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1. Introduction  

Movement of water in vadose zone, mainly focusing on infiltration and percolation that 
involves percolation of water under gravity from soil surface and redistribution which is the 
capillary rise of water movement upwards, is presented. In the global hydrologic cycle, 76% 
of the precipitating water enters the soil via percolation-infiltration, which leads to the 
downward movement of water (L’vovich 1974). The water used by natural processes, can 
move downwards due to infiltration and lift from groundwater table during natural 
redistribution process. The forecasting of water movement in unsaturated infiltration-
redistribution system is linked between soil hydraulic properties and hydrologic condition 
of natural surface water system. The understanding of water movement processes 
associated with infiltration and redistribution has a number of practical applications.  One 
such application is to predict the fate and transport of materials through soil including 
nutrients, organic carbon and microbes under natural processes, which in turn will help in 
developing appropriate management plans for irrigation, fertiliser application and waste 
disposal on land. 

2. Infiltration and redistribution system 

The prevailing weather condition can potentially affect the amount of water input to soil. 
The infiltration rate consists of (1) water input rate, which is the rate of water that arrives at 
soil surface due to rain, natural and artificial applications and (2) infiltration capacity, which 
is the maximum rate at which percolating water migrates through the soil pore.  In general, 
water input rate responds to seasonal climatic variations and to any recharge from natural 
or artificial conditions. The infiltration capacity rate depends on the soil texture and soil 
hydraulic properties. The infiltration process can be separated into three categories (1) no 
ponding (2) saturation from above and (3) saturation from below. The “no ponding” refers 
to the condition, when water input rate is less than or equals to the infiltration capacity. The 
“saturation from above” presents the condition, when water input rate exceeds the 
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infiltration capacity rate. The “saturated from below” reveals the condition, when 
groundwater table has risen above the original saturation layer resulting in saturated soil, 
hence the infiltration rate becomes zero (Iwata et al. 1995, Dingman 2002).  
The redistribution rate can be determined by the upward flow rate of water, which involves 

both the exfiltration and capillary rise. The exfiltration deals with evaporation or 

evaportranspiration. The exfiltration can reduce the soil pore water at the upper layer. The 

exfiltration rate of soil also depends on relative humidity of air and solar radiation. 

Furthermore, soil is a porous material and can behave as a series of capillary tubes. The 

surface tension force can abstract the water from aquifer into pore space above the water 

table. The capillary rise refers to the water movement from saturated zone to unsaturated 

zone owing to surface tension. The capillary rise acts opposite to the direction of 

gravitational force. The height of capillary rise relates to pore size and soil moisture content. 

Consequently, the height of capillary rise in fine grained soil is higher than in the case of 

coarse grained soil and the height of capillary rise into dry soil is lower than that of 

relatively wet soil. The water movement in unsaturated zone near the region of saturated 

zone or capillary fringe is mentioned because the water in the saturated and unsaturated 

zones is connected together and oscillates with fluctuations of groundwater table. The 

flucutation of groundwater level during wet-to-dry season, causes the movement of 

capillary fringe region that causes of smearing of contaminants to soil above groundwater 

table. The critical point of predicting the water movement in the capillary fringe is the non-

uniform capillary flow. In order to simplify this infiltration-redistribution system that 

occurrs in the capillary fringe, it can be assumed that the redistribution rate is associated 

with the capillary height, which is normally considered under the equilibrium of capillary 

force (Fredlund & Rahardjo 1993, Dingman 2002). 

The vadose zone is the entire zone of negative water pressure above the water table, so the 

pressure head at the deepest level of this zone is saturated or nearly saturated as a result of 

capillary rise. Almost all water in the vadose zone is available for plants and exfiltration 

(drainage).  The plant available water is observed at pressure head ranged from -150 to -3.4 

m H2O and the drainable water will be at pressure head ranged from -3.4 m H2O to 

saturation (Dingman 2002). The water infiltrating into vadose zone is influenced by both 

capillary and gravitational forces, and these are associated with upward and downward-

directed pressure gradients, respectively. The movement of water due to infiltration 

capacity is described by the Richards equation and the movement of drainage is 

satisfactorily modeled with Darcy’s law. The capillary gradient is determined by static 

capillarity equilibrium height using the capillary models (Bunsri et al. 2009). 

3. Governing equation for unsaturated flow 

Movement of water due to infiltration is assumed that water percolates under gravitational 

force. The vertical flow through interconnected intergrain pores, which are randomly 

distributed in a mix grained soil. The movement of water through the effective soil pores 

can be simplified so that water moves only in the liquid state (excluding, soil-water freezing 

or thawing) and there is no impact of airflow in soil pores.  The 1D-vertical unsaturated flow 

in porous media can be described using Richards equation (Richards 1931). 
The pressure head based equation is expressed as: 
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 1
            

K k Sz rwz z t
 (1) 

The volumetric moisture content based equation (Warrick, Islas & Lomen 1991) is: 

 
           

z rw
z

K k
D

z z z t
 (2) 

where rwk is the relative hydraulic conductivity [unitless], zK  is the fully saturated hydraulic 

conductivity [L T-1], S is the specific moisture capacity    / ,  is the volumetric 

moisture content [unitless],   is the pressure head [L] and Dz is the soil water 

diffusivity  /  z rwK k S . Equations (1) and (2) contains Darcy’s velocity, qz, which is given 

by (the negative sign means downward flow) (Huyakorn et al. 1984): 

 
 

z z rw

z
q K k

z

  
   

 
 or  

zq

t z

 
 

 
 (3) 

where zq  is Darcy’s velocity in vertical direction [LT-1]. 
By inserting a series of tensiometers in different parts of a drainage field, the profiles of 
pressure head can be observed as shown in Figure 1. The negative pressure head 
determined in the unsaturated soil layer is due to suction head, zero pressure head occurred 
at the interface of groundwater table and the positive pressure head in the saturated soil 
layer is due to hydraulic head (gravitational head plus pore-water pressure head) (Fredlund 
and Rahardjo 1993). 
 

 

Fig. 1. Profiles of pore pressure under a steady state condition (Adapted from Fredlund & 
Rahardjo 1993) 
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Figure 2 presents possible pressure head profiles at varying Darcy’s velocities  zq . If the 

velocity is constant  0/  z , the simplest pressure head profiles (case 1) are obtained. 

When z /  is negative with 0 zrwz qkK , this will lead to vertical downward flow 

(case 2). If z / is positive with  rwzz kKq  , water moves downward with suction head 

(case 3). The upward flow is yielded (case 4), if Darcy’s velocity is greater than zero. 

However, in most unsaturated zone cases, the water will experience a downward flow, 

these are either case 2 for evaporation or case 3 for irrigation  (Warrick et al. 1991). 
 

 

Fig. 2. Pressure head profiles at varying Darcy’s velocities (Adapted from Warrick et al. 
1991) 

The relationship between relative hydraulic conductivity ( zrwKk ), pressure head    and 

volumetric moisture content   is defined as the hydraulic properties function, which is 

highly nonlinear. Typically used hydraulic properties equations in this research include 

those of Brooks and Corey (1964), Haverkamp et al. (1977), van Genuchten (1980) and 

Saxton et al. (1986).  Brooks & Corey (1964) hydraulic properties function was firstly derived 

by modifying the statistical porewater interaction models of Childs and Collis-George (1950) 

(cited in Fredlund & Rahadjo 1993). The Brooks & Corey (1964) model is: 

  
N

a
S r r

   


         



 (4a) 

  
M

a
z rw zK k K





 

  
 



 (4b) 

  
/M N

r
z rw z

S r

K k K
 
 
 

  
 

 

 (4c) 

where a  is the air entry suction pressure head [L], S and r  are the saturated and 

residual volumetric water content, respectively [unitless]. M and N
~

are empirical constants. 
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Haverkamp et al. (1977) fitted the properties of homogeneous soil in unsaturated conditions 
by the least square method and proposed the following empirical equations (HV equations): 

 
 S r

r

  
 

 


 


 (5a) 

 

z rw z

A
K k K

A


 
 
  

 (5b) 

where  A, ,  and   are the curve fitting coefficients [unitless]. 
van Genuchten (1980) derived the hydraulic properties equations based on the equation of 

Brooks & Coley (1964) and proposed the following empirical equations for hydraulic 

properties (VG equations): 

 

1

S r
r qp

a

  



 

  

 (6a) 

 
    

2
1

/2

1 1

1

q
p p

z rw z qp

a a

K k K

a

 



 
  

 
  

 (6b) 

where a is the soil water retention function [L-1], q and p are the empirical parameters, 

  1 1 /q p   [unitless]. 
The possible values for the coefficients presented in VG equations are given in Table 1. The 
coefficients are sorted by soil textures in accordance with USDA textural classes (Carsel et al. 
1988). 
 

Soil Type S r a  (cm-1) p 

Clay* 

Clay loam 
Loam 
Loam sand 
Silt 
Silt loam 
Silty clay 
Silty clay loam 
Sand 
Sandy clay 
Sandy clay loam 
Sandy loam 

0.38
0.41 
0.43 
0.41 
0.46 
0.45 
0.36 
0.43 
0.43 
0.38 
0.39 
0.41

0.068
0.095 
0.078 
0.057 
0.034 
0.067 
0.070 
0.089 
0.045 
0.100 
0.100 
0.065

0.008
0.019 
0.036 
0.124 
0.106 
0.020 
0.005 
0.010 
0.145 
0.027 
0.059 
0.075

1.09 
1.31 
1.56 
2.28 
1.37 
1.41 
1.09 
1.23 
2.68 
1.23 
1.48 
1.89 

Note: *Agricultural soil, less than 60% clay. 

Table 1. Recommended empirical coefficients for VG equations (Carsel et al. 1988). 
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The hydraulic properties are estimated from the soil texture using a method generalised by 
Saxton et al. (1986). The textural class is assessed according to the USDA system. The water 
retention curve is fitted with linear regression and the formulations are in S.I. unit as 
follows: 

1) When the hydraulic pressure is between 10 and 1500 kPa (or 1.02 to 15.3 m H2O), then the 

expression for   is given by: 

 
  
 
 

  
 

H

r
a

S r

 (7a) 

By assuming  0r ; will give 

   HJ  (7b) 

with    H
a SJ  

where  and a  are the hydraulic pressure and the air entry pressure, respectively [kPa]. H 

and J are obtained by the statistical curve fitting of 44 soil samples with an R2 =0.99. 

      2 253.140 0.00222 % 3.484 10 % %     H clay sand clay  (8a) 

 

   
   

24

25

4.396 0.0715 % 4.880 10 %
exp 100

4.285 10 % %





        
     

clay sand
J

sand clay
 (8b) 

2) When the hydraulic pressure is between a
 and 10 kPa (or 1.02 H2O), then: 

 
  10

10

10.0
10.0 a

S

  


 
  

     
 (9) 

where 10  is the volumetric moisture content at 10 kPa,   exp 2.303 /LnJ H      

[cm3/cm3].  100.0 0.108 0.341   a s and     40.332 7.251 10 % 0.1276 %    S sand Log clay  

3) when the hydraulic pressure is between 0.0 kPa and a (or 0.0 cm H2O to a ), then: 

 S   (10a) 

Variable z rwK k  is estimated as follows: 

 

 
   

   

6

24

12.012 0.0755 %

2.778 10 exp 1 / ( 3.8950 0.0364 %

0.113 % 8.7546 10 % )

z rw

sand

K k sand

clay clay





     
       
  
        

 (10b) 

where rwzkK  is the unsaturated hydraulic conductivity [m s-1]. 

Kunze et al. (1968) established a relative permeability function based on Poiseuille’s equation. An 

example of estimating relative permeability using Kunze’s equation is illustrated in Figure 3. 
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Fig. 3. Graphical estimation of relative permeability (Adapted from Fredlund & Rahardjo 
1993) 

The coefficient of relative permeability was obtained from the relationship between the 

matrix suction and volumetric moisture content. The equation was given as follows: 

  

 
 
   

2
2

2
1

2 1 2
2

P m
z S w Smea

rw i j
z jwcal

K g
k j i

K N

  
 






       

         mi ,....2,1  (11) 

where  rw i
k  is the calculated coefficient of permeability for a specified volumetric 

moisture content; i , corresponding to the ith interval [unitless].  i  is the interval on the 

water retention curve [unitless] and j is the counter number from i to m [unitless]. 

 z mea
K and  z cal

K are the measured saturated coefficient of permeability and the 

calculated coefficient of permeability, respectively [L T-1]. S is the surface tension of 

water [M T-2], w is the water density [M L-3] and w  is the absolute viscosity of water [M 

T-1]. P is a constant which accounts for the interaction of pores of various sizes, usually 

assumed to be 2.0 (Green & Corey 1971 cited in Fredlund & Rahardjo 1993) [unitless]. m is 

the total number of intervals between the saturation volumetric water content  and the 

residual volumetric water content [unitless] and N is the total number of intervals 

  /S S rN m    [unitless]. 

4. Numerical solution for the unsaturated flow equation 

The finite discretionary scheme is given in Figure 4. The number of nodes in the system is 
assigned sequentially to the flow direction.  
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Fig. 4. Scheme of finite discretisation. 

As the hydraulic properties model can be applied to modify Richards’ equation between the 

  based to   based formulations. Generally,  based Richards’ equation is preferred over 

 based equation as it is possible to accurately measure the pressure head using 

tensiometers. Several previous works (Wang & Anderson 1982, Coley 1983, Segerlind 1984, 

Paniconi et al.1991) have assumed the approximate solution to Richards‘ equation as: 

      
1

,
m

j j
j

z t N z t 


  (12) 

where  Nj(z)  is the shape function [unitless],  j t  is the unknown coefficient with 

corresponding to the value of nodal pressure head [L] and the subscript “j” is defined to 

denote a nodal sequence.  

Richards’ equation (Eq. 1) is now written in the form of   0L    as follows. 

   1z rwL S K k
t z z

              
 (13) 

The weighting function, Ni was assigned the same value as jN . Applying Galerkin’s finite 

element method yields (Bunsri et al. 2009): 

  
0

0
z L

i

z

L N dz




  (14) 

Substituting Eq. 13 into Eq. 14, yields: 

 

0 0

1 0
z L z L

i i z rw

z z

N S dz N K k dz
t z

  

 

          
   (15) 

The numerical solution of Richards’ equation is (Bunsri et al. 2009): 
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1

00 0 0

1 0

zz L z L z L
ji i

i i z rw z rw j z rw
zz z z

NN N
N S dz N K k K k dz K k dz

t z z z z

  
  

  

                   
    (16) 

The algebraic matrix systems were defined as follows (Bunsri et al. 2009): 

  j
ij j ij ijA B E

t





          

 (17) 

where 

 

0

z L
ji

ij z rw
e z

NN
A K k dz

z z





          
  ,   

0

z L

ij i
e z

B N Sdz




       , and  

  
0 0

1

z L z L
i

i i z rw z rw
ez z

N
E N K k K k dz

z z


 

 

      
    

Using Eq. 3, the vector matrix  iE could be written in the form of Darcy’s flux boundary 

condition as: 

  
0

0

z L
z L i

i i z z rwz
e z

N
E N q K k dz

z








 

   (18) 

The time derivative approximation at a particular node “ j ” can be explained by (Wang & 

Anderson 1982, Paniconi et al. 1991, Ségol 1993): 

 
j

t t t
jj

t t

   


 
 (19) 

where  / t   is a column matrix, which refers to time-dependent hydraulic pressure 

head   j t . The term “ / t  ” can be simplified with the vector symbol “  ”. The 

iterative scheme obtained using a single Picard’s method is given by (Wang & Anderson 

1982, Paniconi et al. 1991, Ségol 1993): 

         1 1

2

t t tt t t t
ij ij i ijA B E A

t
                    (20) 

Celie et al. (1990) estimated the pressure head profiles using Richards’ equation. The 

numerical model is developed using both finite difference model (FDM) and finite element 

method (FEM). The model developed using FEM has given an oscillation of pressure head 

that is near to infiltration front. This oscillation pressure head could be reduced by applying 

a diagonal time matrix (mass lumping technique). The net water  balance between inflow 

and outflow of soil pore water at any node and time step t (MB) is defined based on a 

diagonal time matrix. This aspect is investigated to evaluate the existence of any errors 

within the calculation process if existed. The water balance equation for the finite element 

technique is presented as follows (Celie et al. 1992, Ségol 1993): 
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     

 

1
1 0 1 0 1 0

0 0
1 1

1

0
1

2 2

E
t t t
i i E E

t i
t

t t
E

t

z z
z

MB

q q t

     


  

 




 
     


 




 (21) 

where 0q and Eq are the boundary fluxes associated with 0z  and Lz ,  respectively [L T-1]. 

Symbols “i“ and “t“ count for the sequence of nodes and time steps, respectively. Subscripts 
“0“, “E“ refer to the upper boundary of downward flow and the number of elements, 
respectively. Superscripts “0“, “t” and “t+1” refer to the initial, previous and current 
iteration time step, respectively.  

5. Boundary condition for infiltration system 

The initial condition was defined as the starting condition of the system at t=0. The 
boundary conditions were classified into upper and lower boundaries that were located on 
the top and bottom of the considered system (Huyakorn & Pinder 1983). The upper 
boundary was the condition at the discharge point and the lower boundary was the 
condition at the water table or the column base. The boundary and initial conditions for the 
solute transport model and Richards’ equation included the known concentration of 
contaminant and pressure head, respectively (Bear 1979, Huyakorn & Pinder 1983). The 
change of infiltration is mainly controlled by intensity of infiltration and surface soil 
properties. The infiltration rates are determined by: (1) Rate of water approaching above soil 
surface via rainfall, snowmelt, irrigation, natural or artificial recharge and depth of ponding 
on the surface; (2) Fully saturated hydraulic conductivity at soil surface; (3) Degree of 
saturation at soil surface when the infiltration begins; (4) Inclination and roughness of 
topsoil; and (5) Chemical characteristics of top soil and physical and chemical properties of 
water. 

The infiltration rate;  f t  is computed as (Nassif & Wilson 1975): 

    f t i q t   (22) 

where  i is natural precipitation or application rate and  q t is the rate of surface runoff. The 

natural infiltration recharge can be technically determined using Green-Ampt approach 
(Green & Ampt 1911). In the case of infiltration coming from runoff or rainfall recharge, the 
percolation rate is based on top soil properties. It can be classified into 2 categories as: 
1) Water input rate is less than saturated hydraulic conductivity (i<Kz). At initial stage (t=0), 

the hydraulic conductivity is defined as 0zK and it increases to Kz at the specified time; tw. At 

this stage, water will percolate and it is stored until the soil pore is fully filled. 

   0 wf t i t t    and   0f t t t   (23) 

2) Water input rate is greater than saturated hydraulic conductivity (i>Kz). This process is 
observed at an early stage of infiltration in which the excess water cannot be transmitted 
downwards. The maximum water content and the hydraulic conductivity are limited at S  

and zK , respectively. Therefore, when the soil surface reaches saturation, ponding will 

occur or in the case of a hilly area, overland flow will take place. However, the 
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corresponding equation for this case cannot give a valid value of f(t) as there is no well 
developed relationship for ponding. 
The percolation of water during infiltration process with no ponding can be expressed as: 

 
z w

p z
S

K
f K

z


   (24a) 

  0S SI z    (24b) 

 
0 1S S
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z
t z Ln

K

  


        
   

 (24c) 

where 0  is the initial soil moisture content [unitless], pf  is the percolation rate, w is the 

pressure head at the wetting front, I is the cumulative infiltration and Sz  is the wetting front 

distance for Green-Ampt model. 
Schmid (1990) has modified Green-Ampt approach with a Taylor series expansion, and 

obtained the explicit approximation for a function of the infiltration rate. 

    
 

0.5
2
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1 2 z
t

z f

w K
f t w

K   


   
  

 (25) 

where f is the effective tension at the wetting front  0.76 S (Brakensiek 1977, Freyberg et 

al. 1980), S  is the pressure head at saturation and term  0   is the initial soil water deficit. 
The soil moisture content under infiltration process can be estimated using Wang et al. 
(2003) equation as follows.  
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0 0
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z
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z z
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 (26a) 
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 (26d) 

where fz   is the wetting front distance that is  located between soil surface and the bottom 

of the wetted soil layer. Variable   is the shape coefficient of Brook and Corey (1964) 

hydraulic properties model,  /M N   .   is the soil suction allocation coefficient  /M    

and  is a constant. 
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6. Boundary condition for redistribution system 

The boundary conditions for a redistribution system can be evaluated according to the 
physical model of capillary rise. The zone of negative pressure is observed within the depth 
of capillary height. The capillary height is the height of the water level inside the capillary 
tube. The capillary height could be estimated using (Freudlune & Rahardjo): 

 w w CU h g   (27) 

where wU  is the hydraulic pressure at the capillary height [M L-1 T-2], w  is water density 

[M L-3], Ch  is the capillary height [L] and g is the gravitational acceleration [L T-2]. 

The physical model of capillary pressure force in unsaturated soil is presented in Figure 5. If 

matric suction (Ua-Uw) or capillary height (hC) is plotted against pore radius (r) on a Log-

Log plot, a linear relationship is expected. Further details can be found in Fredlune & 

Rahardjo (1993). The variables “S”, “ Sr ”and “ ” refer to the surface tension, the radius of 

capillary tube and the contact angle, respectively. The variable “ aU ” is the atmospheric 

pressure (guage) that is normally taken as 0 cm H2O. 
 

 

Fig. 5. Physical model of capillarity (Adapted from Fredlund & Rahardjo 1993) 

7. Governing equation for solute transport  

In practice, the objective is not only to predict the movement of water in the vadose zone, 
but also to determine the movement of reactive and non-reactive contaminants through the 
soil pores. The developed model can predict the fate and transport of reactive constituents 
such as phosphate, nitrate, organic carbon compounds and microbes. 
The governing equation for multi-component transportation of contaminants in porous 
media under variable saturation conditions could be expressed in a general form as follows  
(Schnoor 1996). 
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 

 
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z z z tt
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                    


 (28) 

where *C is the concentration of a considered constituent in sorbed phase [M L-3]; zD is the 

dispersion coefficient;  *mD D   [L2 T-1]; mD and *D are the mechanical and the 

molecular dispersion [L2T-1], respectively; and xr  is the rates of reaction “x” with x=1,2,…, n 

[M L-3 T-1]. 
The dispersion can be obtained from Fick’s Law (Fetter 1992) as follows. 

 *z iD v D   (29) 

where *D  is an effective molecular diffusion coefficient [L2 T-1],   is a coefficient relating 

to tortuosity [unitless] and iv is the average linear velocity in the vertical direction; 

 /zq    [L T-1]. 

7.1 Nitrogen and organic carbon compounds 

The total rate of organic carbon compounds (substrate) utilisation, Sr was a combination of 

the substrate utilisation rate due to aerobic and nitrate respiration (Widdowson et al. 1988). 

 S SO SNr r r   (30) 

where ,S SOr r and SNr are the total substrate utilisation, substrate utilisation under aerobic 

respiration and substrate utilisation under nitrate respiration, respectively [T –1]. 

Using a modified Monod’s equation, the substrate utilisation rates could be derived as 

follows (Widdowson et al. 1988): 
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 (31a) 
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 (31b) 

where O and N are the maximum specific growth rate for aerobic and denitrifying 

bacteria,  respectively [T-1]. OY and NY are a heterotrophic yield coefficient for aerobic and 

denitrifying bacteria, respectively [unitless]. OS CC , and AC are the concentration in aqueous 

of organic carbon, oxygen and ammonia, respectively [M L-3]. OSO KK , and AOK  are half 

concentration of substrate, oxygen and ammonia nitrogen under aerobic respiration, 

respectively [M L-3]. NSN KK , and ANK  are half concentration of substrate, nitrate and 

ammonia nitrogen under nitrate  respiration, respectively [M L-3].  
OCI is the inhibition 

factor     1

0 /1
 co KCCI  [unitless] and CK is the coefficient of inhibition [M L-3]. 

By referring to the rate of kinetic reaction (Eq. 31a and 31b) for organic carbon compounds 
biodegradation, the equation for transport of organic carbon compounds is written as 
(Schnoor 1996): 
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  S S
z S z SO S

C C
q C D r C

t z z z
            

 (32) 

The nitrate transport equation can be formulated as follows (Schnoor 1996): 

  N N
z N z SN S N

C C
q C D r C C

t z z z
            

 (33) 

Harvey et al. (1984) determined the kinetic coefficients for nitrifying and denitrifying 
bacteria. These coefficients are given in Table 2. 
 

Parameter Value Parameter Value

bM (mg/cm3) 5.64x10-4 SOK  (mg/cm3) 0.040 

O (1/day) 3.1 SNK  (mg/cm3) 0.040 

N (1/day) 2.9 OK  (mg/cm3) 0.00077 

OY  0.45 NK  (mg/cm3) 0.00260 

NY  0.5 AOK  (mg/cm3) 0.0010 

ok  (1/day) 0.02 ANK  (mg/cm3) 0.0010 

Nk  (1/day) 0.02   

Table 2. Kinetic parameters for organic carbon and nitrate retardation (Harvey et al. 1984 
cited in Widdowson et al. 1988). 

7.2 Phosphate phosphorus compounds 

Phosphorus adsorption on soil was formulated as follows (Shah et al. 1975):  

  *
s

w wP
B t P P

C
K C C

t
 

 


 (34) 

where S
PC is the concentration of adsorbed phosphorus [M M-1] and tK is the overall 

volumetric mass transfer coefficient [L T-1]. *w
PC is the concentration of phosphorus in liquid 

phase that is in equilibrium with the concentration of phosphorus in the solid phase [M M-1] 

and *w w
P PC C is a driving force for transferring phosphorus from liquid to solid phase  

[M L-3]. 

The Langmuir isotherm equation is the best fit for phosphorus adsorption (Shah et al. 1975).  

Variable *w
PC is modified into Langmuir isotherm equation, yielding (Schnoor 1996, Watts 

1997):  

 *

1

w
w L M P
P w

M P

k k C
C

k C



 (35) 

where Lk and Mk are the coefficients (Langmuir rate constant) [unitless] and the maximum 

phosphate adsorption capacity on soil [L3 M-1], respectively. 

The soluble phosphate, PC can be assumed as soil pore water, which can be presented as 

volumetric portion of moisture (Fetter 1992). The transport of soluble phosphate is obtained 

by: 
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   P P

z P z

C C
q C D

t z z z

              (36) 

where  is a retardation factor    /1 dBK  and dK  is the distribution coefficient, 

  2

1/ w

PMML CKkk  . 

7.3 E. coli 

The overall reaction rates of microbial kinetics were the summation of production, 
maintenance, decay, adsorption and desorption. The retardation equation was given as 
(Zysset et al. 1994): 

 
( )f

f f fwb
y S d c b sb b b

d C
n n k C C nk C k C nk C

dt
       (37) 

where n is the fraction of aqueous volume and biofilm in total volume (equals to porosity) 

[unitless]. f

bC and w

bC are the concentration of adhering microbes and free swimming 

microbes [M L-3], respectively. SC  is the concentration of limiting substrate in aqueous 

compartment [N L-3], 
y
v is the stoichiometric coefficient [M N-1],  is an effectiveness of 

biofilm [unitless]. k  and dk  are Monod’s constant for substrate utilisation in biomass [L3 

M-1 T-1] and the constant of decay rate [T-1], respectively. Sk and Ck are the constant 

desorption (detachment) and adsorption (attachment) rate [T-1], respectively. The unit N is 

the quantity of microbes involved (cfu or MPN). 

The concentration of E. coli relates to the substrates consumed. Substrate utilisation during 

metabolisation processes is defined using the first order Monod’s kinetics equation as 

follows (Zysset et al. 1994). 

 t tS
S b m b

C
k C C k C

t



  


 (38) 

where  /b b Sb Sk Y K C   , but S SbC K , so /b b Sbk Y K  . SC and t

bC  are the 

carbonaceous substrate concentration [M L-3] and the total microbial concentration [M L-3], 

respectively. b and bY  are the microbial maximum specific growth rate [T-1] and a 

heterotrophic microbial yield coefficient [unitless], respectively. SbK  and mk  are the 

substrate concentration when the rate of utilisation of half of the maximum rate under 

aerobic condition [M L-3] and a biomass maintenance rate [T-1], respectively. 
The E. coli transport equation was governed as follows (Zyset et al. 1994): 

 
   b b

z z b b b

C C
D q C C

t z z z


 

          
 (39) 

where   t
b m bk k C    , which involves assimilation and dissimilation of microbes 

and t
b bC C . 

A general form of the mathematical model for contaminant transport coupling retardations 

could be written as follows (Huyakorn et al. 1985): 
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   
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z z

st
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z z z t

dispersion advection accumulation order decay

               (40) 

The retardation factor,   equals 1.0 for organic carbon and nitrate compound transport 

equations. The biodecay factor (involving growth of microbes),   equals 0.0 for phosphate 

compounds transport equation. Only microbial transport contains all of these factors.  

8. Numerical solution for solute transport equation 

The approximate solution of contaminant concentration at any nodes and time “t“ is defined 
as (Segerlind 1984, Huyakorn et al. 1985, Clement et al. 1998): 

    
1

( , )
m

j j
j

C z t N z C t


   (41) 

where  jN z  is the shape function [unitless],  jC t is the concentration of contaminant at 

time t [M L-3]. 
The mathematical model presented in Eq. 40 can be modified as follows:  

   z z

C C C
L C D q C

z z z t
                   

 (42) 

The integral form of Eq. 42 is given as follows: 
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
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where  L,0 is the extent of the vertical direction (one dimension) domain. The subscripts “i” 

and “j“ denoted the sequence of elements in the domain as presented in Figure 4. 
Substituting Eq. 42 into 43, gives: 
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The numerical solution of Eq. 44 is governed as: 
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 (45) 

The algebraic matrix systems are defined as follows: 

    j
ij ij j ij i

C
P R C Q S

t


               (46) 

where 
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The initial concentration in the entire domain  0,L   at time t = 0 is defined as follows (Bear 

1979, Huyakorn & Pinder 1983, Huyakorn, et al. 1985, Ségol 1993, Clement et al. 1998): 

    0,0jC z C z  (47) 

where  0C z is the known distribution of solute concentration at time t = 0 [ML-3]. 

The boundary concentration on the edge of domain  0,L  at time “t” is defined using the 

Dirichlet boundary condition (Bear 1979, Huyakorn & Pinder 1983, Huyakorn, et al. 1985, 
Ségol 1993, Clement et al. 1998). 

     1 2, ,jC z t C z t on z z z    (48) 

The specific dispersive flux on the edge of domain  L,0  at time “t” is employed using 

Neumann boundary condition. The dispersive flux was defined as zC  / , (Bear 1979, 

Huyakorn & Pinder 1983, Huyakorn, et al. 1985, Ségol 1993, Clement et al. 1998). 
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D q on z L

z
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 (49a) 

 For seepage flow    0T
z z C

C
D q C q on z L

z


   


 (49b) 

where D

Cq  and T

Cq are the portion of the boundary flux attributable to concentration due to 

dispersion [M L-1 T-2] and the portion attributable to total concentration [M L-1T-2], 

respectively. 

9. Model applications 

The simulation results of solute transport in unsaturated infiltration-redistribution system is 

an active research area where a variety of attempts are being made to determine the 

dynamics of vadose zone in relation to water and contaminant movement and quality of 

soil. The model presented above is used to simulate the experimental data obtained by 

Paniconi et al. (1991). The input parameters for this case study are given in Table 3.  

The Neumann and the Dirichlet conditions were applied to the upper and lower boundary, 
respectively. Both the experimentally observed and simulated pressure head and moisture 
content profiles are presented in Figures 6 and 7, respectively. The developed models 
predicted the experimental observations of Paniconi et al. (1991) very well. This implied that 
the developed model is robust, and that it could effectively predicte the water movement in 
the infiltration-redistribution sytems. On the other hand, the simulation results from the 
solute transport model could not be compared with experimental observations due to lack 
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of appropriate data. However, a series of simulations are carried out as shown in Figures 8 
through 11. The kinetic rate constants of each contaminant are assumed based on the case 
study of contaminants movement in sandy soil near Perth (McArthur & Bettenay 1964, cited 
in Whelan & Barrow 1984). The input parameters used in model are presented in Table 4. 
 

Parameters Values 

Domain Column with depth of 10 m (saturation maintained at the base of 
the column). 
 

Hydraulic properties model van Genutchten model with saturated hydraulic conductivity; Kz 

is 5 m/h,  Air entry pressure; a  is -3.0 mH2O. Saturated 

moisture content; S is 0.45 and residual moisture content; r is 

0.08. q and p are 0.667 and 3.0, respectively. 

 

Boundary and initial conditions At the top, Darcy flux (qz) is applied as a function of time, 

equalled to t/64 m/h. Constant head at the column base, bot of 

0 m. Constant head at the initial, i of 0 m. 
 

Number of element; nelem 100. 
 

Increment time interval; dt Time step varies between 0.1 to 0.5 hour. 

Table 3. Input parameters for water movement model (Paniconi et al. 1991). 
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Fig. 6. Pressure head profiles (datum was at the groundwater table). 
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Parameters Values
Contaminant transport
 

Organic carbon compounds: Constant concentration at the surface, Ctop of 1250 
mg/L and at the datum, Cbot of 39 mg/L. Initial concentration, Cint of 39 mg/L. 

 Nitrate nitrogen compounds: Constant concentration at the surface, Ctop of 2 
mg/L and at the datum, Cbot of 83 mg/L. Initial concentration, Cint of 2 mg/L. 

 Phosphate phosphorus compounds: Constant concentration at the surface, Ctop of 
15 mg/L and at the datum, Cbot of 0.72mg/L. Initial concentration, Cint of 0.72 
mg/L.

 E. coli: The initial microbial concentration 1.03x109 cfu/L. The microbial 
concentration at the column surface and base were 2.14x1010 and 1.318x103cfu/g 
(weight of E.Coli is 7x10-10 mg/cfu). 

Dispersivity; T  (cm) 
 

3.25 (organic carbon), 7.54 (nitrate), 1.57 (phosphate) and 7.59 (E.Coli) 

Molecular diffusion; D*
(cm2/h) 
 

0.03924 (Organic C), 0.06840 (Nitrate), 0.07055 (Ammonia), 0.02304 (Phosphate) 
and 0.0479 (E.coli) (Kemper 1986, Stevik 1999). 

Kinetic rate constant Organic C and Nitrate: o =74.4 h-1, OY =0.45, SOK =0.040 mg/cm3, OK = 0.00077 

mg/cm3, AOK = 0.001 mg/cm3, AC =50 mg/L, OC = 2 mg/L, N = 69.6 h-1, 

NY =0.5, SNK =0.040 mg/cm3, NK =0.0026mg/cm3, ANK =0.001 mg/cm3 and 

 
OCI =0.0802 (Widdowson 1998).

 Phosphate: dK =1.22x10-9 cm3/g and B =1.7 kg/L. (McArthur & Bettenay 1964, 

cited in Whelan & Barrow 1984).
 E.coli: Adsorption rate= 0.015 h-1 , Growth-decay rate 56.8 h-1, (Stevik et al 1999, 

Schnoor 1996). 

Increment time interval; 
dt (hour) 
 

Varies between 0.1-0.5.

Maximum simulation 
time; t (hour) 

32

Table 4. Input parameters for solute transport model (adopted from McArthur & Bettenay 
1964, cited in Whelan & Barrow 1984). 
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Figures 8, 9, 10 and 11 present the simulations of nitrate, organic carbon, phosphate and 
E.coli transport in infiltration-redistribution system. The simulation results reveal that the 
contaminants could reach the groundwater table over a longer period. Also, it appeares that 
the top soil can remove substantial amount of contaminants. Particularly, the organic carbon 
and E.coli, are removed within the few centimetres of the top soil layer. On the other hand, 
phosphate can move downwards to a depth of 2 metres. This might relate to phosphate 
adsorption capacity, which is relatively low in the sandy soil. However, to make proper 
assessment of contaminant transport and its potential contamination of groundwater longer 
periods of simulation are required. At this stage it can be concluded that the contaminant 
transport model presented earlier could be used to predict the contaminant transport within 
the unsaturated (vadose) zone. 
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Fig. 8. Organic carbon concentration profile (datum was at the groundwater table). 
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Fig. 9. Nitrate concentration profile (datum was at the groundwater table). 
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Fig. 10. Phosphate concentration profile (datum was at the groundwater table). 
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Fig. 11. E.coli distribution profile (datum was at the groundwater table). 

10. Conclusion 

A comprehensive model for predicting the movement of water and contaminants through 
unsaturated soil is presented. The models were developed based on Richards equation and 
mass balance relationships. Also, Finite Element Method (FEM) based solution techniques 
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were developed for obtaining numerical solution to the models developed. The water 
movement simulation model predicted fairly well the water movement observed through 
column studies. Thus, the water movement model can be used for predicting the water 
movement through unsaturated zone with confidence. However, it is important to use site 
specific input parameters for reliable results. In the case of contaminant transport model, it 
could not be tested with experimental observations due to lack of appropriate data. 
However, some of the simulation results for organic carbon, nitrate, phosphate and E.coli 
appear to indicate that the model is able to predict the contaminant transport through soil. It 
is recommended that the model is further tested with experimental and/or field data. The 
water can carry contaminants during percolation, however there are some chemical and 
biological mechanisms, which can retard the migration of contaminants. The capillary force 
can extract water from aquifer, which is important for redistribution system. With the 
infiltration-redistribution system, the pore velocity of water may be reduced. This can lead 
to self protection of groundwater from contamination. Further, it is apparent that the 
relative hydraulic conductivity Kzkrw is one of the critical parameters that influence the 
water and contaminant transport through vadose zone. In this study the influence of relative 
hydraulic conductivity on the water and contaminant transport was not fully investigated. 
Evidently, further studies are required to fully understand the influence of relative 
hydraulic conductivity and hence identify critical soil types that may be readily affected by 
the on-site waste disposal systems.  
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