discovering RHLs for a target QTL depends on the heterozygosity ratio in 
a population and the size of the population. If p is the ratio of hetrozygosity of any 
population with size n, then the probability of detecting k individuals with a heterozygous 
genotype is supposed as nCk pk (1-p)n-k based on a binomial distribution. In the case of an F7 
generation of RILs, the ratio of heterozygosity (p) is 0.0156 and with a population size of 200 
(n), the probability of detecting at least one RHL is more than 0.95. We propose that QTL 
analysis using the F6-F8 RIL population in combination with the RHL strategy is useful for 
dissecting genetic factors for an agronomic trait into each QTL where the homozygous ratio 
is sufficiently high to evaluate traits with replication and the heterozygosity ratio is not so 
low and will allow the identification of a sufficient number of RHLs. 
In progenies of an RHL, we can identify NILs for the target QTL. New DNA markers in the 
heterozygous region were developed using NILs, bulked segregant analysis (BSA) in 
progenies of the RHL, and sequences of bacterial artificial chromosome (BAC) clones covering 
the target QTL. We usually developed amplified fragment length polymorphism (AFLP), 
simple sequence repeat (SSR) and sequence characterized amplified region (SCAR) markers. 
Genetic analyses of flowering phenotypes and DNA markers were performed in the  
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Fig. 1. A schematic representation of RHL. An RHL harbors a heterozygous region where 
the target QTL is located but contains a homozygous background for most other regions of 
the genome. Meshed circles show heterozygous individuals. 
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Fig. 2. A procedure for seed genotyping. 
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progenies of RHLs with a large population. Recombinants of DNA markers were identified 
in the population and the genotypes of flowering time of recombinants were confirmed by 
progeny test. The cosegragated region of DNA markers with genotypes of flowering time, 
and BAC contig covering the region were identified. Sequencing of BAC clones covering the 
target region and annotation of sequences were performed. Confirmation of a candidate 
gene was carried out by association of phenotypes and sequence polymorphism of several 
alleles and gene disruption by induced mutation. 
Population size of progenies of RHL for fine mapping depends on recombination frequency, 
that is, the position of a QTL. We usually used about 1,000 individuals but more than 10,000 
plants are necessary when the target locus is located in the peri-centromeric or centromeric 
region. For high throughput genotyping, the cotyledon flour was obtained by drilling a hole 
on the surface of seed without any damage to the embryonic axis (Fig. 2). The initially 
drilled material was discarded to eliminate any possible contamination from the seed coat. 
Collected materials were transferred into wells in 384-well plate. The drill and tube were 
cleaned by air flow.  

3. Positional cloning of the responsible genes for the E1, E2 and E3 loci 

A population of 156 RILs (F8:10) derived from a cross between Misuzudaizu and Moshidou 
Gong 503 was used for QTL analysis of flowering. Three QTLs for flowering time, FT1, FT2 
and FT3 were identified at LG C2 (Chr. 6), LG O (Chr. 10) and LG L (Chr. 19), respectively 
(Fig. 3). The FT1, FT2 and FT3 were considered to correspond to E1, E2, E3, respectively, 
based on their map positions (Yamanaka et al., 2001; Watanabe et al., 2004). The late-
flowering alleles FT1, FT2 and FT3 are partially dominant over the early-flowering alleles, 
ft1, ft2 and ft3, respectively. Misuzudaizu harbored the late-flowering allele of the FT1 and 
FT3 loci, whereas Moshidou Gong 503 carried the late-flowering alleles of the FT2 locus. 

3.1 Positional cloning of the responsible gene for the E2 locus  
The line RIL6-8 was found to be heterozygous for the FT2 locus and was designated as RHL6-8 
(Fig. 4). DNA marker analysis showed that RHL6-8 harbored a heterozygous region covering 
approximately 10 cM including the FT2 locus. The RHL6-8 generated NILs6-8-FT2 and –ft2 
among its progenies. Using BSA, a polymorphic AFLP marker, E7M19, was detected between 
the early-flowering bulk and late-flowering bulk derived from the progeny of RHL6-8. This 
marker was located close to the LOD peak position of the QTL assigned FT2 (Fig. 5). We 
developed additional DNA markers tightly linked to the FT2 locus using NILs6-8. Among the 
products amplified from all possible 4,096 primer pair combinations, only five polymorphic 
bands showed constant polymorphism between the contrasting genotypes of FT2/FT2 and 
ft2/ft2 in NILs6-8. These polymorphic bands were excised from the gel, sequenced and 
converted to SCAR markers. Three SCAR markers, originating from five AFLP bands, were 
developed and used for screening of 10 BAC clones from two independent BAC libraries. A 
contig covering the FT2 region was constructed based on the results of PCR analysis using the 
BAC end sequences. Five of the 10 BAC clones were then subjected to shotgun sequence 
analysis. Each BAC clone was separately analyzed and assembled, and the sequence 
information then combined using overlapping sequences. The total length covered by the five 
clones was approximately 430 Kb. A total of three DNA markers, including one AFLP-derived 
marker (marker 2) and two PCR-based markers developed from BAC sequences (markers 1 
and 3), were used in the fine mapping to minutely restrict the FT2 locus (Table 1). The 
positions of these markers are shown in Fig. 6. 
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Fig. 3. QTLs for flowering time identified in the RIL population. PVE: phenotypic variance 
explained by each QTL. 
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A1 A2 B1 B2 C1 C2 D1a D1b D2 E F G H I J K L M N O

RHL6-8

Misuzudaizu homozygous allele

Moshidou Gong 503 homozygous allele

Heterozygous allele

Not determined  

Fig. 4. Graphical genotype of RHL6-8. Solid bars, open bars and meshed bar indicate 
Misuzudaizu homozygous, Moshidou Gong homozygous genotypes and heterozygous 
genotype, respectively. 
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Fig. 5. QTL analysis for the FT2 locus in the RIL population. The LOD scores for the FT2 
locus calculated by composite interval mapping and displayed in the left panel. DNA 
markers closely linked to the FT2 locus are shown in the right panel. 

A population consisting of 888 plants, derived from several RHL6-8 plants, was used for fine 
mapping of the FT2 locus. Recombination between in this region was found in 21 plants 
among 843 plants. The remaining 45 individuals were omitted from the analysis because of 
missing data for phenotypes or genotypes. The number of FT2 homozygous late-flowering 
genotypes (n=213), heterozygous (n=420), and ft2 homozygous early-flowering genotypes 
(n=210) fitted well with a 1: 2: 1 segregation ratio. The additive effect and dominant effect of 
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this QTL were estimated to be -5.17 days and 0.57 days, respectively. The ratio of genetic 
variance explained by the FT2 locus accounted for 87.9 % of the total variance, indicating that 
the variation observed in this population was largely controlled by the single QTL effect. The 
genotypes of the selected 3 markers and flowering genotypes confirmed by progeny test are 
shown in Fig. 6. The genotypes of marker 2 cosegregated with flowering genotypes indicating 
that the QTL was close to this marker. Among the recombinants, line 6-8_501 rec had a 
recombination point between marker 1 and marker 2. Another lines, 6-8_452rec_A, 528rec_B 
and 6-8_120 rec, generated a recombination between marker 2 and marker 3. Marker 1 and 3 
originated from the end sequences of a BAC clone MiB300H01. Considering the recombination 
points in each line and their flowering genotypes, this indicated that the FT2 locus was 
restricted to the single BAC clone, MiB300H01. To identify the responsible gene for this QTL, 
the nucleotide sequence of this BAC clone was determined. 
 

 

Table 1. List of DNA markers used for fine mapping of the FT2 locus. 

 

114F08RV

GMJMiB300H01 GMJMiB319A04

GMJMiB039C03GM_WBb35C13

AFLP_E37M31
AFLP_E60M38AFLP_E37M47_27
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Genetic mapping
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Fig. 6. Fine mapping of the FT2 locus. The genotypes of each DNA marker of recombinants 
are shown in the left panel and segregation of flowering in the progenies is displayed in the 
right panel at the bottom of the figure. The interquatile region, median, and range are 
indicated by a box, vertical line, and horizontal line, respectively. 

In the 94 Kb sequence of MiB300H01, nine annotated genes were predicted. One of these 
genes, Glyma 10g36600 (assigned in phytozome ver. Glyma 1.0 http:// 
www.phytozome.net/), with a high level of similarity to GIGANTEA (GI) gene, was 

Marker name Type of marker Clone name Direction Sequence (5'-3')

Marker 1 BAC end GMJMiB300H01RV Fw CATAGCCGACCTTCTCCAAA 44,787,669

Rv AGCCCAATATGGCAGCATAC 44,787,287

AFLP(SCAR) E60M38 Fw CAGTGTTCGCCAGGCTTAGT 44,726,500

Rv GCTTGGGTAAACATCCCAAA 44,726,011

Marker 3 BAC end GMJMiB300H01fw Fw GAGAGCAGGGTTATTGGATGA 44,696,157

Rv GCCACTGTGCCACATTACAC 44,696,810

b) Physical position at Gm10 in Glyma1.0 (http://w w w .phytozome.net/).

Glyma1.0 (Gm10) b

Marker 2 a

a) The digestion w ith the restriction enzyme EcoRI w as needed to detect polymorphism. 
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considered a strong candidate for the FT2 locus. We isolated the complete predicted coding 
region using an RNA sample extracted from leaves of NILs6-8-FT2. We refer to this gene as 
GmGIa, since another GI gene, GmGIb, was also obtained from the same RNA sample. The 
coding sequence of GmGIa-Mo from Moshidou Gong 503 was extended to a 20Kb genomic 
region and contained 14 exons (Fig. 7A). Marker 2, which cosegragated with the FT2 
genotypes and originated from the AFLP marker, E60M38, was located in the 5th intron 
(Fig. 7). Compared to GmGIa-Mo, the Misuzudaizu early flowering allele, GmGIa-Mi, 
showed four single nucleotide polymorphisms (SNPs) in its coding sequence. One of these 
SNPs, detected in the 10th exon, introduced a premature stop codon mutation that led to a 
truncated 521 amino acids GI protein in the GmGIa-Mi allele (Fig. 7B). This stop codon 
mutation was considered a candidate for a functional nucleotide polymorphism in GmGIa. A 
derived amplified polymorphic sequence (dCAPs) marker was developed to examine the 
identity of this stop codon mutation in other NILs originating from Harosoy (e2/e2). The 
genotypes of all NILs tested coincided well with the genotype of this diagnostic dCAPs 
marker. This result indicated that the responsible gene for the FT2 and E2 loci was identical 
to each other, and that a conserved mutation might have caused the early flowering 
phenotype in the recessive alleles. To validate the significance of the mutation in the GmGIa, 
we screened a mutant line from X-ray irradiated and ethyl methanesulfonate (EMS) treated 
libraries by targeting-induced local lesions in genomes (TILLING) (McCallum et al., 2000). 
The sequence of GmGIa in the wild type Bay cultivar was completely identical to that of the 
E2 allele. One mutant line harboring a deletion in the 10th exon that caused a truncated 
protein (735 amino acids) (Fig. 7B) showed a significant earlier (8days) flowering phenotype 
than the wild type under natural day-length conditions. These results indicate that GmGIa is 
the gene responsible for the E2 locus. 
 

BAC MiB300H01 
24-45Kbp (start codon 24257bp)

25Kb 30Kb 35Kb 40Kb 45Kb

GmGIa_CDS

stop codon
1170 aa

3758bp 

AFLP
E60M38

ft2 (e2)

521 aa

E2-mut

735 aa

A

B

 

Fig. 7. Variation of gene structure of GmGIa. A: Exons, a part of the 3’UTR, and introns of the 
GmGIa gene in the 24-45 Kb region of MiB3300H01 are indicated by bold boxes, open boxes 
and lines, respectively. The location of marker 2, originating from AFLP marker E60M38, is 
presented in the 5th intron by the gray box. B: The truncated sites of amino acid sequences 
in ft2 (e2) and the mutant allele (E2-mut) are indicated by the solid triangles.   
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3.2 Identification and variation analysis of the responsible gene for the E3 locus 

The line RIL1-146 was found to be heterozygous for the FT3 locus. One other line, RIL6-22, 

showed segregation for growth habit. This trait is controlled by the Dt1 locus and is linked 

to the FT3 locus at a distance of about 25 cM. The segregating region of RIL6-22 included 

both the Dt1 and the FT3 loci. A single plant with a genotype of dt1dt1 FT1FT1 ft2ft2 FT3ft3 

was selected from RIL1-146, and 5plants with a genotype of Dt1dt1 ft1ft1 ft2ft2 FT3ft3 were 

selected from RIL6-22 and designated as RHL1-146 and RHL6-22, respectively. From both 

progenies of these RHLs, two NILs, 1-146-FT3 and –ft3, and 6-22-FT3 and –ft3 were selected. 

Using BSA analysis, a polymorphic AFLP marker, E6M22, was detected between the early-

flowering bulk and the late-flowering bulk derived from the progeny of RIL1-146. This 

marker was located at the LOD peak position of the FT3 (Fig. 8).  

 

homozygous

homozygous

homozygous

homozygous

FT3

RHL1-146

RHL6-22

Dt1

dt1/dt1 Dt1/dt1 Dt1/Dt1

Position 117.3cM
LOD score 6.33
Additive effect 2.4day
PVE   4.5%

A B

A257

A169

GMS018

GM251

E16M23

GM017

E3M26

B124a

B046a

GM041

Satt156

GM267

Satt448

Satt166

Dt1
Sat_184
Satt664
A489

Satt229
GM043
E6M22
GM120a

Satt513
Satt373

136.8cM

Sat_245
10cM

LG L
LOD score

02.04.06.08.0

 

Fig. 8. LOD scores for the FT3 locus and heterozygous regions of RHLs. The location of the 
FT3 locus and the segregating regions of two RHLs, 6-22 and 1-146 are shown. Solid line 
indicates the LOD scores calculated by composite interval mapping for the QTL (A). Shaded 
bars indicate the heterozygous regions of two RHLs (B). 
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As a result of marker analysis, the heterozygous region in RHL1-146 extended for about 5 

cM including the FT3 locus. In contrast, the heterozygous region in RHL6-22 extended for 

about 40 cM including the FT3 and Dt1 loci. Two groups of NILs, NILs1-146 and NILs6-22, 

were used to develop the AFLP markers tightly linked to the FT3 locus. Of all possible 4096 

primer pairs, only six fragments showed constant polymorphism between the genotypes of 

FT3/FT3 and ft3/ft3 in NILs1-146 and NILs6-22. These polymorphic bands were excised 

from the gel, then sequenced, and converted to codominant SCAR markers. Several BAC 

and transformation-competent bacterial artificial chromosome (TAC) clones were screened 

using the SCAR markers. The nucleotide sequences of a BAC clone, GMJMiB242F01, and a 

TAC clone, GM_TMiH_H17D12, were determined. These BAC/TAC sequences were used 

to develop new PCR-based markers. A total of six DNA markers, including three AFLP-

derived markers (markers 1, 3, and 6) and three PCR-based markers developed from the 

BAC/TAC sequences (markers 2, 4, and 5) were used for fine mapping of the FT3 locus 

(Table 2). 

A population of 897 plants derived from seven RHL1-146 plants was used for precise 

mapping of the FT3 locus. No recombination between these markers was found in 883 

plants. The numbers of FT3 homozygous late-flowering genotype (n=208) and heterozygous 

(n=441) and ft3 homozygous early flowering genotypes (n=234) fitted a 1: 2: 1 segregation 

ratio. These results suggested the presence of a single QTL for flowering time within a small 

heterozygous region in RHL1-146. The additive effect and the dominant effect of this QTL 

were estimated to be 3.0 and 0.98 days, respectively. The ratio of genetic variance explained 

by the FT3 locus accounted for 70.7 % of the total variance. On the other hand, 14 plants 

showed recombination between these markers (Fig. 9) and the recombination points were 

determined by the genotype of markers 2-5. The FT3 genotypes in each recombinant 

completely coincided with the genotypes of marker 3 that originated from the closest AFLP 

marker E6M22 to the LOD peak position (Fig. 8). Moreover, recombination points occurred 

on both sides of marker 3 and corresponded to both sides of the TAC clone, 

GM_TMiH_H17D12. These results suggested that the gene responsible for the FT3 locus was 

restricted to the physical region covered by GM_TMiH_H17D12 (Fig. 9). 

 

 

Table 2. List of DNA markers used for fine mapping of the FT3 locus. 
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03009
03027

04043_rec

04110_rec
04232_rec

04241_rec

04253_rec

04277_rec
04343_rec

04351_rec

04478_rec
04531_rec

04564_rec

04733_rec

04783_rec
04814_rec

60 65 70

Marker1 Marker2 Marker3 Marker4 Marker5 Marker6

Satt229 E6M22 E30M47 GM120aE54/56M59 E41M34 E18M23

GMJMiB242F01

GM_TMiH_H17D12
100Kbp

DNA marker

Physical contigs

Genetic mapping

Days to flowering

Flowering segregation in progeny

FT3 (E3) locus

Misuzudaizu homozygous allele

Moshidou Gong 503 homozygous allele

Heterozygous allele

 

Fig. 9. Fine mapping of the FT3 locus. The genotypes of each recombinant are shown in the 
left panel. Misuzudaizu homozygous, Moshidou Gong 503 homozygous and heterozygous 
genotypes are indicated by solid, open and meshed boxes, respectively. The phenotypic 
segregation in the progenies of each recombinant was shown in the right panel. The 
interquartile region, median, and range are indicated by a box, bold vertical line, and 
horizontal line, respectively. 

A total of 11 genes were predicted in the sequence of GM_TMiH_H17D12. Previous studies 
had suggested that the FT3 locus may be identical to the maturity locus E3 (Yamanaka et al., 
2001) and that the E3 gene which showed a large effect on flowering time under FLD 
conditions had some association with a photoreceptor (Cober et al., 1996b). Considering 
these findings, one gene highly similar to that encoding phytochrome A was considered to 
be the gene responsible for the FT3 locus. To confirm this assumption, differences in this 
gene between the parental lines were investigated. This phytochorome gene was referred to 
as GmPhyA3, since two other phytochrome A genes had been previously designated as 
GmPhyA1 and GmPhyA2 by Liu et al. (2008). GmPhyA3 obtained from Misuzudaizu 
(GmPhyA3-Mi) was found to encode a protein composed of 1130 amino acids. A BLAST 
search found that GmPhyA3-Mi displayed normal features of phytochrome A, including a 
chromophre-attached domain, two PAS domains, and a histidine kinase domain as 
conserved domains. Compared to GmPhyA3-Mi, the GmPhyA3 gene of Moshidou Gong 503 
(GmPhyA3-Mo) showed a large insertion in the fourth intron and one SNP for a 
nonsynonymous amino acid substitution (glycine to arginine) in the third exon (Fig. 10). 
This SNP corresponded to the polymorphism detected by the AFLP marker E6M22. The 
inserted sequence was 2.5 Kb in length and a part of this sequence was found to be highly 
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similar to that of the non-long-terminal-repeat (LTR) retrotransposon reverse transcriptase 
element, but did not resemble the Ty1/copia or Ty1/gypsy sequences in the e4 allele (Liu et 
al., 2008). Moreover, this inserted sequence showed a similar short sequence on both sides of 
the inserted position. To collect allelic information about GmPhyA3, the genes from Harosoy 
and Harosoy-e3 were also isolated and designated as GmPhyA3-E3 and GmPhyA3-e3, 
respectively. While a large retrotransposon-like insertion sequence was observed in 
GmPhyA3-E3, similar to that in GmPhyA3-Mo, the amino acid sequences encoded by 
GmPhyA3-Mi and –E3 were identical (Fig. 10). On the other hand, a large deletion of 13.33 
Kb at a position after the third exon was detected in GmPhyA3-e3 (Fig. 10). Additionally, one 
mutant (GmPhyA3-mut), with a 40-bp deletion in the middle of the first exon of the 
GmPhyA3 gene was screened from the mutant libraries of Bay by TILLING (Fig. 10). The 
sequence of GmPhyA3 from Bay was identical to that of GmPhyA3-E3. 
 

IACGMAAARIASKDILDQDRSHTASEIRWGGAKHEPGERDDGRRV

IACGMAAA(TQPQKSDGVVQSMSLVKGMMVGGCIQDHHSRLSLKL*)

GmPhyA3-Mi (E3Mi)

GmPhyA3-E3 (E3Ha)

GmPhyA3-Mo (e3Mo)

GmPhyA3-e3 (e3T)

GmPhyA3-mut

40bp deletion

GAATAGCTTCCAAAGATATACTTTTCTGGTTTCGGTCTCA

GmPhyA3-mut

Wild Type

Gene structure Red light sensitivity

Normal

Normal

Less

Less

Less

Amino acid substitution

 

Fig. 10. Variation of gene structure of GmPhyA3 and red light sensitivity. Open boxes, 
shaded boxes, and horizontal lines indicate exons, UTRs, and introns, respectively. The 
deleted region detected in Harosoy-e3 is denoted by a dotted line. The deleted region in the 
middle part of the first exon of the mutant is shown at the bottom of the figure. The 
sequence of 40-bp deletion and the corresponding translated amino acid sequence in the 
wild-type plant are displayed. As a result of the deletion, a stop codon following the 36 
amino acids at the deletion site appears in the mutant. 

For allelism test among the E3, FT3, and ft3 alleles, two population from crosses between 
Harosoy (Dt1Dt1 e1e1 e2e2 E3E3) and 6-22-FT3 (Dt1Dt1 ft1ft1 ft2ft2 FT3FT3) and 6-22-ft3 
(Dt1Dt1 ft1ft1 ft2ft2 ft3ft3) were developed. Genetic analysis revealed that only the crossing 
population of Harosoy and 6-22-ft3 showed a significant difference in genetic effect on 
flowering time. This indicated that the E3 and FT3 alleles had the same effect. The large 
insertion-like retrotransposon observed in GmPhyA3-E3 and –Mo therefore might have no 
effect on the phenotype, whereas the one-amino-acid substitution observed in the GmPhyA-
Mo might have weakened the effect of the FT3 allele. 
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Since Cober’s study (1966b) indicated that the E3 allele exerted a large effect under FLD, the 
sensitivity to FLD conditions between the three NILs ( Harosoy and –e3, 6-22-FT3 and –ft3, 
1-146-FT3 and –ft3) and the mutant line for the GmPhyA3 gene were evaluated. While the 
flowering days of each line varied because of their different genetic backgrounds, the effect 
of the E3/FT3 allele was enhanced under FLD conditions in all the NILs. The mutant line 
with GmPhyA3-mut flowered 15 days earlier than the original variety Bay under extended 
mercury-vapor lamp with high red/far-red (R/FR) conditions like FLD. 
These results strongly suggest that GmPhyA3 is the gene responsible for the locus E3/FT3. 
We designated the type of gene structure of GmPhyA3-Mi, GmPhyA3-E3, GmPhyA3-Mo and 
GmPhyA3-e3 as E3Mi, E3Ha, e3Mo and e3T, respectively, hereafter. Distribution of these 
alleles was investigated using several cultivars and lines covering all the maturity groups in 
Japan. Three primer pairs were designed for discrimination among E3Mi, E3Ha/e3Mo and 
e3T. The sequences of these primers are shown in Table 3 and the positions of these primers 
are indicated in Fig. 11. The e3Mo type was distinguished from E3Ha type by Mse1 
digestion of a PCR product using specific primers, E3_07666FW and E3_08417RV. PCR 
products or digested fragments were separated by 1% agarose gel electrophoresis. Among 
the 80 accessions randomly selected from Genebank of the National Institute of 
Agrobiological Sciences (NIAS) in Japan, the E3Mi and e3T types were equally abundant, 
while the E3Ha and e3Mo types seldom occurred. 
 

 

Table 3. The DNA markers for genotype analysis of the E3 locus. 

 

Insertion : 2.6 kb

Deletion : 13.3 kb

E3_09908RV

e3T_0716RVE3_08557FW

E3Ha

e3Mo

E3Mi

e3T

E3_08557FW

E3_08557FW

E3_08557FW E3Ha_1000RV

E3Ha_1000RV

           : Target region for CAPS analysis

           : Primer position of STS markers

SNP : G → A

    Arg → Gly

 

Fig. 11. Variation of GmPhyA3 gene structure with the position and orientation of PCR 
primers. 

The E3 region were amplified with four pairs using the total DNA of 30 varieties, and four 
PCR products were designated as E3f1 to E3f4 (Table 4). The positions of these primers and 
PCR fragments are indicated in Fig. 12. Sequencing primers were constructed at intervals of 
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approximately 500 bases on the fragments. The PCR products were sequenced and 
alignment of the sequences was carried out. Days from sowing to the first flowering and 
alleles at the E3 locus of 30 accessions are listed in Table 5. The results showed that E3Mi 
and e3T types were abundant, followed by the E3Ha type, while the e3Mo seldom occurred. 
No other type has been detected so far. The E3Ha type was detected in the accessions from 
China and North America. The latest flowering group harbored the E3Mi type, while the 
earliest flowering group, the e3T type. There was no clear relationship between the 
flowering time and the alleles at the E3 locus in the other groups, because the flowering time 
depends on the combination of alleles at many loci.  

 

 

Table 4. Anchor primers for sequence analysis at the E3 locus. 

 

 

Insertion : 2.6 kb

Deletion : 13.3 kb

SNP : G → A

          Arg → Gly

E3f1 E3f2 E3f3 E3f4 (E3Mi )

E3f4 (e3T )

E3f4 (E3Ha / e3Mo )

E3_00527FW
E3_03384FW

E3_03552RV
E3_06355RV

E3_05879FW E3_08417RV
E3_08115FW E3_09908RV

E3_00527FW
E3_03384FW

E3_03552RV
E3_06355RV

E3_05879FW E3_08417RV
E3_08115FW E3_09908RV

e3T_3544RVE3_08115FW

E3Ha

e3Mo

E3Mi

e3T

 

Fig. 12. Variation of GmPhyA3 gene structure with the position and orientation of primers 
for PCR walking. The PCR products (E3fi, E3f2, E3f3 and E3f4) are shown at the bottom of 
the figure. As the e3T type lacked a portion of the third intron and the downstream region, 
the reverse primer for E3f4 was different from that for other alleles. 
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Table 5. Days from sowing to the first flowering and alleles at the E3 locus. These accessions 
were sown on June 10, 2008 at the NIAS 

3.3 Toward the positional cloning of the E1 gene 
Among the the 156 RILs, a single line was identified as being heterozygous around the FT1 
locus (approximately 17 cM) based on the genotypes of the DNA markers, and was named 
RHL1-156 (Fig. 13). A population of 1,006 plants derived from RHL1-156 was used for fine 
mapping of the FT1 locus. The FT1 locus mapped between tightly linked DNA markers, 
Satt365 and GM169 (Fig. 14).  
As it was difficult to find AFLP markers around this region in this population, we used 
mapping populations derived from a cross between Harosoy-E1 (E1E1 e2e2 E3E3) and 
Harosoy (e1e1 e2e2 E3E3). The E1 locus was mapped proximate to Satt557 between Satt365 
and Satt289 using the F2 population (117 plants). In a F2:4 population (mixed progenies from 
F2 heterozygotes at Satt557 locus) with 1,442 individuals, seven recombinants were 
identified between Satt365 and Satt289. The flowering genotypes for each recombinant are 
confirmed by the progeny segregation pattern. With these recombinants, we were able to 
delimit the E1 region to approximately 289 kb between markers A and E5 (Fig. 15). No 
recombination was found between markers S8 and Satt557, despite a physical distance of 
133 kb. Because more than 40 genes were identified in the 289 kb region, more intense fine 
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mapping was conducted by using more than 13,000 plants with a protocol for large-scale 
genotyping of soybean seeds (Fig. 2) and a candidate gene was identified (Xia et al., 
unpublished ). 
 

 

Fig. 13. Graphical genotype of RHL1-156. Solid bars and bars with slanted lines represent 
Misuzudaizu and Moshidou Gong 503 homozygous segments, respectively. Open bars 
represent unclassified segments. Putative location of each QTL is circled.  
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Fig. 14. QTL analysis for the FT1 locus. LOD scores calculated by interval mapping are 
shown in the left panel. Close-up of the FT1 region is highlighted in the right panel. 

www.intechopen.com



 
Soybean – Genetics and Novel Techniques for Yield Enhancement 

 

68

060-052
060-250
060-285
060-828
060-946
060-784
060-1057

Hetero
E1
e1
E1
Hetero
Hetero
e1

E1 homozygous allele

e1 homozygous allele

Heterozygous allele

Satt365 SSRA SSR8 Satt557 End5

4/1442 1/1442 0/1442 1/1442

FT1/E1 locus

WBb33C20
WBb115J24

WBb168L14
WBb220D05

WBb238P13
WBb139N16

WBb10K2
WBb55K17

WBb20D6

WBb106D7
WBb104J15

WBb120K2

Line FT1 genotype

DNA marker

Physical contigs

Genetic mapping

 

Fig. 15. Fine mapping of the FT1/E1 locus. E1 homozygous, e1 homozygous and 
heterozygous genotypes are shown by solid, open and meshed boxes, respectively. The FT1 
genotype of each recombinant was identified by progeny test. 

The FT1 locus was genetically mapped into the semi-central domain of linkage  

group C2 (Fig. 3) and was included in the pericentromeric region of chromosome 06 

(http://www.phytosome.net/). In the heterochromatic regions, the ratio of physical to 

genetic distance is 3.5Mb/cM in comparison of 197 Kb/cM in euchromatic regions (Schmutz 

et al., 2010). The responsible gene for FT1/E1 locus is characterized by relatively lower 

mRNA abundance. In fact, no EST data of the FT1/E1 gene could be retrieved from public 

databases. The gene encodes a novel small protein and is unique in the sense of no apparent 

orthologs in model plants Arabidopsis or rice. We are analyzing the ligands of this protein 

and the interaction with DNA sequences. 

4. Putative pathway of flowering time in soybean 

The responsible gene for the E4 locus was identified as GmPhyA2 through the candidate 
gene approach (Liu et al., 2008). At the e4 allele, a Ty1/copia-like retrotransposon was 
inserted in exon 1 of the gene, which resulted in dysfunction of the gene and photoperiod 
insensitivity. Similarly, natural and artificial mutations of GmPhyA3 resulted in weak or 
complete loss of photoperiod sensitivity (Watanabe et al., 2009). The FT homologs in 
soybean have been identified (Kong et al., 2010) and two of them, GmFT2a and GmFT5a, 
were highly upregulated under SD conditions and showed diurnal expression patterns with 
the highest expression 4h after dawn. Under LD conditions, expression of GmFT2a and 
GmFT5a was downregulated and did not follow a diurnal pattern. Ectopic expression 
analysis in Arabidopsis confirmed that both GmFT2a and GmFT5a had the same function as 
Arabidopsis FT. A double-mutant (e3e3 e4e4) for GmPhyA2 and GmPhyA3 expressed high 
levels of GmFT2a and GmFT5a under LD conditions (18-h light) with an R: FR ratio of 1.2, 
and it flowered slightly earlier under LD than the wild type (E3E3 E4E4) grown under SD. 
The expression levels of GmFT2a and GmFT5a were regulated by PHYA-mediated 

www.intechopen.com



 
Positional Cloning of the Responsible Genes for Maturity Loci E1, E2 and E3 in Soybean 

 

69 

photoperiodic regulation system, and the GmFT5a expression was also possibly regulated by 
photoperiod-independent system in LD. 
GI have the conserved function of controlling the expression of the FT gene in Arabidopsis, 
rice and pea (Hayama et al., 2003; Mizoguchi et al., 2005; Hecht et al., 2007). We analyzed the 
expression of GmFT2a and GmFT5a at 9:00 a.m. 4 weeks after sowing under natural day-
length conditions using E2 (FT2) NILs in which photoperiod changed from LD to SD. A 
clear association between the GmFT2a expression level and early flowering phenotype was 
observed in both NILs. However, there was no significant difference in the GmFT5a 
expression levels between these NILs. These results suggested that GmGIa probably 
controlled flowering time through the regulation of GmFT2a. The recessive alleles of the E2 
(FT2) locus were perhaps unable to suppress GmFT2a expression and resulted in the early 
flowering phenotype. 
There are strong interaction among the effects of E1 (FT1) and E2 (FT2), E1 (FT1) and E3 
(FT3) (Yamanaka et al. 2000; Watanabe et al. 2004). The e3e3 recessive homozygote can 
initiate flowering under R-enriched LD, but the e3e3 genotype is necessary for plants with e4 
mutant allele to flower under FR-enriched LD. In the mapping population with e3 
background, photoperiodic insensitivity could occur in either genotypes of e1E4, E1e4 or 
e1e4 (Abe et al., 2003). These results suggest that E1, E2, E3 and E4 might concurrently 
mediate photoperiodic flowering in a shared pathway. The expression of the candidate gene 
for the E1 locus was found to be repressed under SD. Under SD conditions, E3/E4-mediated 
photoperiodic regulation system up-regulates the expression of GmFT2a and GmFT5a 
possibly through the repression of the E1 gene (Fig. 16). The E2 locus also might control the 
GmFT2a expression through the E1 gene. 
 

E4 (GmPhyA2)E3 (GmPhyA3)E2 (GmGIa)

E1 or 
Unidentified factor XGmFT2a/GmFT5a

(Soybean florigen genes)

?
?

?

?

Relationship via expression level

Genetic Interaction
 

Fig. 16. A putative network of flowering time genes in soybean. 

5. Conclusion 

We successfully identified the responsible genes for the E1, E2 and E3 by positional cloning 
strategy and proposed a tentative flowering time gene network in soybean based on 
interaction of these genes. We used RHLs derived from RIL for fine mapping a single QTL 
effectively. An RHL harbors a heterozygous region where the target QTL is located and a 
homozygous background in most other regions of the genome. Novel DNA markers tightly 
linked to the locus were developed based on AFLP between the NILs of the locus derived 
from an RHL. A large-scale population derived from RHLs was used to locate the target 
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locus precisely. We developed manual large-scale genotyping of seeds, in which powdered 
cotyledon was obtained by drilling a hole on the surface of seed without any damage to the 
embryonic axis. Recombinants carrying crossovers in the target region were selected based 
on genotypes of DNA markers around the region. Genotypes of the flowering time locus of 
recombinants were determined by progeny test and identified the cosegregated region 
based on these genotypes. Physical contigs were constructed with BAC/TAC clones 
screened by SCAR markers converted from these AFLP fragments. By sequencing the BAC 
contig covering the cosegregated region, we identified the candidate genes. Confirmation of 
the responsible gene was performed by investigation of association between natural and 
induced variation of the candidate gene structures and flowering time. Mutant screening 
was carried out with TILLING using X-ray irradiated or EMS treated mutant libraries. The 
interactions between the identified genes were analyzed using several NILs and segregating 
population for the E loci. A tentative flowering time network in soybean was proposed 
taking into consideration the possible functions of responsible genes for E1, E2, E3 and E4 
loci and GmFTs. Further characterization of other E loci is necessary to reveal the molecular 
mechanism of flowering in soybean. 
Recently, soybean genome sequence has been reported (Shumutz et al., 2010) and a large 
number of SSR (Song et al., 2010) and SNP (Hyten et al., 2010a; Lam et al., 2010) markers has 
been developed. New high-throughput sequencing technologies, and multiplex assays for 
genotyping a huge number of SNPs have become available. These technologies and 
information will accelerate the identification of responsible genes for agriculturally 
important loci. But methods and materials to precisely locate the target loci in the genome 
are still important. Moreover, variation of regional genome structure and gene content (Kim 
et al., 2010 ; William et al., 2010; Xia et al., unpublished) will need the sequencing of genome 
clones covering the target region. 
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