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Analytical and Numerical Solutions of Richards' 
Equation with Discussions on Relative 

Hydraulic Conductivity 

Fred T. Tracy 
U.S. Army Engineer Research and Development Center 

USA 

1. Introduction 

Hydraulic conductivity is of central importance in modelling both saturated and 
unsaturated flow in porous media.  This is because it is central to Darcy's Law governing 
flow velocity and Richards' equation that is often used as the governing partial differential 
equation (PDE) for unsaturated flow. When doing numerical modelling of groundwater 
flow, two dominant challenges regarding hydraulic conductivity are heterogeneous media 
and unsaturated flow.  
 
 

 

Sand 

Clay

 
 

Fig. 1. Heterogeneous soil layers. 

1.1 Heterogeneous media 

Fig. 1 shows an example of soil layers full of heterogeneities that must be approximated in 
some way. Fig. 2 shows an idealization of a two-dimensional (2-D) cross section of a levee. 
Several layers representing different soil types are shown here. It is important to note that 
each layer is represented by a constant value of horizontal and vertical hydraulic 
conductivity rather than, for instance, a statistical variation. This is often done in numerical 
models and will be implemented in this work. The hydraulic conductivity values for sand 
and gravel are two to four times those of the silt and clay. 
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Fig. 2. Levee cross section with several soil types and a slurry wall. 

An additional complexity is added in this problem by inserting the slurry wall. This type of 
wall is typically much less pervious than the surrounding soil, creating further stress on the 
computational model. This is because the numerical solution that is usually done requires a 
solution of a system of simultaneous, linear equations. The greater the span of orders of 
magnitude of hydraulic conductivity, the more challenging the solution of this system 
becomes. 

1.2 Unsaturated flow 

The last major concern and challenge discussed in this chapter regarding hydraulic 

conductivity with regard to computational and analytical solutions is unsaturated flow.  Fig. 

3 shows the location of the phreatic surface for steady-state conditions. The phreatic surface 

is where the ground goes from fully saturated when the soil voids are completely filled with 

water to partially saturated voids in the soil matrix. Above this phreatic surface, hydraulic 

conductivity is often modelled by 

 

 

Fig. 3. Location of the phreatic surface at steady-state conditions. 

 r sk k k=   (1) 

where 

k  = hydraulic conductivity of a given soil type 

sk  = hydraulic conductivity for saturated soil 

Clay and silt

Slurry wall River elevation 
Sand

Sand

Gravel

Clay and sand 
Silt 

Phreatic surface 
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rk  = relative hydraulic conductivity for unsaturated soil 

rk  is set to 1 in the saturated zone, but varies with the pressure head ( h ) in the unsaturated 

zone. There are many expressions for relative hydraulic conductivity in the literature and 
practice. Some of these will be discussed later in this chapter. 

1.3 Obtaining computational results 

A discretization of the flow region must be done to do the numerical analysis. Many 

techniques are available, but in this chapter, the finite element method (Cook, 1981) will be 

emphasized. Fig. 4 shows a zoom of the finite element mesh for the 2-D levee cross section 

given in Fig. 2 consisting of triangular elements. Define the total head as 

 

 

 

 
 

Fig. 4. Portion of the triangular mesh for the levee cross section. 

 h zφ = +   (2) 

where 

h  = pressure head 

φ  = total head 

z  = z coordinate or elevation 

Then equipotentials or total head contours can be used as a good way to visualize the data 

computed at each node of the mesh. Fig. 5 shows this type of plot for the levee example.  
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Fig. 5. Total head contours and phreatic surface. 

 

 

Fig. 6. Velocity vectors and phreatic surface. 

Finally, using Darcy's Law for a homogeneous medium, 

 k φ= − ∇v   (3) 

where 
v  = flow velocity 
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A plot of velocity vectors for the levee cross section can be computed and plotted (see Fig. 
6). 

2. Relative hydraulic conductivity 

One common way of representing relative hydraulic conductivity is using the van 

Genuchten expression (van Genuchten, 1980). First, 

 
( )

1
1 , 1 , 0

1, 0

mn
eS h m h

n
h

ζ
−

 = + − = − ≤ 
= ≥

  (4) 

where 

eS  = effective saturation 

ζ  = parameter based on soil type 

n  = parameter based on soil type 

Then, 

 
( )

2
1/1 1 , 0

1, 0

mm
r e ek S S h

h

 = − − ≤  
= ≥

  (5) 

A simpler but less useful expression for relative hydraulic conductivity is the Gardner 

formulation (Gardner, 1958), 

 h
rk eα=   (6) 

where 
α  = parameter based on soil type 

Eq. 6 is shown here because this simpler equation is needed in the derivation of analytical 

solutions given later in this chapter. Regardless of the middle part of the curves, all relative 

hydraulic conductivity equations go from 1 at 0h =  to near 0 for negative values of h . In all 

these discussions, pressure head is greater than zero for saturated flow, equal to zero at the 

phreatic surface, and less than zero in the unsaturated zone. 

3. Richards' equation 

A common way of characterizing unsaturated flow is Richards' equation (Richards, 1931). A 
general version of this equation is 

 ( )
t

θ
φ

∂
∇ ⋅ ⋅∇ =

∂
K   (7) 

where 

K  = hydraulic conductivity tensor 

θ  = moisture content 

t  = time 
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For a homogeneous, isotrophic medium, K  becomes k  times the identity matrix, so after 

using Eqs. 1 and 2, Eq. 7 becomes, 

  ( )
tkz

k
hk

s

r
r

∂

∂
=

∂

∂
+∇⋅∇

θ1
  (8) 

Eq. 8 will be used for deriving the analytical solutions. The fact that rk  is a function of h  

creates significant difficulty both for solving this problem numerically and deriving 
analytical solutions since now Eq. 8 is often severely nonlinear. 

4. Analytical solutions 

Analytical solutions are an excellent tool for checking numerical programs for accuracy. In 
these derivations, hydraulic conductivity plays an important role. The challenge is finding a 
form of relative hydraulic conductivity such that the nonlinear Richards' equation can be 
converted from a nonlinear to a linear form. The derivations presented here are mirrored 
after those presented earlier (Tracy, 2006, 2007) because they lend themselves to one-
dimensional (1-D), 2-D, and three-dimensional (3-D) solutions.  First, 1-D and 2-D analytical 
solutions will be derived, and then numerical finite element solutions highlighting accuracy 
for different representations of relative hydraulic conductivity will be investigated. 

4.1 1-D analytical solution of the Green-Ampt problem 

Fig. 7 shows the 1-D problem that will be considered in detail. A column of soil of height,  

L , is initially dry until water begins to infiltrate the soil. A pool of water at the ground 
surface is then maintained holding the pressure head to zero. This is known as the 1-D 
Green-Ampt problem (Green & Ampt, 1911).  
 

Rainfall 

L

 

Fig. 7. A view of a 1-D column of soil that is initially dry until water is applied at the top of 
the ground surface from rainfall. 
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This problem is challenging numerically because the change in relative hydraulic 

conductivity is so dramatic, as it goes from small to one. There are several steps that are 

involved in the derivation for this problem, and they will now be summarized. 

1. Provide a function of relative hydraulic conductivity and moisture content as a function 

of pressure head. 

2. Establish initial and boundary conditions. 

3. Perform a change of variables to linearize Richards' equation. 

4. Solve this new PDE for the steady-state solution. 

5. Obtain yet another PDE using a second change of variables. 

6. Use separation of variables. 

7. Use Fourier series to solve the current PDE. 

8. Transform back to the original variables. 

4.1.1 Relative hydraulic conductivity and moisture content 

Gardner's equation (Eq. 6) is used for relative hydraulic conductivity, and moisture content 
is given by 

  ( )d s d eSθ θ θ θ= + −   (9) 

where 

dθ  = moisture content when the soil is dry 

sθ  = moisture content when the soil is saturated 

Rather than use the van Genuchten expression for eS , a simpler version is used (Warrick, 

2003) as follows: 

 e rS k=  (10) 

This equation is more limiting in actual practical application, but it allows easier derivation 

of the analytical solution. It is certainly good enough to test different computational 

strategies in computer programs. 

4.1.2 Initial and boundary conditions 

The initial conditions are that the soil is dry. Thus, 

 ( ),0 dh z h=  (11) 

where 

dh  = the pressure head when the soil is dry 

At 0t > , the boundary conditions at 0z =  and z L=  (top of the soil sample or at the 

ground surface) are 

 
( )
( )

0,

, 0

dh t h

h L t

=

=  (12) 

www.intechopen.com



 
Hydraulic Conductivity – Issues, Determination and Applications 

 

210 

4.1.3 Change of variables 

The 1-D version of Eq. 8 is 

 
1r

r
s

kh
k

z z z k t

θ∂∂ ∂ ∂ 
+ = 

∂ ∂ ∂ ∂ 
 (13) 

Let the new variable, h , be defined as 

 , dhhh e eαα ε ε= − =  (14) 

Then 

 hh h
e

z z
αα

∂ ∂
=

∂ ∂
 (15) 

and therefore, 

 
1 1h h

r

h h h
k e e

z z z
α α

α α
− ∂ ∂ ∂

= = 
∂ ∂ ∂ 

 (16) 

In a similar manner, 

 hrk h h
e

z z z
αα

∂ ∂ ∂
= =

∂ ∂ ∂
 (17) 

and 

 ( ) ( ) ( )e r
s r s r s r

S k h

t t t t

θ
θ θ θ θ θ θ

∂ ∂∂ ∂
= − = − = −

∂ ∂ ∂ ∂
 (18) 

Putting Eqs. 15-18 into Eq. 13 gives 

 
( )2

2
, s d

s

h h h
c c

z t kz

α θ θ
α

−∂ ∂ ∂
+ = =

∂ ∂∂
 (19) 

with initial conditions, 

 ( ),0 0h z =   (20) 

and boundary conditions for 0t >  from Eq. 12, 

 
( )

( )

0, 0

, 1

h t

h L t ε

=

= −
 (21) 

4.1.4 Steady-state solution 

The steady-state version of Eq. 19 will now be solved. It is important to note that this steady-
state version now becomes an ordinary differential equation (ODE) as follows: 
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2

2
0ss ssd h dh

dzdz
α+ =  (22) 

where ssh  is the steady-state solution. The general solution to this equation is 

 1 2
z

ssh A A e α−= +  (23) 

where 1A  and 2A  are constants to be evaluated. When applying the boundary conditions 

of Eq. 21, the result is 

 

1 2

1 2

2 1

1

0

1

1

1

L

L

A A

A A e

A A

A
e

α

α

ε

ε

−

−

= +

− = +

= −

−
=

−

 (24) 

The steady-state solution then becomes 

 

( ) ( )

( )

( )
( )

2 2
2

2 2
2

2

1
1

1

2

1

2

sinh
2

1

sinh
2

z

ss L

z z
z

L L
L

L z

e
h z

e

e e
e

e e
e

z

e

L

α

α

α α
α

α α
α

α

ε

ε

α

ε
α

−

−

   
−    

−     
 

   
−    

−     
 

−

−
= −

−

 
 −
 
  
 = −
 
 −
 
  
 

 
 
 = −
 
 
 

 (25) 

4.1.5 Another transformation 

Yet another transformation is now applied to Eq. 19. Define 

 ˆ
ssh h h= −  (26) 

Eq. 19 now becomes 

 
( ) ( ) ( )2

2

ˆ ˆ ˆ
ss ss ssh h h h h h

c
z tz

α
∂ + ∂ + ∂ +

+ =
∂ ∂∂

 (27) 

Now since ssh  is the steady-state solution (Eq. 22), then 
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22

2 2

2

2

ˆ ˆ ˆ

ˆ ˆ ˆ

ss ss ssh h hh h h
c c

z z t tz z

h h h
c

z tz

α α

α

∂ ∂ ∂∂ ∂ ∂
+ + + = +

∂ ∂ ∂ ∂∂ ∂

∂ ∂ ∂
+ =

∂ ∂∂

 (28) 

with initial and boundary conditions, 

 ( ) ( ) ( )ˆ ˆ ˆ,0 , 0, , 0ssh z h h t h L t= − = =  (29) 

4.1.6 Separation of variables 

Eq. 28 can be solved using separation of variables. ĥ  will be cast into the form, 

 ( ) ( ) ( )ˆ ,h z t z t= Ζ Τ  (30) 

where ( )zΖ  is a function only of z, and ( )tΤ  is a function only of t . Substituting Eq. 30 into 

Eq. 28 and dividing by ΖΤ  gives 

 

2

2

2

2

1

c
z tz

c

z tz

α

α

∂ Ζ ∂Ζ ∂Τ
Τ + Τ = Ζ

∂ ∂∂

 ∂ Ζ ∂Ζ ∂Τ
+ =  Ζ ∂ Τ ∂∂ 

 (31) 

The only nontrivial solution occurs when the left- and right-hand sides of Eq. 31 are set to 
the same arbitrary constant, η . Thus,  

 

2

2

2

2

1

0, 0

c

z tz

c
z tz

α η

α η η

 ∂ Ζ ∂Ζ ∂Τ
+ = =  Ζ ∂ Τ ∂∂ 

∂ Ζ ∂Ζ ∂Τ
+ − Ζ = − Τ =

∂ ∂∂

 (32) 

This leads to the characteristic equations, 

 2
1 1 20, 0m m cmα η η+ − = − =  (33) 

with solutions, 

 
2 2

1 1 2

4 4
, ,

2 2
a bm m m

c

α α η α α η η− + + − − +
= = =  (34) 

The general solution for ĥ  now becomes 

 ( )
1 1 2

1 2 2

1 2

1 2

,

ˆ

a b

a b

m z m z m t

m z m z m t

a e a e e

h a e a e e

Ζ = + Τ =

= ΖΤ = +
  (35) 
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where 1a  and 2a  are determined by initial and boundary conditions. For a physically 

realizable system, 0η < . To eliminate the radicals and to cast in a form that helps realize the 

general nature of the solution, the choice, 

  

2
2 , , 0,1,2,...

4
k k k k

L

α π
η λ λ= − − = =  (36) 

is made. This gives 

 

( )

( )

1 1 2
1 2

2
22

1 2

ˆ

1
, , 1

4

a b

k
k k

m z m z m t
k k k

z t
i z i z

k k k k

h a e a e e

a e a e e i
c

α
µλ λ α

µ λ
− −

−

= +

 
= + = + = −  

 

 (37) 

It is best to rewrite Eq. 37 in terms of sine and cosine series and two other constants, kA  and 

kB , to be evaluated. Thus, for all non-negative integers, k , 

 ( ) 2
0

0

ˆ sin cos
kz t

k k k k
k

h A z B B z e
α

µ
λ λ

∞ − −

=

= + +   (38) 

However, ˆ 0h =  at 0z = , so 0 0kB B= =  and the final form is  

 
2

1

ˆ sin
kz t

k k
k

h A z e
α

µ
λ

∞ − −

=

=  (39) 

4.1.7 Fourier series solution 

kA  in Eq. 39 can be evaluated by using Fourier series. Starting with 

 ( ) 2

1

ˆ ,0 sin
z

k k
k

h z A z e
α

λ
∞ −

=

=   (40) 

the result from using Eqs. 25 and 29 is 

 

( )

( )

2

0

2

0

2 ˆ ,0

2 1
sinh sin

2
sinh

2

L
z

k

L
L

k

A e h z dz
L

e z zdz

L L

α

α
ε α

λ
α

=

−  
= −     

 
 




 (41) 

The last item in determining ĥ  is to evaluate the integral, 
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 ( )

0

0 0

0

2

2 2
0 0

1

2

sinh sin
2

22
cosh sin cosh cos

2 2

2
cosh cos

2

4 4
sinh cos sinh sin

2 2

4 4
sinh 1

2

L

k

L L
k

k k

L
k

k

L L
k k

k k

kk

I z zdz

z z z zdz

z zdz

z z z zdz

L

α
λ

λα α
λ λ

α α

λ α
λ

α

λ λα α
λ λ

α α

λ α

α

+

 
=  

 

   
= −      

 
= −  

 

   
= − −      

 
= − − 

 









( )

( )

( )

2

2

2
1

2 2

1

2
2

1

4 4
1 sinh 1

2

sinh 1
2

4

sinh 1
2

k

kk k

kk

k

kk

k

I

I L

I L

L
c

λ

α

λ λ α

α α

λ α

α
λ

λ α

µ

+

+

+

   
+ = −       

 
= −    

+  
 

 
= − 

 

 (42) 

The solution for ĥ  then becomes 

 
( ) ( )

( )2

1

2 1ˆ 1 sin k
L z k tk

k
kk

h e z e
Lc

α
µε λ

λ
µ

∞−
−

=

−
= −   (43) 

4.1.8 Transform back 

The last remaining task is to convert back to the original coordinates using Eqs. 14, 25, and 
26. Therefore, 

 ( )
( )

( )2

1

ˆ

sinh
22

1 1 sin

sinh
2

k

ss

L z k tk
k

kk

h h h

z

e z e
LC

L

α
µ

α
λ

ε λ
α µ

∞−
−

=

= +

  
    = − + −
  
    

    (44) 

 ( )1
lnh h ε

α
= +

 (45) 
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 Rainfall 

L 

a
 

Fig. 8. A view of a 2-D cross section of soil that is initially dry until water is applied at the  
top 

4.2 Analytical solution of a 2-D infiltration problem 

The great thing about the above derivations is that they can be extended to two and three 

dimensions. Fig. 8 shows a 2-D cross section of a region of soil of dimensions, a  × L , where 

a 2-D Green-Ampt problem is presented. The soil is initially dry until water is supplied such 

that a specified pressure head is applied at the top with pressure head set to zero in the 

middle and tapering rapidly to dh  at 0x =  and x a= . Fig. 9 shows the function selected to 

achieve this for dh  = -20 m, and a  = 50 m. dh h=  is maintained along the bottom and sides 

of the soil sample as well. The initial and boundary conditions are therefore 

 ( ), ,0 dh x z h=  (46) 

 

( ) ( ) ( )

( ) ( )

0, , , , ,0,

1 3 1 3
, , ln 1 sin sin

4 4

dh z t h a z t h x t h

h x L t x x
a a

π π
ε ε

α

= = =

      
= + − −     

      

 (47) 

The equation for h  is now 

 
2 2

2 2

h h h h
c

z tx z
α

∂ ∂ ∂ ∂
+ + =

∂ ∂∂ ∂
 (48) 

with 

 

( ) ( ) ( )

( ) ( ) 















−







−=

===

x
a

x
a

tLxh

txhtzahtzh

ππ
ε

3
sin

4

1
sin

4

3
1,,

0 ,0,,,,,0

 (49) 
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Fig. 9. Pressure head boundary condition applied at the top of the soil sample. 

4.2.1 Steady-state solution for h  

The steady-state version of Eq. 48, 

 
2 2

2 2
0ss ss ssh h h

zx z
α

∂ ∂ ∂
+ + =

∂∂ ∂
 (50) 

is now solved using separation of variables with ssh  taking the form, 

 ( ) ( )ssh x z= Χ Ζ  (51) 

This results in the equations, 

 

2 2

2 2

2 2

2 2

1 1
, , , 0,1,2,...

0, 0

i i i

i i

i i
z ax z

Z
zx z

π
λ α λ λ

λ α λ

 ∂ Χ ∂ Ζ ∂Ζ
= − + = = =  Χ Ζ ∂∂ ∂ 

∂ Χ ∂ Ζ ∂Ζ
+ Χ = + − =

∂∂ ∂

 (52) 

with solutions, 

 ( )
2

22sin cos , sinh cosh ,
4

z

i i i i i i i i i i i ia x b x c z d z e
α

α
λ λ β β β λ

−
Χ = + Ζ = + = +   (53) 

where ia , ib , ic , and id  are constants to be evaluated. Applying boundary conditions on 

the sides and bottom yields the final form of the steady-state solution as  

 2

1

sin sinh
z

ss i i i
i

h e A x z
α

λ β
∞−

=

=   (54) 

where iA  is a constant to be evaluated. Applying the top boundary condition gives 
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( )

( )

2

1

2

0

, sin sinh

2 1 3 1 3
sin sin sin

sinh 4 4

L
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Only 1A  and 3A  are nonzero, so 
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The steady-state solution for h  thus becomes 
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4.2.2 Transient solution for ĥ  

The equation for ĥ  is now 
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with initial and boundary conditions, as before, 
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ĥ  now takes the form, 

 ( ) ( ) ( )ĥ x z t= Χ Ζ Τ  (60) 

This yields 
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and 
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The general solutions are 
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with the final form of ĥ  being 
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Here, ia , ib , kc , kd , ikf , and ikA  are constants to be evaluated. Evaluating the above 

equation at 0t =  using the double Fourier sine series gives 
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with the two nonzero terms with respect to i  being 
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The solution for ĥ  now becomes 
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As done before, transforming back to the original coordinates gives 
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Also, as before, transforming back to the original h , 

 ( )1
lnh h ε

α
= +  (69) 

A 3-D solution is done in a similar manner. 

5. Numerical models 

Hydraulic conductivity has an important role in numerical models. Many soil layers can be 
modelled by specifying hydraulic conductivity for the different layers. Because Richards' 
equation is nonlinear, the manner in which numerical models compute relative hydraulic 
conductivity is also important for both accuracy of the solution and the ability of the 
numerical algorithms to converge. When doing a 3-D Green-Ampt problem containing 
thousands of 3-D finite elements on a parallel high performance computing platform, the 
solution would not converge because of how relative hydraulic conductivity was computed 
inside each finite element. When the pressure head was averaged from the four nodes of 
each tetrahedral element and then used to compute a constant value for the relative 
hydraulic conductivity inside the element, the solution diverged. However, if relative 
hydraulic conductivity was considered to vary linearly inside each element, the solution 
converged quite well. Testing these different algorithms is greatly enhanced by the 
analytical solutions presented above. Some tests using the analytical solutions will now be 
illustrated. 

5.1 1-D solution of the Green-Ampt problem 

The 1-D version of Eq. 7 for a homogeneous, isotropic soil is 

 s rk k
z z t

φ θ∂ ∂ ∂ 
= 

∂ ∂ ∂ 
 (70) 

A finite element/finite difference/finite volume discretization of this equation (see Fig. 10) 
is 
 

j 

j + 1 

j - 1 

∆z 

 

Fig. 10. Discretization of the 1-D soil sample showing two finite elements. 
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where 

j  = node number 

rk −  = the relative hydraulic conductivity for the element between nodes j  and 1j −  

rk +  = the relative hydraulic conductivity for the element between nodes j  and 1j +  

t∆  = time-step size 

n  = time-step number 
The two ways of computing relative hydraulic conductivity inside each element will now be 
discussed. 

5.1.1 Constant relative hydraulic conductivity inside each element 

This way of computing relative hydraulic conductivity is to first compute the average 

pressure head ( avh ) at the center of the element. For rk + , this becomes 

 ( )1

1

2
av j jh h h += +  (72) 

Then compute relative hydraulic conductivity by 

 avh
rk eα

+ =  (73) 

rk −  is computed in the same way. 

5.1.2 Linearly varying relative hydraulic conductivity inside each element 

This way of computing relative hydraulic conductivity is the equivalent of first computing 

the relative hydraulic conductivity at the node points. For nodes j  and 1j + , designate 

relative hydraulic conductivity by 

 1

, , 1,j jh h
r j r jk e k e

α α +

+= =  (74) 

Averaging these values for the final result gives 

 ( ), , 1

1

2
r r j r jk k k+ += +  (75) 

rk −  is computed in the same way. 

5.1.3 1-D numerical test results 

The above equation was solved using L  = 50 m; sk  = 0.1 m/day; dh  = -20 m; dθ  = 0.15; sθ  

= 0.45; z∆  = 0.25 m; α  = 0.1 m-1, 0.2 m-1, and 0.3 m-1; and t∆  = 0.01 day for 100 time-steps 

with the two versions of computing relative hydraulic conductivity. The model used was a 

simple FORTRAN program written by the author. The largest in absolute value (worst) 

error in pressure head for each method is given in Table 1. It is important to note that the 
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respective signs of these errors have been retained. From these results, it is seen that the 

linearly varying version gave the best results. 

 

α  (1/m) 0.1 0.2 0.3 

Constant rk  (m/day) -0.12 -0.28 -0.43 

Linear rk  (m/day) -0.09 -0.12 0.17 

Table 1. Worst error in pressure head for different values of α  for constant and linearly 

varying rk .  
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Fig. 11. Error plot for pressure head ( h ) for the upper, right-hand corner of the 

computational region. 

5.2 2-D solution of the Green-Ampt problem 

The 2-D version of Eq. 7 was solved for the problem given in Section 4.2 with the values of 
the parameters being the same as for the 1-D problem presented above but with the addition 
of a  = 50 m. The model used for this computation was a transient version of Seep2D (Tracy, 

1983, & Seep2D, 2011). A steady-state version of Seep2D is currently incorporated into the 

www.intechopen.com



 
Hydraulic Conductivity – Issues, Determination and Applications 

 

222 

Groundwater Modeling System (GMS) (Jones, 1999, & GMS, 2011). The transient version is 
not yet available. 
Fig. 11 gives a color contour plot of the error for the linearly varying relative hydraulic 

conductivity option for α  = 0.1 m-1 for the upper, right-hand region of 10 m × 25 m. Clearly, 

the results match well with the analytical solution. 

6. Summary 

This chapter has shown that hydraulic conductivity plays an important role in both deriving 
analytical solutions and doing numerical computations. Analytical solutions for both the 1-
D and 2-D Green-Ampt problem were derived and computed numerically with the results 
compared. The derivations are presented in such detail that others can do additional 
solutions as well. Varying relative hydraulic conductivity linearly within each finite element 
not only makes the nonlinear convergence algorithm more robust, but it also produces more 
accurate answers than when it is considered constant inside each finite element. 
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