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1. Introduction 

Soft lithography should be regarded as a complement to common lithography, providing a 
low-expertise route toward micro/nanofabrication and playing an important role in 
microfluidics (YN Xia & Whitesides, 1998). The resolution ranges from 5 to 100 nanometer 
(Pilnam Kim, et al. 2008). Patterns generated by the soft lithography are transfered 
repeatedly to the soft flexible materials, and then are printed on the medium substrates. In 
this field, micro contact printing (μCP) is the most widely used technique, especially in 
bioscience research. Combined with microfluidic patterns technology, several kinds of the 
extracellular matrix proteins like polymers can be printed to make cells grow according to 
the designed patterns (Tai Hyun Park, et al. 2003). The cell growth, differentiation in vitro 
can be regulated in the respect of spatial structure of extracellular matrix(Y. Nam, et al. 
2004). So the morphology of neural cells and the influence of spatial structure can be 
investigated on the micron or even nano-scale level substrates. The closed loop of neural 
cells can be constructed in order to simulate the complex neural network in vivo. Finally, 
communication with the specific environment in vitro will be achieved by multi-electrode 
arrays (MEA). Our previous work used μCP technique can build more solid patterns. By 
comparing three different extracellular matrixes, PEI can obtain much better results, which 
adhering more neural cells to form reliable design. However, it is not perfect for the specific 
neural network construction and the patterned neural cell culture on MEA. In subsequent 
research, we improved the parameters of the template and achieved a big progress on 
microfluidic patterning technique to microfabricate patterns. Patterns of biomaterials were 
constructed with the help of the advanced soft lithography to do the primary cell culture, 
such as dopaminergic neurons in the substantial nigra and GABAergic neurons in the 
striatum. Finally, the biocompatibility of MEA was validated initially by primary striatal 
neuronal culture. Meanwhile, new strategy of structural microfabrication on MEA surface 
was further explored. 

2. Soft lithography materials 

Why soft lithography is called "soft”? One of the reasons is the use of soft organic materials 
such as polydimethyl siloxane(PDMS), polymethyl methacrylate (PMMA), and 
polycarbonate (PC). PDMS is most widely used in bioscience research, because it has good 
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biocompatibility, chemical stability, optical transparency, air permeability, elasticity. 
Moreover, the polymer precursors can be aggregated into a mold by UV radiation. PDMS 
polymerization is shown in Figure 1.  
 

 

Fig. 1. PDMS polymerization 

To cure the PDMS prepolymer in general, a mixture of silicon elastomer and a curing agent 

(10:1, Sylgard 184 silicone elastomer kit, Dow Corning Corp.) is poured onto the master and 

placed at 70-80°C for 1 h. The character of the PDMS is closely related to the mixture ratio, 

curing temperature, and vacuum. Silicon, quartz or glass, and some photoresist are the most 

common materials to fabricate the masters by standard lithography, transferring the 

patterns to the PDMS stamp.  

3. Soft lithography fabrication methods and it’s application in patterning 

Various soft lithographic technologies have been applied to fabricate high-quality 

microstructures and nanostructures including micro contact printing (μCP), replica molding 

(REM), microtransfer molding (μTM), micromolding in capillaries (MIMIC), and solvent-

assisted micromolding (SAMIM). Here, three soft lithographic methods are introduced to 

fabricate micropatterns onto a surface or MEA: μCP, microfluidic patterning technique and 

microstencil. The former two can be achieved using the same PDMS stamps and molds. A 

novel technology was applied to get the high depth-to-width ratio silicon-based mold to 

fabricate the topographic PDMS microstencil with microfluidic channel (Y.Nam, et al, 2006). 

Finally, microchannels on MEA with polyimide (PI) guiding the cell growing were also 

introduced. 

3.1 Microcontact printing (μCP) 
μCP is a direct method for pattern transfer, generating a non-structured, chemically 

modified surface. The process of μCP is shown in figure 2. Photolithography was used for 

the fabrication of silicon-based masters in preparing PDMS stamps. Multi-layer molds were 

made of thick photoresist like SU-8 on silicon or glass wafers by standard lithography 

techniques. It was subsequently placed at least 30min in an oven at 160°C to make the 

photoresist adhere to the substrate closely. Release agent DC20 or OTS were always spin-

coated and drying on the master before pouring PDMS. Liquid PDMS (Sylgard-184 from 

Dow Corning) was poured onto the mold and clamped by the foil, so that the shape of the 

mold microstructure was transferred to PDMS membrane. It was subsequently placed at 

least 2 h in an oven at 80°C. The molded PDMS slab was then peeled off and placed onto a 

glass slide for handling. After curing, PDMS stamps are soaked in a protein “ink”, such as 

PEI, PLL, or LN. 20 minutes later, the “ink” was blew off by using nitrogen gas. Then the 

raised regions were brought into conformal contact with a substrate in order to print  the ink 

onto the substrate surface. The material of interest was transferred from the PDMS stamp 

onto the substrate surface. The microscopy of the PDMS stamps were shown in figure 3. 
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Fig. 2. Schematics of the processes of μCP 
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Fig. 3. Microscopy of the PDMS stamps 

The bare areas of substrate surface that the PDMS stamp has not touched can be exposed to 
another coating material. μCP provides the patterning of self-assembled monolayers(SAMs) 
of alkanethiols on gold, and the resulting control over the adsorption of adhesive proteins 
facilitates the patterning of cells on substrates. 
μCP enables easy stamp replication, fast printing using parallelization, and low-cost batch 

production. A conformal contact between the stamp and the surface of the substrate is the 

key to its success. The polymer stamps also minimize the problems of sample carry-over 

and cross contamination. Printing has the advantage of simplicity and convenience: Once 

the stamp is available, multiple copies of the pattern can be produced using straightforward 

experimental techniques. Printing is an additive process; the waste of material is minimized. 

Printing also has the potential to be used for patterning large areas.  

However, μCP has some limitations that are mainly caused by the use of a soft polymer 

stamp. The swelling of a stamp during inking often results in an increase in the pattern size 

by diffusion of the excessive printed molecules on the substrate.  

3.2 Microfluidic patterning using microchannels 
The difference between μCP and microfluidic patterning is that PDMS stamps are soaked in 

the “ink” in the former usage, but the stamps contact the substrate forming microchannels 

delivering the materials for cell adhesion or cell suspension to the desired area in the latter 

usage because of the elastic nature and hydrophobicity of PDMS. The substrate tilted 45 

degree, drop of liquids were injected to the PDMS microchannels by the pipette. Then the 

substrate was put on the test tube rack vertically for 25 to 30 min. Patterns were formed of 

after the liquid dried. 

While this method has been used primarily for surface attachment of cells, it may be 

possible to adapt this method to three-dimensional tissue constructs. In many cases three 

dimensional tissue constructs promote cellular differentiation and more authentic cellular 

morphology and metabolism.  

3.3 Microstencil on MEA 
The former two methods enable patterning adhesion molecules and guiding cultured 

cells grow physically. But the cells’ communication and interactions in co-cultures are 

difficult to be detected, which is important to research the function of the cells network. 
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MEA was a cell-based biosensor for extracellular electrophysiological investigations of 

neuronal networks. PDMS microstencil was designed to pattern adhesion molecules at 

the surface of MEA guiding cultured cells grow along the patterns. PDMS microstencil 

mold was fabricated by a complex photomask aligning method, shown in figure 4.  

 
 

 

Fig. 4. Schematics of the fabrication of microstencil mold 

525μm silicon was thermal oxidated with 4000 Ǻ SiO2 (see Fig. 4a). The substrate was first 

coated with a thin photoresist (AZ AZ9912) for 30 s at 3000 rpm (see Fig. 4b). 8 × 8 SiO2 

arrays were fabricated by wet etching as the RIE mask which was the same as the MEA 

structure (see Fig. 4c). Photoresist was spin-coated to the silicon with SiO2 mask again (see 

Fig. 4d) and selectively exposed to UV under a chromium photomask. The silicon was 

etched 30μm by deep reactive ion etching (DRIE) with photoresist in order to construct the 

microchannel , (see Fig. 5a). Then photoresist was removed by ultrasonication in acetone. 

The silicon was selectively etched 70μm by DRIE with SiO2 resist, forming the topographic 

PDMS microstencil mold (see Fig. 5b). The high depth-to-width ratio silicon-based mold 

was designed to penetrate through the PDMS membrane on the MEA to exposure the 

electrodes and form the microchannel between the electrodes so that the MEA could also 

work.  
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            (a)                            (b) 

 

Fig. 5. SEM images of PDMS microstencil mold 

The mixture of PDMS prepolymer and curing agent was spin-coated on the mold for 40 s at 

4000 rpm. The coated mold was cured for 2 hours at 110◦C in a convection oven. The fully-

cured PDMS-coated mold was soaked in an acetone ultra-sonication bath until the PDMS 

layer released from the mold. The detached microstencil was rinsed with IPA and DI water. 

The upside and downside of PDMS microstencil with microholes and microchannels SEM 

images was shown in figure 6.  

 
 
 

  
 

Fig. 6. SEM images of PDMS microstencil 
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However, PDMS microstencil is difficult to practise because it is hard to align with MEA 

and the silicon mold is easy to fracture when lifting off.  

3.4 MEA with microchannels for patterning 
Planar MEA are developed to study electrogenic tissues such as dissociated neuronal 
cultures (Hiroaki Oka，et al. 1999). They have been widely used with dissociated cultures 
for a variety of neuroscience investigation including learning and memory and cell-based 
biosensors for the detection of neurotoxins (Conrad D. James, et al. 2004). But the neurons 
grow disorderly and cannot form a network so that the function is not the same as the cells 
in vitro. Combining the patterning technology and MEA forming neuronal networks is the 
efficient method to research the neurobiology.  
μCP, microfluidic patterning technique and microstencil are difficult to operate because the 
space is too small and the PDMS stamp or stencil can hardly align with MEA. The best and 
easiest way to forming neuronal networks is to fabricate the microchannels on MEA with 
polyimide (PI) guiding the cell growing.  
MEA were fabricated using a conventional semiconductor process (Guangxin Xiang, et al. 
2007). After cleaning the polished quartz glass wafer, the conductive layer of Au/Ti film 
(Au 3000 Ǻ and Ti 700 Ǻ) was sputtered. 8 × 8 electrode arrays were left with the photomask 
protection by standard photolithography. Then, a combination of SiO2/Si3N4/SiO2 (3000 Ǻ 
/4000 Ǻ /3000 Ǻ) passivation layers was deposited onto the substrate using plasma 
enhanced chemical vapor deposition (PECVD), and the insulating layers on the electrodes 
and the bonding-pads were removed by inductively coupled plasma (ICP) (see Fig. 7a). 
Finally, Negative photosensitive polyimide (AP2210B, Fujifilm Electronic Materials Inc) was 
spin-coated to form microchannels having a thickness of 3~4μm and photo-etched by the 

standard procedure to expose the microelectrodes and the terminals (see Fig. 7b). 
 

  

       (a)               (b) 

Fig. 7. Microscopy of the MEA with PI microchannels  

GABAergic neurons in the striatum and PC12 cells were cultured on MEA with PI 
microchannels which were coated with poly-l-lysine (PLL) to promote cell adhesion, (see 
Fig. 8a, 8b). PI microchannels could be seen between the electrodes and the neural cell can 
grow along the microchannels. However the nerve cell synapse could not formed along the 
microchannels. Because the depth of microchannels could not match the neurons and the 

www.intechopen.com



 
Advances in Unconventional Lithography 

 

24

PLL could not be guarantee to coat the microchannels effectively after days. There is still a 
lot of work to do to construct the neuronal networks on MEA to study the cells function as 
in vitro. 
 

  

          (a)                (b) 

Fig. 8. Microscopy of the cells cultured on MEA with PI microchannels (a) GABAergic 
neurons in the striatum cultured at 3 days (b) PC 12 cells cultured at 6 days 

4. Construction of neural network by applying soft lithography 

A man-made neural network on electrode can be applied to do basic research of 

neuroscience, be a kind of biosensor for drug discovery [9] and even be implanted into brain 

to establish artificial connections that could form the basis of a neural prosthesis[10]. These 

fields have caused much attention in the world [11]. In the past, there are three strategies to 

realize a simplified neural network in vitro, such as mechanical fixation-applying spatial 

restrictions[12,13], physical modification of surface roughness and surface 

topography[14,15], chemical polymer microfabrication on surface—using soft lithography.  
Soft lithography is created by Whitesides in 1993[16]. It is used to create chemical structures 
on surfaces, including µCP, µFN and other downstream techniques. These microfabrication 
techniques that control both the size and shape of the cell anchored to a particular surface 
are extremely useful for understanding the influence of the cell–material interface on the 
behavior of cells [17, 18].The adhesion and survival of neural cells should be considered 
firstly for the patterned neural cell culture in vitro. So the selection of appropriate cell-
attracting substances is an important step for pattern design in micro-contact printing. Ideal 
substances encourage good cell–substrate interactions, constantly stimulate the cells by 
substrate-bound chemical, biological, electrical or mechanical signals [19, 20] and even 
regulate neuritis growth on designed patterns. The most commonly used coating reagents to 
promote cell adhesion are extracellular matrix (ECM) proteins like laminin (LN), positively 
charged polymers such as poly-l-lysine (PLL) and synthetic amide-linkage-free compounds 
such as polyethylenimine (PEI). Therefore, the characteristics of three different substrates, 
PEI, PLL, LN were compared by the primary neuron culture in our previous work. The PEI 
characterized with strong positive surface charges was validated to fabricate more 
continuous and integrated micro-contact printing neural patterns under serum-free culture 
conditions than PLL, LN[21]. 
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For the functional neural network construction on MEA, an inevitable question that should 
be addressed finally is how to realize accurate opposite between neurons and the electrode 
under neurons. We assume firstly microfluidic technique may have more advantages than 
μCP. In subsequent research, we achieved satisfied patterns by microfluidic technique for 
further research with the help of the progress on parameters of template. Specific neural 
network were constructed by applying advanced soft lithography above to do the primary 
cell culture, such as dopaminergic neurons in the substantial nigra and GABAergic neurons 
in the striatum. The conditions of neuronal adhesion on different patterns (grids and lines) 
were also observed using several techniques, including atomic force microscopy, 
immunohistochemistry, transmission electron microscope and scanning electron 
microscope.  

4.1 Neural network with rat fetal hippocampal cells by μCP patterns 
In previous study, we examined the ability of another positively charged polymer, 
polyethyleneimine (PEI), to promote neuronal adhesion, growth and the formation of a 
functional neuronal network in vitro. PEI, PLL and LN were used to produce grid-shape 
patterns on glass coverslips by μCP. Post-mitotic neurons from the rat fetal hippocampus 
were cultured on the different polymers and the viability and morphology of these neurons 
under serum-free culture conditions were observed  

4.1.1 Cells adhesion  
The number of cells that adhere to the different substrates after 24 h in culture is shown in 
Fig. 9. The adhesive effects were evaluated by calculating the ratio of cell numbers that 
adhere to the grid-like patterns divided by the total area of printed polymer. We found that 
the positively charged polymers (PLL and PEI) had a significantly higher level of cell 
attachment than LN (p < 0.05)[13]. 
 

 

Fig. 9. The adhesive effects were test by analysis of the number of neurons on the area 
(mm2) of LN, PEI and PLL grid patterns after 24 h in culture. The asterisks indicated 
neurons on PEI and PLL patterns had significantly higher lever than on LN patterns, n = 12, 
p < 0.05. 
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4.1.2 Cells viability 
In Fig.10, We show that neurons cultured on the PEI- and PLL-coated surfaces adhered to 
and extended neurites along the grid-shape patterns, whereas neurons cultured on the LN-
coated coverslips clustered into clumps of cells. In addition, we found that the neurons on 
the PEI and PLL-coated grids survived for more than 2 weeks in serum-free conditions, 
whereas most neurons cultured on the LN-coated grids died after 1 week[13]. 
 

 

Fig. 10. Images obtained using the phase contrast microscope, showing cells cultured on PEI, 
PLL and LN polymeric films at different time points. (a, d, and g) Representative images of 
neurons cultured on PEI grid patterns at 24 h, 7 days, and 14 days, respectively, show that 
neurons adhere and grow accurately along the PEI grids at differently time points. (b, e, and 
h) Representative images of neurons cultured on PLL grid patterns at 24 h, 7 days, and 14 
days, respectively. (c, f, and i) Representative images of neurons cultured on LN grid 
patterns at 24 h, 7 days, and 14 days, respectively. The images (c and f) show that the 
neurons on the LNgrid patterns often accumulate at the cross points of the grids. The image 
(i) shows that most neurons disappear after 14 days in culture and only small areas of the 
neural cells exist. (a–c) Bar = 100 μm; (d–i) bar = 50 μm. 

4.2 Specific neural network with two relative neurons, such as dopaminergic neurons 
and GABAergic neurons 
There is a closely relationship in the respect of function and structure between dopaminergic 

neurons in the substantial nigra and GABAergic neurons in the striatum. As well-known, 
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Parkinson's disease is due to the loss and injuries of dopaminergic neuron in substantia 

nigra which cause a decrease in nerve fibers projected to the new striatum. Finally, 

reasonable synaptic connections and neural network can not be established. Therefore, it is 

expected to establish cell models to investigate the relationship between these two kinds of 

coherent neurons and construct an artificial neural network in vitro by the application of 

soft lithography. In present work, specific neural network with dopaminergic neurons and 

GABAergic neurons co-culture was established by μCP PEI grid patterns. Meanwhile, PEI 

was validated again to fabricate more continuous and integrated neural patterns by using 

μCP and microfluidic technique both.  

4.2.1 Neural network by μCP 
Different kinds of neural network by μCP were established with neuron from the 

striatum, dopaminergic neurons from the substantial nigra and both of them co-culture. 

The conditions of neuronal adhesion on different pattern figures were observed using 

several techniques, including immunocytochemical staining, transmission electron 

microscope and scanning electron microscope. Using immunocytochemical staining, 

transmission electron microscope, we identified the types of neural cells and observed 

some neurosynapse-like structures near the neuronal soma on PEI-coated coverslips. 

These findings indicate that PEI is a suitable surface for establishing a functional neuronal 

network in vitro. 

4.2.1.1 Investigation of neural cell types and neurite elongation along the grid-like 
patterns by immunocytochemical staining and SEM 

PEI, PLL and LN were used to produce grid-shape patterns on glass coverslips by micro-

contact printing. GABAergic neurons and medium spiny neuron from the rat striatum, 

dopaminergic neurons from the rat substantial nigra and both of them co-culture were 

researched separately on the different polymers coated surface. The viability and 

morphology of these neurons under serum-free culture conditions were observed using 

fluorescent microscopy in Fig. 11, Fig. 13, Fig. 14. After 7 days in culture, we found that 

the neural cell bodies on the PEI patterns were located mostly at the cross-points of the 

grid, whereas neurites extended along the line of the grid-like patterns. More continuous 

and integrated neural network was achieved finally. On the PLL-coated coverslips, the 

neural patterns appeared to be integrated. But several cells clustered at the cross-points of 

the grid disappeared gradually after the media was replaced. In contrast, cells cultured on 

the LN-coated grids were generally clustered into clumps and cannot form satisfied 

patterns. Different sizes of PEI pattern were produced by microcontact printing. In Fig. 12, 

compared with 50μm, 100μm, 200μm pattern sizes, we found few difference early. 

After 7 days or 14 days culture, most neural cells on 200μm size grew well and were 

seldom found to overlap each other, unlike those on 50μm size clustered into clumps at 

the cross-points of grid and disappeared gradually. Identified with immunocytochemical 

staining, we found that neural cells from the rat substantial nigra were TH positive, 

synaptic vesicle protein were synaptophysin positive in Fig. 13 and cells from the rat 

striatum were GABA positive or DARPP-32 positive in Fig. 11, Fig. 12, Fig. 14. SEM show 

neurons outgrowth on PEI-coated patterns and validate the findings by 

immunocytochemical staining in Fig. 15, Fig. 16.  
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(a) on LN grid patterns (b) on PEI 100μm grid patterns (c) on PLL 100μm grid patterns  bar=50μm 

Fig. 11. Immunofluorescent image of anti-GABA (green fluorescence) +anti-MAP2 (red 
fluorescence) labelled striatal neurons cultured for 7 days on different substrates, the nuclei 
of neurons were stained with Hochest x400 

 

 
 

(a)on 50μm patterns (b) on 100μm patterns (c) on 200 μm patterns  bar=50μm 

Fig. 12. Immunofluorescent image of anti-GABA(green fluorescence)+anti-MAP2(red 
fluorescence) labeled striatal neurons cultured for 7 days on different sizes of PEI patterns, 
the nuclei of neurons were stained with Hochest  x400 

 

 
 

(a) on LN grid patterns (b) on PEI 100μm grid patterns (c) on LN+PEI  bar=20μm 

Fig. 13. Immunofluorescent image of anti-TH(red fluorescence) labeled dopaminergic 
neurons from the substantial nigra and anti-synaptophysin(green fluorescence) labeled 
synaptic vesicle protein cultured for 7 days on different substrates. x200 

TH+Syn 
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(a–c) co-culture neurons growing on LN grid patterns. (a) Immunostaining with anti-TH (red 
fluorescence) labelled dopaminergic neurons. (b) Immunostaining with anti-DARPP-32 (green 
fluorescence) labeled medium spiny neuron from the striatum(arrow). (c) Merged image of (a) and (b), 
showing TH positive neurons on the LN-coated patterns actually adhere to the cluster formed by 
medium spiny neuron. (d–f) co-culture neurons growing on PEI grid patterns. (d) Immunostaining with 
anti-TH (red fluorescence) labelled dopaminergic neurons(arrows). (e) Immunostaining with anti-
DARPP-32 (green fluorescence) labeled medium spiny neuron from the striatum(arrow). (f) Merged 
image of (d) and (e) showing that DARPP32 positive neurons cultured on the PEI-coated patterns form 
a continuous and integrated neural network, and two TH positive neurons adhere to the cross-points of 
grid. (g–i) co-culture neurons growing on PLL grid patterns. (g) Immunostaining with anti-TH (red 
fluorescence) labeled dopaminergic neurons(arrow). (h) Immunostaining with anti-DARPP-32 (green 
fluorescence) labeled medium spiny neuron from the striatum(arrows). (i) Merged image of (g) and 
(h)showing only two DARPP32 positive neurons adhere to the cross-points of grid. TH positive neurons 
were not restricted by the grid pattern. bar=100μm 

Fig. 14. Immunofluorescent image of anti-TH labelled dopaminergic neurons from the 
substantial nigra and anti-DARPP32 labeled medium spiny neuron from the striatum co-
culture for 7days on different substrates, the nuclei of neurons were stained with Hochest 
x200 
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Fig. 15. SEM show neurons outgrowth on PEI-coated patterns. Somata of neuons located on 
the cross point and neurites extend along the lines 

 

 

Fig. 16. SEM show that Line of grid were occupied by abound   neurites.  
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4.2.1.2 Examination of synaptic formations by immunocytochemical staining and TEM 

To further understand functional activities of neurons on the grid pattern, we observed the 
microstructure of the neuronal cell body, neuritis extension and processes of the synapse 
formation by using laser confocal microscope after 7 days in culture. It is found that several 
neural cell bodies aggregated on the cross point of the grid pattern (Fig.17.b), which neurites 
extended along the lines clearly by cytoskeletal proteins MAP2 and Synaptophysin double 
immunocytochemical staining of patterned neurons on PEI(Fig.17.a). Some processes can 
even gather into a bundle, span the distance between two cross-points and make connection 
with another neuron. Synaptophysin was a kind of granular protein scattered around the 
cell bodies and neurites, The neurites from neuron at the cross-point seemed to 
communicate with those at the lines which express a large number of synaptic vesicle 
protein(Fig.17.c). 
 

 

(a) neurites extended along the lines and synaptic vesicle protein around 
(b) neural cell bodies at the cross-point and synaptic vesicle protein scattering around them 

(c) synapse connection between two neurons at the grid pattern bar=25μm  

Fig. 17. Immunofluorescent image of anti-MAP2(red fluorescence) labeled neurons and anti-
synaptophysin(green fluorescence) labeled synaptic vesicle protein cultured for 7 days on 
PEI patterns x400 

We chose PEI group which can construct more clearly neural network and continued to 

observe intercellular ultrastructure under transmission electron microscope (Figure18). Two 

periphery of neurites thicken show high electron density to form a synaptic contact (Red 

border). Width of synaptic cleft was measured to 30 ~ 50nm. Figure18(a) shows clear 

synaptic vesicles. Figure18(b) shows the synaptic cleft is relatively narrow and suspected to 

be electrical synapse structure due to double-membrane structure adjacent closely. 

4.2.2 Neural network by microfluidic technique 
In this experiment,, we made a big progress on microfluidic technique by re-designing the 

parameters and enhancing the photoresist coating thickness of the Cr template. After 7 days 

in culture, poly-l-lysine and laminin+polyethyleneimine were found to be formed more 

complete and clearer flow patterns by the application of microfluidic technique. On LN 

group, neurons were easy to cluster into clumps when channel width was 150μm,almost 

overshadowed flow pattern itself; On PEI group, even though the flow patterns are more 

complete, the neurites extend short and cannot constitute a connection between some cells 

MAP2+Syn 
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(a)chemical synapse structure x40000 bar=0.5μm (b)electrical synapse structure x60000 bar=0.2μm 

Fig. 18. Under TEM, synapse like structure between neurons from the striatum and the 
substantial nigra on PEI patterns 

 

 

(a) LN group, width of lines 150μm, (b) PLL group, width of lines 150μm (c) PEI group, width of lines 

200μm , (d) LN+PEI group, width of lines 300μm bar=200μm 

Fig. 19. Immunofluorescent image of anti-GABA (green fluorescence) +anti-MAP2 (red 
fluorescence) labelled striatal neurons cultured for 7 days on different substrates by 
microfluidic technique   x100 
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sufficiently. When the channel spacing of 300μm, LN + PEI group of cells in the liquid 
injection port at the distribution, flow pattern clear, but the group off between individual 
cells, so that flow interruption. Identified with immunocytochemical staining, we found that 
most of the MAP-2 positive neural cells from the striatum cultured on the flow pattern were 
also labeled with GABA, as shown in Figure 19.  
Observing the fine structure of the intercellular on PLL group under scanning electron 
microscopic in Fig. 20, most of the neural cell bodies were found adhere to the flow pattern 
and majority of neurites are constrained within the width of the channel to grow following 
the orientation of flow channels. It is still visible that a few neuronal cell bodies deviate from 
the flow patterns slightly or adhere on the blank between two lines by local amplification. 
By observing the cross-linked region off low channel, we can see two endings of neurites 
seem to have varicose, swelling structure liking synapse. 
 

 

(a)x250 bar=100μm (b)x1000 bar=10μm (c)x10000 bar=1μm 

Fig. 20. Neurons from the striatum and the substantial nigra on PLL microfluidic patterns 
under SEM.  

5. Conclusion 

In summary, this study based on previous work improve the microfluidic technique, 
evaluate the influence of two different soft lithography, the micro-contact printing and 
microfluidic technique on various interface materials for the construction of neural network. 
Our future work can be divided into two levels. On the one hand continue to look for the 
intersection of microelectrode array and the micro-fabrication technology, trying to make 
cell grow in accordance with patterns of MEA electrode nodes. On the other hand, need to 
further improve the characteristics of electrode materials, enhance biocompatibility under 
the premise of improving signal-to-noise ratio and without adding resistance, do good to 
the survival of neurons and neurite extension. 
The application of the micro-fabrication on microelectrode array may open up a broader 
platform of the technique for neurochip research and provide new ideas for the treatment of 
various injuries in the central nervous system. Ultimately, the combination both can achieve 
position fixing between neurons and electrodes precisely, to make the system as a real 
sensor, be able to accept electrical stimulation or chemical stimulation and record their 
signals, to analysis the transfer process of neural network information, and apply to drug 
screening of related diseases.  
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